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Probabilistic Assessment of the Bearing Capacity of Shallow Strip Footings on Stiff-
Over-Soft Clay

Evaluation probabiliste de la capacité portante de semelles filantes peu profondes sur couche 
d’argile rigide recouvrant une couche d’argile molle
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Centre for Offshore Foundation Systems, UWA Oceans Institute & ARC CoE for Geotechnical Science and Engineering, 
University of Western Australia, Perth, Australia
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ABSTRACT: This paper focuses on the probabilistic assessment of the resistance factor for bearing capacity for a strip footing on a
stiff-over-soft clay profile. The analysis is performed by applying the Random Finite Element Method, which combines finite element 
simulation, spatial variability analysis and Monte Carlo simulation. Finite-element analyses are performed in the program ABAQUS 
on meshes in which undrained strength values are assigned on the basis of quantitative estimates of the vertical and horizontal spatial 
variability and the probabilistically modelled scatter of undrained strength itself. The stochastic implementation of the numerical 
analyses results in samples of bearing capacity factors which, when normalized by a deterministic bearing capacity factor, provide a 
set of tabulated factors calibrated to user-defined target reliability levels. The results have application for the prediction of foundation 
punch-through, where the footing pushes the upper strong layer of soil into the softer clay beneath.

RÉSUMÉ : Cet article porte sur l’évaluation probabiliste du facteur de résistance de la capacité portante d’une semelle filante posée 
sur une couche d’argile rigide recouvrant une couche d’argile molle. L’analyse applique la méthode des éléments finis aléatoires, qui 
associe simulation par éléments finis, analyse de variabilité spatiale et simulation par la méthode de Monte Carlo. Les analyses par 
éléments finis sont réalisées avec le programme ABAQUS, en utilisant des maillages pour lesquels la valeur de résistance au 
cisaillement non drainée est déterminée sur la base de l’estimation quantitative des  variabilités verticale et horizontale, ainsi que sur 
la dispersion de la résistance au cisaillement non drainée modélisée de façon probabiliste. L’implémentation stochastique des analyses 
numériques conduit à des facteurs de capacité portante qui, lorsqu’on les normalise par le facteur de capacité portante déterministe, 
fournit un ensemble de facteurs étalonnés pour des niveaux de fiabilité prédéfinis. Les résultats obtenus trouvent une application pour 
la prédiction du poinçonnement des fondations, dans le cas où la fondation pousse la couche supérieure de sol dur dans la couche de 
sol mou située en dessous.
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1  INTRODUCTION 

The bearing capacity of a shallow foundation on two layered 
clay soil is a classical problem in soil mechanics and one of 
importance to many applications, including the punch-through
of offshore foundations. The problem being analyzed in this 
paper is defined in Figure 1: what is the vertical load carrying 
capacity of a strip footing of width (B) on a top layer of soil of 
undrained shear strength (sut) overlying a weaker bottom layer 
(sub). Using finite element analysis in conjunction with limit 
theorems, Merifield et al. (1999) published extensive bearing 
capacity factors (Nc*) defined to predict the vertical capacity as 
a function of the strip footing width and the undrained shear 
strength of the top clay layer. Conditions of varying top layer 
thickness and shear strength ratio were analyzed. However, 
these solutions were only provided for deterministic properties 
of soil with no spatial variability accounted for.  

This paper makes use of the Random Finite Element Method 
(RFEM) (see Fenton and Griffith, 2008) to investigate the effect 
of the spatial variability in undrained shear strength on the 
bearing capacity of a shallow strip footing on two-layered stiff-
over-soft clay. In the RFEM the characterization of the spatial 
variability enables the generation of random fields with spatially 
varying values, all of which are mapped onto a finite element 
mesh. The generation of multiple random fields associated with 
the soil domain allows the repeated implementation of finite 
element analysis, yielding multiple samples of outputs. These 
can subsequently be analysed statistically.

Although RFEM has been used to estimate the statistical 
distribution of the vertical undrained bearing capacity of a strip 

foundation on a single layer (Paice et al. 1996, Nobahar and 
Popescu 2000, Griffiths and Fenton 2001, Griffiths et al. 2002, 
Fenton and Griffiths 2003, Popescu et al. 2005, Kasama and 
Whittle 2011, Cassidy et al. 2012) it has yet to be applied to the 
two-layered condition. The aim of this paper is to (i) provide a 
methodology for doing so, (ii) discuss preliminary trends due to 
changing variation in undrained shear strength distributions, and 
(iii) estimate quantitatively the degree of unconservatism in 
using deterministic bearing capacity factors. 

Figure 1. Definition of problem being investigated. 

2 METHODOLOGY 

The FE analysis model used in this paper is illustrated in 
Figure 2. Two-dimensional plane strain conditions were 
assumed and the commercial ABAQUS finite element package 
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utilised (version 6.10, Dassault Systèmes 2010). A shallow 
foundation with width B was founded on the surface of the two-
layered soil, which was modelled by a linear-elastic perfectly-
plastic Tresca constitutive law with an undrained shear strength 
(su). The elastic response was defined by the Young’s modulus 
(E = 500su) and the Poisson’s ratio set as 0.49. Corresponding 
to one of the analysis cases of Merifield et al. (1999), the soil 
contained a top layer of 1B thickness. For efficiency the infinite 
bottom layer of Merifield et al (1999). was shortened to 3.8B; a 
depth deep enough, however, to ensure no boundary effects. 
The analysis width was 6B. The lateral soil boundaries were
roller supported and the bottom was pinned. The top surface 
was assumed to be free. A fully bonded foundation/soil 
interface was used to model the undrained behaviour.

Figure 2. The FE model used 

The soil domain was divided into 60 by 48 square zones of 
width 0.1B, as shown in Figure 2. In each zone the soil 
properties were constant and defined by an undrained shear 
strength   and Young’s modulus        . However, these 
properties changed from zone to zone representing the spatial 
variability of the soil. For the majority of the soil domain a zone 
was represented by one finite element. However, in a region of 
size 3B by 1B close to the strip footing (as bounded by heavy 
lines in Figure 2) nine smaller finite elements per zone were 
used. These smaller elements, each with the same material 
properties, were required to improve the numerical accuracy of 
the solution. Therefore, in total there are 5280 finite elements in 
the mesh but only 2880 zones of spatially varying soil 
properties.

The spatially variable undrained shear strength    of both 
top and bottom layer was modelled as a normally distributed 
random field with a mean     and standard deviation            . Consistent with the deterministic values of Merifield 
et al. (1999), the mean shear strength of the top layer was set as 
twice the bottom layer, with values of            and            assumed in this paper. The COV, vertical and 
horizontal correlation length    and    for both top and bottom 
layer vary systematically. Table 1 details the random variables 
assumed for the 12 cases presented.  

For each case, 1000 realisations of the random fields of 
undrained shear strength    were generated using the Local 
Average Subdivision algorithm (Fenton and Vanmarcke 1990; 
Fenton 1994). One of the 1000 realisations of the random field 
of case 1 (                                   
see Table 1 for details) is illustrated in Figure 3. 

3 RESULTS 

3.1 Deterministic Case 

The modified bearing capacity factor             was 

defined in Merifield et al. (1999) as the ultimate bearing 
capacity Qu normalised by the footing width B and top layer 
shear strength sut. Merifield et al. (1999) reported     as 4.44 
(lower bound), 4.82 (upper bound) and 4.63 (average) for the 
situation considered in Figure 2. A deterministic case was first 
conducted in this paper with uniform undrained strengths of 20 
kPa and 10 kPa for the top and bottom layer, respectively. An    of 4.66 was obtained. This good agreement implies that the 
FE analyses in this paper are reliable and comparable to the 
Merifield et al. (1999) analyses. 

Figure 3. Example random field (for case 1) 

Table 1. Calculation cases and summary results 

Case

Input parameters

Analysis results

Bottom layer Top layer                             (        )  
1 0.1 0.1 0.3 0.1 0.1 0.3 0.93 0.02 5.0∙10-4

2 0.1 0.1 0.1 0.1 0.1 0.1 0.98 0.01 1.3∙10-3

3 0.1 0.1 0.1 0.1 0.1 0.3 0.95 0.02 5.6∙10-3

4 0.1 0.1 0.3 0.1 0.1 0.1 0.96 0.01 1.0∙10-4

5 0.1 0.1 0.3 0.1 10 0.3 0.94 0.07 0.144

6 0.1 0.1 0.3 0.1 1 0.3 0.93 0.05 0.057

7 0.1 0.1 0.3 1 10 0.3 0.93 0.18 0.277

8 0.1 0.1 0.3 1 1 0.3 0.89 0.12 0.133

9 0.1 10 0.3 0.1 0.1 0.3 0.92 0.04 0.022

10 0.1 1 0.3 0.1 0.1 0.3 0.92 0.03 4.0∙10-4

11 1 10 0.3 0.1 0.1 0.3 0.90 0.09 0.149

12 1 1 0.3 0.1 0.1 0.3 0.90 0.05 0.054

Note:      
3.2 Stochastic soil cases: variation of COV, constant 

The mean undrained shear strength of the top layer      is 
used to defined a modified bearing capacity factor for the 
stochastic cases (    ) and where                (1) 

in which Qur is the stochastic ultimate bearing capacity. The 
values of      of the 1000 realisations random field for each case 
were ordered and the sample median value denoted as     . The 
standard deviation of the          for the 1000 random field 
realisations is calculated as  (        ). The values of     and  (        ) evaluated for all the cases presented in this paper are 
provided in Table 1. The histogram of         from the 1000
random field realisations for case 2 (              see
Table 1) is depicted in Figure 4, with     = 0.98   and (        )      . The empirical cumulative distribution 
functions for cases 1-4 are shown in Figure 5. 

In order to investigate the influence of changing the COV for 
both or one of the layers, the cumulative curves for cases 1~4 
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are shown in Figure 5. In these cases the horizontal and vertical 
correlation lengths of both top and bottom layers were kept 
constant as       . As shown in the figure, the average 
bearing capacity factor for all of the stochastic cases 
(represented by     ) is less than the deterministic case. This is 
consistent with the reports of Nobahar and Popescu (2000), 
Griffiths et al. (2002) and Cassidy et al. (2012). Further, when 
the COV of both layers is increased from 0.1 to 0.3 the average 
bearing capacity reduces from 0.98 to 0.93 and the normalised 
standard deviation increases from 0.01 to 0.02. This is as 
expected and is shown in the two extremity curves of Figure 5. 
Comparing the cases where the COV of only the top layer (case 
3: COVb=0.1, COVt=0.3) and only the bottom layer (case 4: 
COVb=0.3, COVt=0.1) provides more insight into the 
mechanisms of failure. We can see from Figure 5 that the COV 
of the top layer has a more significant effect with case 3 
trending towards case 1 where both layers are 0.3. Moreover, 
the similarity of the shapes of case 2 and case 4 as well as case 
3 and case 1 implies that the top layer COV determines the 
variation (standard deviation) of the curves. 

Figure 4 Histogram of         for case 2

Figure 5 Cumulative probability curves for varying COV of 
cases 1 to 4 

The output samples of stochastic bearing capacity factor 
normalized by the deterministic value were analysed with the 
aim of estimating the frequentist probability of exceedence of 
unity, i.e., the probability that the stochastic bearing capacity 
factor exceeds the deterministic bearing capacity factor. This 
assessment is important in the context of engineering design, as 

it provides a measure of the unconservatism in using 
deterministic bearing capacity factors, i.e., in neglecting 
uncertainty and spatial variability. In only 6 cases out of the 12
analyzed, output samples resulted to be lognormal at the 95% 
confidence level using the Anderson-Darling test. Hence, 
estimating the probability of exceedence of unity from 
cumulative values of fitted lognormal samples would not allow 
confident assessement for all cases. Empirical cumulative 
distribution functions were calculated for each sample. The 
empirical probability Pe of exceedence of unity for each case is 
noted in the rightmost column in Table 1.  

The failure mechanisms of three selected realizations of case 
1 (               ) are shown in Figure 6. These 
represent the minimum, median and maximum     cases and 
are shown alongside the deterministic failure mechanism
(uniform and mean parameter values). In all three cases the 
existence of the random field results in a non-symmetric failure 
mechanism, with the minimum bearing capacity case most 
unsymmetrical. With the increasing of bearing capacity, the 
failure mechanism tends to resemble the deterministic case. The 
importance of spatial variability in the top layer can be 
observed, with the majority of the failure mechanism residing in 
that layer. Further, with higher variability and potential for 
weaker zones the mechanism for lower bearing capacity is both 
more unsymmetric and shorter (pulling it further into the top 
layer). 

                         (a)                                                  (b) 

                        (c)                                                     (d) 
Figure 6. Failure mechanisms from finite element analysis for 
(a) lowest, (b) median and (c) highest bearing capacity, and (d) 
deterministic uniform case (for clarity only a section of 3B
width and depth 2B show) 

3.3 Stochastic soil cases: variation of correlation length in 
top layer 

With the top layer determined to play a more significant role 
in the problem configuration of this paper further concentration 
on the effect of top layer correlation length is discussed. The 
results for correlation length varying from 0.1B to 10B are 
presented as cumulative probability curves in Figure 7. These 
represent cases 5, 6, 1, 7 and 8 in Table 1. As for the           cases (cases 5, 6 and 1), the largest bearing capacity 
corresponds to the largest horizontal correlation length         (case 5) while the minimum corresponds to        
(case 6). This is consistent with the observation of Griffiths et 
al. (2002) for the single layer case. In general, a large 
correlation length results in greater standard deviation of the 
bearing capacity, i.e. the foundation becomes more “non-
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uniform”. The minimum bearing capacity occurs at              .

3.4 Stochastic soil cases: variation of correlation length in 
bottom layer 

Comparison of the results of case 9, 10, 1, 11 and 12
indicates the correlation length effect of the bottom layer. It 
again shows that increasing horizontal correlation length tends 
to increase the standard deviation of the bearing capacity factor 
(see Table 1 and Figure 6). However, the largest average 
bearing capacity corresponds to the minimum correlation length 
case (case 1:                ). This differs to what is 
occurring in the top layer. The maximum average bearing 
capacity corresponds to the largest correlation length case 11,
which is consistent with the results of changing the correlation 
length of the top layer.  

Figure 7. Cumulative probability curves for variation of 
correlation distance in the top layer (cases 1, 5, 6, 7 and 8) 

Figure 8. Cumulative probability curves for variation of 
correlation length in bottom layer (cases 9, 10, 1, 11 and 12) 

4 CONCLUSIONS  

In this study, finite element analysis of the vertical bearing 
capacity of a strip footing penetrating stiff-over-soft clay was 
conducted by taking the spatial variability of undrained strength 
into account. The results indicate that with high spatial 
variability in the undrained shear strength there is a significant 
reduction in the bearing capacity. Mean bearing capacity factors 
and statistical distributions were provided for 12 cases of sut/sub

= 2, COV = 0.1 and 0.3, and     and     = 0.1, 1 and 10.
For the case of top layer thickness equal to the strip footing 
width presented it was shown that variation in the top layer had 
a greater effect on reducing the bearing capacity (when 
correlation distance was held constant). This was due to the 
unsymmetric bearing capacity shortening further into the top 
layer.  
The empirical probabilities of exceedence of the deterministic 
bearing capacity factor in the stochastic case differ from case to 
case, ranging from on the order of 10-4 to 0.277, thus attesting 
for the influence of the magnitude of spatial variability and 
uncertainty on the effects of stochastic modelling. The 
maximum value observed for case 7 is well below a “central” 
value of 0.5; hence, overall, it is assessed that the deterministic 
case is significantly unconservative from an engineering 
standpoint. 

The conclusions drawn in this paper may be specific for the 
geometery and soil conditions analysed. The 12 cases presented 
here, however, represent a small subset of 1600 cases analysed 
in a more ambitious numerical experiment. Cases of (i)          = 4/3 and 2, (ii) COV = 0.1 and 0.3, (iii)      and      = 0.1, 1 and 10, as well as (iv) a gradient of increasing 
undrained shear strength with depth, and (v) a footing 
embedded to 0.5B into the top layer, make up the full 
programme. The results of the larger study will be published in 
due course.
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