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Data assimilation strategies for parameter identification of elasto-plastic 
geomaterials and its application to geotechnical practice 
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ABSTRACT: The objective of this study is to demonstrate the numerical and the practical applicability of the particle filter (PF) to 
some geotechnical problems, i.e., the parameter identification of elasto-plastic geomaterials and the prediction of the deformation 
behavior of soil deposits and geotechnical structures, by applying the methodology to hypothetical experiments and an actual 
construction project. The results of the hypothetical experiments reveal that the parameters identified by the PF, based on the
sequential importance sampling (SIS) algorithm, have converged into their true values, and that the approach presented herein can
provide a highly accurate parameter identification strategy for elasto-plastic geomaterials. Moreover, the simulation results using the 
identified parameters are close to the actual observation data, and the ensemble-based approach produces more information about the 
parameters of interest than simple estimated values obtained from optimization methods. In other words, the identification comes in 
the form of a probability density function. 

RÉSUMÉ : L'objet de cette étude est de démontrer l'applicabilité numérique et pratique du filtrage des particules (FP) pour certains 
problèmes géotechniques, à savoir, l'identification des paramètres de géomatériaux élastoplastiques et la prédiction du comportement 
en déformation de dépôts de sol et de structures géotechniques, en appliquant la méthodologie à des expériences hypothétiques et à 
des projets de construction existants. Les résultats des expériences à partir d'hypothèses montrent que les paramètres identifiés par le
FP, basé sur l'algorithme d'échantillonnage d'importance séquentiel (SIS), ont convergé vers leurs valeurs réelles, et que l'approche
présentée ici peut fournir une stratégie d'identification paramétrique très précise pour les géomatériaux élastoplastiques. En outre, les 
résultats de la simulation utilisant les paramètres identifiés sont proches des données d'observation réelles, et l'approche groupée 
produit plus d'informations sur les paramètres d'intérêt que de simples valeurs estimées obtenues à partir des méthodes d'optimisation.
En d'autres termes, l'identification se présente sous la forme d'une fonction de densité de probabilité. 
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1 INTRODUCTION

Inverse analyses have been successfully applied to linear elastic 
problems in which the deformation to be addressed is linear and 
depends only on the model parameters and the applied load; it 
does not depend on the loading history. However, the 
mechanical behavior of geomaterials is commonly described by 
an elasto-plastic model, and the deformation behavior displays 
strong nonlinearity and depends not only on the values of the 
parameters, but also to a great extent on the stress state and the 
history, whereby the identification of elasto-plastic parameters 
still remains a major challenge. 

Data assimilation (DA) is available as a methodology to 
tackle the above difficulties (Nakamura et al. 2005). The 
estimation of the interest dynamic system via DA involves a 
combination of observation data and the underlying dynamical 
principles governing the system. The melding of data and 
dynamics is a powerful methodology, which makes efficient 
and realistic estimations possible. This approach has recently 
proven fruitful in earth science, e.g., geophysics, meteorology, 
and oceanography (e.g., Awaji et al. 2009). 

Several kinds of powerful DA methods have been proposed. 
Among the existing strategies, this study focuses on the filtering 
techniques referred to as the particle filter (PF, Gordon et al.
1993), because it can be applied to nonlinear and non-Gaussian 
problems and can provide a simple conceptual formulation and 
ease of implementation. 

Herein numerical and practical effectiveness of the DA 
strategies using the PF are examined for geotechnical problems 
through their applications to the numerical experiments and an 
actual construction project. For this purpose, first, we outline 
the concepts and methods of DA and refer to the PF. Second, 

we deal with the parameter identification of elasto-plastic 
parameters for geomaterials applying the PF to initial and 
boundary value problems in geomechanics. Finally, we 
investigate the applicability of the PF to a practical settlement 
prediction of a well-documented construction project, Kobe 
Airport Island, comparing the obtained simulation with the
observation data, and the practical effectiveness of the DA 
based on the PF is discussed. 

2 DA: CONCEPTS AND METHODS 

DA is a versatile methodology for estimating the state of a 
dynamic system of interest by merging sparse observation data 
into a numerical model for the system. The state of the system is 
usually estimated with deterministic simulation models, which 
are subject to the uncertainty that arises due to a lack of 
knowledge and a poor understanding of the physical 
phenomena. Meanwhile, observation data, which represent the 
true state, but are subject to stochastic uncertainty and 
randomness, may occasionally be available as a function of a 
subset of the system variables. Based upon a prognostic model 
and a limited number of observations, DA attempts to provide a 
more comprehensive system analysis which may lead to more 
accurate predictions. This approach has recently proven useful 
in earth science (Awaji et al. 2009). 

Novel sequential data assimilation methods include the 
Ensemble Kalman Filter (EnKF, Evensen 1994) and the PF 
which are categorized into nonlinear Kalman filtering. Although 
the EnKF can be applied to nonlinear systems, it basically 
assumes a linear relationship between a state and the 
observation data in calculating a Kalman gain. Therefore, the 
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EnKF cannot produce satisfactory estimates if its linear 
approximation is invalid. This means that its application to 
geomaterials is difficult, because the materials display strong 
nonlinearity. On the other hand, as the PF does not require 
assumptions of linearity or Gaussianity, it is applicable to 
general problems. Therefore, the PF has higher potential for 
application to geotechnical engineering and can obtain 
meaningful outcomes. Brief description of the PF is 
summarized below. 

The PF approximates probability density functions (PDFs) 
via a set of realizations called an ensemble that has weights, and 
each realization is referred to as a ‘particle’ or a ‘sample’. For 
example, a filtered distribution at time t–1, p(xt-1|y1:t-1), where 
y1:t-1 denotes {y1,y2,…,yt-1}, is approximated with ensemble {xt-

1|t-1
(1),xt-1|t-1

(2),…,xt-1|t-1
(N)} and weights {wt-1

(1), wt-1
(2),…,wt-1

(N)}
by the following equation: 
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where N is the number of particles and  is the Dirac delta 
function. wt-1

(i) is the weight attached to particles xt-1|t-1
(i) and 

should suffice wt-1
(i) 1 and wt-1

(i) =1. 
A general approach for filtering is known as sequential 

importance sampling (SIS) (Doucet et al. 2000). The SIS 
algorithm is based on using the importance sampling to estimate 
the expectations of functions of the state variables. The 
algorithm of SIS is summarized as follows: 

1. Initialization: 
Generate an ensemble (set of particles) {x0

(1), x0
(2),…,x0

(N)}
from the initial distribution p(x0).

2. Prediction:
Each particle xt-1

(i) evolves according to the numerical 
dynamic model given by a numerical simulation method 
such as FEM. 

3. Filtering: 
After obtaining measurement data yt, calculate weight wt

(i),
which expresses the “fitness” of the prior particles to the 
observation data, and assign a weight, wt

(i), to each xt-1
(i).

4. Weight update: 
The set of weighted particles {xt

(i)} results in an ensemble 
approximation of filtered distribution p(xt|y1:t).
Set t = t + 1 and go back to Step 2. 

Figure 1 shows the algorithm of the PF based on the SIS. 
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Figure 1. Algorithm of the PF based on SIS. 

3 PARAMETER IDENTIFICATION OF CAM-CLAY 
MODEL USING THE PF 

This chapter focuses on the soil-water coupled behavior of a 
clay foundation under monotonic loading, where the numerical 
simulation for hypothetical soil deposit under embankment is 
implemented to study the efficiency of the PF as a parameter 
identification method. 

The soil-water coupled finite element analysis using the 
Cam-clay model were used in this example. The finite element 
mesh and the loading history are shown in Figures 2 and 3, 
respectively. Table 1 lists the parameters of the clay foundation. 
The placement of the observation points is also shown in Figure 
2; the vertical displacements and the horizontal displacements 
are located at S1-S3 and at L1-L3, respectively. Some of the 
parameters are chosen to be identified and their values are 
called ‘true values’ as listed in Table 2, and we carried out 100 
Monte Carlo Simulations using the sets of particles which were 
generated with uniform random numbers in the range shown in 
Table 2.

Figure 4 shows the time evolution of the identified 
parameters (, , and . Identified parameters are computed as 
the weighted mean value of the particles computed by 
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Figure 2.  Finite element mesh. 
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Figure 3. Loading history. 

Table 1. Cam-clay parameters of the model foundation. 

  e0 

0.190 0.065 0.992 1.154 

Table 2. True values of the parameters to be identified and range 
of particle generation.

Parameter True value Range

 0.239 0.090 ~ 0.290 

 0.091 0.015 ~ 0.115 

 1.084 0.854 ~ 1.454 
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Figure 4. Time evolution of identified parameters. 
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Figure 6. Finite element mesh (Murakami et al. 2012). 

where t  and indicate the identified parameter at time step t
and the parameter of particle number (i) at time step t,
respectively. 

)(i

t

The parameter identification of unknown parameters 
approaches the true values, although the identification starts 
with an incorrect 0  in all cases purposefully. These results 
verify the effectiveness of the PF for the parameter 
identification of the elasto-plastic model, which presents strong 
nonlinear behavior. 

4 APPLICATION OF THE PF TO SETTLEMENT 
BEHAVIOR OF KOBE AIRPORT ISLAND CONSTRUCTED 
ON RECLAIMED LAND 

The objective of this chapter is to investigate the applicability of 
the PF to an actual settlement prediction of a well-documented 
geotechnical construction project, Kobe Airport Island. To 
accomplish this objective, firstly, the settlements of the island 
are evaluated using a soil-water coupled finite element analysis 
with the Cam-clay model. Then, the parameters are identified 
using the PF. Finally, comparing the recomputed simulation 
using identified parameters with the observation data, the 
practical effectiveness of the methodology based on the PF is 
discussed. Some outcomes obtained from this application 
example were reported in Murakami et al. (2012). 

Kobe Airport was constructed on an artificially reclaimed 
island just off the coast of Kobe. Figure 5 shows the cross 
section of the construction site. Vertical sand drains were 
installed in the soft clay layer in order to accelerate the 
settlement and increase the strength (e.g. Yamamoto et al.
2010).

The soil-water coupled finite element analysis with the Cam-
clay model was adopted for analyzing the deformation behavior 
of the seawall and the foundation subjected to the construction 
and reclamation work. Figure 6 shows the finite element mesh. 
In the model ground, the top surface, bottom surface and the 
sides of sand/gravel layers were assumed to have permeable 
boundary conditions, whereas the sides of clay layers were 
assumed to have impermeable boundary conditions. The sand 
layers and reclaimed ground were assumed to be linear elastic, 
and the clay foundations were represented by the Cam-clay 
model. 

The mass permeability concept, which was proposed by 
Asaoka et al. (1995), was incorporated into this analysis. Mass 
permeability is the permeability representative of a clay 
foundation, which includes the effects of inhomogeneity, partial 
drainage, and load intensity. We also adopted the concept in the 
same sense. The analysis in this chapter focuses on the 
settlement behavior of only the improved alluvial clay 
foundation, because the soil layers which are just below the 
improved ground, called Ds1-Ds3, are thick, have high rigidity 
(the N-value obtained from SPT is more than 100), and do not 
significantly affect the settlement of the island. 

Firstly, we considered the improved ground to be 
homogeneous by incorporating the mass permeability concept. 
Then, using the PF, some parameters of the treated ground, the 
so-called mass parameter were identified to simulate settlement 
of the ground under the airport island. Although the some 
parameters affect settlement of the ground, the compression 
index  and the permeability k were treated as the only 
parameters to be identified, because these two parameters 
directly govern consolidation behavior of clay grounds. Finally, 
the simulations were implemented using the identified mass 
parameters and observation data were compared to evaluate the 
practical usability of the PF. 

The representative parameters of the improved grounds, 
referred to as mass parameter (Pmass) in this study, are 
determined here by using equation (3) for simplicity. 
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  (3) 

where Pi, hi, and n are the parameters, the thickness of each 
layer, and the number of soil layers, respectively. 

We conducted Monte Carlo simulations with 200 particles 
over the feasible space listed as follows: 

0.30  0.60,  1×10-0 k 1×10-3.                                 (4)  
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Figure 9. Simulation results using the identified parameters. 
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Figure 7. Time evolution of identified parameters. 

Each parameter was assumed to follow uniform randomly 
and was generated independently. All 200 simulations were 
conducted up to 676 days after the construction was started. 
Only the settlement values observed on the seabed were used 
for parameter identification. 

5 CONCLUSIONS 

Figure 7 shows the time evolution of the identified 
parameters. In the figure, the estimates for  hardly change 
through the assimilation. In particular, after the 300th day, the 
path changes dramatically. On the other hand, in the result of k,
the identified parameter shows almost constant value through 
the assimilation.  

In this study, we have investigated the numerical and the 
practical effectiveness of the DA strategies using the PF for 
geotechnical problems through their applications to the 
hypothetical experiment and the actual construction project.  

Figure 8 shows filtered PDFs of a settlement value at the 148 
days after construction began. In this figure, the vertical axis 
represents the weight of the particle, while the horizontal axis 
represents settlement value. It can be seen from the Figure 8 that 
the distribution of the weight approximately follows the normal 
distribution which has sharp peak around -3.5m. From the 
result, we can see that the use of a large number of particles 
contributes to the accurate estimation of the arbitrary PDFs for 
settlements. This is the remarkable advantage of the PF. 

The parameters identified by the PF have converged into 
their true values, and the presented approach has shown 
effective parameter-identification method for elasto-plastic 
geomaterials. Moreover, the simulated time-settlement behavior 
using the identified mass parameters has provided a good 
agreement with the actual observation. 

In conclusion, the DA using the PF has been proven a 
powerful strategy for identifying elasto-plastic parameters of 
geomaterials and more accurate predictions of the mechanical 
behavior of geotechnical structures. 
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