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Using 3D numerical solutions for the simplified modelling of interaction of soil and 
elongated structures 

Utilisation de solutions 3D numériques pour la modélisation simplifiée de l'interaction des sols et 
des structures allongées 

Kholmyansky M.L., Sheynin V.I. 
NIIOSP Research Institute, Moscow, Russian Federation

 

ABSTRACT: The problem of interaction of linearly deformable structure and linearly deformable soil is stated in a general form and
then defined more precisely for an elongated structure that is rigid in transversal direction. Both loads acting on the structure and on
the soil outside the structure (induced by of surface and/or subsurface construction, geological processes etc.) are considered.
Numerical method for solution of corresponding equations is developed based on Galerkin boundary elements and numerically
implemented. Examples of concentrated load and tunnelling effects on beam-like structure resting on half-space are considered. 

RÉSUMÉ : Le problème de l'interaction d’une structure déformable linéaire et d’un sol linéaire est posé sous une forme générale puis 
défini plus précisément pour une structure allongée rigide dans le sens transversal. Les charges agissant sur la structure et sur le sol à
l'extérieur de la structure (induite par une construction en surface ou en souterrain, par des processus géologiques, etc) sont 
considérées. Une méthode numérique pour la solution des équations correspondantes est développée sur la base des éléments de 
frontière de Galerkin et mise en œuvre numériquement. Des exemples de charge concentrée et d’effets dus au creusement de tunnels 
sont étudiées pour des structures assimilables à une poutre reposant sur un demi-espace. 

KEYWORDS: half-space, deformable structure, soil-structure interaction, tunnelling effects, boundary elements, Galerkin method. 
 

 
1 INTRODUCTION 

Development of methods of soil-structure interaction with most 
adequate simulation of real conditions is one of the most 
important of research in structural mechanics and soil 
mechanics. The extensive literature and review of some 
problems may be found elsewhere (e.g., Gorbunov-Posadov e.a. 
1984).  

In recent years the researchers’ attention is increasingly 
attracted to the study of soil mass effect due to natural or man-
induced processes on above-surface and sub-surface structures. 
In such problems it is usually impossible to be restricted to 
conventional idealizations. 

At the same time it is possible to choose a class of structures 
with elongated zone of contact with soil, when one zone 
dimension is significantly less than another: buildings with strip 
foundations, underground pipelines, transportation tunnels etc. 
Three-dimensional soil-structure interaction analysis in these 
cases may be simplified. 

In such a way, analysis of solution for a beam on a half-
space under concentrated load (Biot 1937) has led to the 
Winkler model that was used for calculation of beams on soil 
surface and pipes within it (Vesic 1961, Attewell e.a. 1986). 
Corresponding model has some known disadvantages and needs 
some development. Comparison of Winkler and half-space 
models for elongated structures was performed in the papers 
(Klar 2004, Fischer and Gamsjäger 2008). 

At present time finite element is widely used for solving the 
problems of soil-structure interaction. However its application 
in case of domain with length and breadth of different orders of 
magnitude encounters additional difficulties in course of 
numerical implementation.  

As a consequence, in case of elongated contact zones of 
deformable structures interacting with soil continuum another 
approach is needed that allows for geometrical features of the 
problems and makes it possible to develop a numerical 
calculation algorithm simple and providing sufficient accuracy.  
2 SOIL-STRUCTURE INTERACTION 

2.1 Problem statement  

2.1.1 The soil 
A problem of interaction between structure and linearly 
deformable soil is considered in discrete or continuum 
statement. In many instances, for example for tunnels and 
pipelines, the pressure exerted on soil is of small or moderate 
level; that makes possible disregarding nonlinearity. Effects 
both on structure and soil are permitted. The general form of the 
flexibility method for the linearly deformable soil is the 
following: 

 

*ˆˆˆˆ wpCw  ,            (1) 

 

where  = vector of displacements in the contact zone; C = 
flexibility matrix in discrete case or – corresponding operator in 

continuum case;  = vector of loads on the ground in the 

contact zone;  = vector of displacements in the contact zone 
due to the forces exerted on soil outside the structure under 
consideration.  

ŵ ˆ

p̂

*ŵ

The last value is non-zero when other structures are present 
or some geological processes are developing; it is supposed that 
corresponding loads on do not depend on the presence of the 
structure considered, i.e. back effect does not take place. 

2.1.2 The structure  
The .structure is supposed linearly deformable too. The 
equations of the stiffness method for it read  

 
*pKwp  ,           (2) 

 
where p = vector of loads transferred to the structure from its 
(strip) footing; K = matrix (or operator) of the stiffness of the 
structure, reduced to the nodes of footing axis; w = vector of 
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displacements for the nodes at the footing axes; p* = vector of 
loads transferred to the footing from the structure (dead loads, 
live loads on the floors, wind loads etc.). 

2.1.3 The footing 
Elongated footing may be supposed rigid in the transversal 
direction. It gives the possibility to express the displacements of 
the contact zone via the displacements of the footing giving the 
following expression: 

 
Aww ˆ .            (3) 

 
The loads on the footings transferred from the soil are summed 
up according to the formula 

 
pBp ˆ .             (4) 

 

2.2 General system of equation 

Eq. 1 and Eq. 3 give: 
 

*ˆˆ wAwpC  ,           (5) 

 
while Eq. 2 and Eq. 4 give: 

 
*ˆ pKwpB  ,           (6) 

 
In further consideration system of Eq. 5 and Eq. 6 will be given 
concrete expression. 

3 SOIL MODELLED BY LINEARLY DEFORMABLE 
HOMOGENEOUS HALF-SPACE 

3.1 Model substantiation and Galerkin method 

Small breadth of soil-structure contact zone leads to small depth 
of deformable soil layer that allows considering the soil mass as 
homogeneous continuum. Hence the computational domain may 
be supposed homogeneous half-space; its linearity was 
supposed earlier. Only normal loads on its surface are 
considered; tangential loads are zero. 

Earlier one of the authors obtained (Kholmyansky 2007) the 
solution for three-dimensional problem about the system of 
rigid punches on the half-space obtained with the boundary 
element method and using Boussinesq solution. 

Two specific variants of general numerical method of 
weighted residuals where compared: collocation method and 
Galerkin method (Finlayson 1972); the latter showed higher 
accuracy and was chosen for further work. 

Efficiency of that approach was illustrated by the fact that 
the equilibrium of several hundreds of punches was considered 
without difficulties. This paper continues to use that approach 
for the discretization of Eq. 5.  

3.2 Operator discretization 

For discretization of the operatorC, that describes the flexibility 
of deformable foundation the simplest piecewise-constant basis 
functions are chosen. The footing-soil contact zone Ω divided 
into n boundary elements Ωj. 

ˆ

Each basis function corresponds to boundary element; the 
function is unity for the points of the element and zero outside. 
That makes the pressure field piecewise-constant and equal to 
linear superposition of basis functions Nj: 

 





n

j
jj

Npp
1

ˆ ,           (7) 

 
where pj = specific normal load on Ωj. 

As a consequence Galerkin method provides instead of Eq. 5 
its discrete form 
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where aj(u) = average u over the boundary element Ωj; mj — 
area of Ωj; 
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[… , …] = scalar product of the two functions expressed by 
integral of their product over Ω. 

If Ωi — a rectangle (x1≤x≤x2, y1≤y≤y2), then in Eq. 9 
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F(a,b) = displacement of the point of origin under the action of 
unit load on the rectangle with the abscissas of its corner points 
x = 0 and x = a and with ordinates y = 0 and y = b: 
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E, ν = deformation modulus and Poisson ratio of soil. The 
formula obtained is a form of the well known method of 
computation of half-space surface settlement by the 
superposition of rectangular loads (see Terzhagi 1943). Another 
form (Kholmyansky 2007) of well-known expression (see 
Terzhagi 1943) for F(a,b) was obtained: 

 

 )/Arsh()/Arsh(
1
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E
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


;   (12) 

 
From this point on only uniform rectangular grids of boundary 
elements are considered. Integration for the computation of 
scalar product in Eq. 9 is performed numerically with the Gauss 
2×2 cubature formula Гаусса. 

The main difference of the described discrete method from 
the well known Zhemochkin method (Zhemochkin and 
Sinitsyn 1947) is the fact that the Galerkin approach is used 
instead of collocation approach.. 

4 STRUCTURE MODELLED BY A BEAM 

In case of narrow and stiff in transversal direction footing the 
displacements of points in contact zone  are determined by the 
displacements on the footing axis; elements of matrix A are 
units and zeros. Elements of matrix B are units and zeros too; 
matrix B is transposed to A: 

ŵ

 
TAB .             (13) 

The structure model is supposed to be the Bernoulli-Euler beam. 
For the discretization of the well known ordinary differential 
equation of beam bending and computation of stiffness matrix K 
the method of real finite elements was applied 
(Karamansky 1981). 
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The essence of this method consists in concentration of 
bending ability in discrete points. If the beam with bending 
stiffness E1I1 is decomposed to the parts of length Δl the 
bending stiffness at each point is 

 
ΔlIEr /11 .            (14) 

 
The stiffness matrix for a beam with free ends 
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5 CALCULATION OF BEAMS ON ELASTIC HALF-
SPACE 

5.1 Concentrated load 

The beam with plan dimensions 3×51 resting on the half-space 
with unit concentrated force in the centerpoint was calculated . 
Different beam stiffness values were considered; they were 
described by the flexibility index (Gorbunov-Posadov 
e.a. 1984): 

 

11

2

3
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 ,          (16) 

 
where a, b = half-length and half-breadth of the beam. Contact 
zone boundary element decomposition was to unit squares. The 
calculation results are shown on Figure. 1 and demonstrate the 
effect of the beam stiffness in the longitudinal direction: the 
pressure diagram shows changes from the rigid punch type for 
t = 10–3 to alternating-sign type for t = 103; for the intermediate 
value t = 1 there are maxima both in the center of the beam 
under the concentrated load and at the ends.  

5.2 Concentrated load 

For the calculation of bending of the beam that models an 
elongated structure we accept formula (Attewell e.a. 1986) for 
the settlement of the of the soil surface due to tunnelling with 
the account for the position of the tunnel face (the structure 
back effect on the structure is neglected): 

 




















 







 






I

x
G

I

x
Ge

I

V
w

fiIs 2

2

2

2
*ˆ ,    (17) 

 
where Vs = volume of lost ground; 2I = width of the settlement 
trough between the inflection points; ξ, η = coordinates (ξ axis = 
projection of the tunnel axis on the soil surface, η axis is 
perpendicular to ξ axis ); xi and xf — ξ coordinates of the tunnel 
initial and final points; 
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t = 10–3 

 
t = 1 

 
t = 103 

 
Figure 1. Contact pressure under the footing of the beam on the half-
space with concentrated load for flexibility index t = 10–3; 1; 103. The 
part of the diagram symmetrical about the axis of the structure is not 
shown.  

 

 
Figure 2. Relative position of the tunnel and the structure.  

 
Consider different tunnel positions relative to the existing 
elongated structure, influenced by the tunnelling. The structure 
is the same as in the previous example; flexibility index is 1. 

The half-width of the settlement trough is taken equal to the 
half-length of the structure. The general layout scheme of the 
structure and the tunnel with the corresponding parameters, 
describing their mutual position is shown on the Figure 2.  
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 (1) 

 

A similar (from the geomechanical viewpoint) approach to 
calculation of beam-like structures on soil deformed by 
subsurface works was developed in (Pushilin and 
Sheynin 2006), where the model was confined to the planar 
case. This approach allows allows to write down an ordinary 
differential equation for the beam deflection and formulate a 
finite-difference algorithm of its solution. Stresses in a beam-
like structure on Winkler foundation whos deformations are 
induced by a nearby excavation are determined in, e.g. 
(Ilyichev e.a. 2006).  

6 CONCLUSION  

A numerical method was developed for the solution of soil-
structure interaction problems of elongated deformable 
structures (rigid in transversal direction) on linear half-space. It 
was supposed that soil is deformed under the effect of additional 
outer sources, e.g. tunnelling. Numerical results were obtained 
for the most practically typical special case, when the structure 
may be modeled by a beam with finite bending stiffness in 
longitudinal direction and infinitely rigid and of finite breadth in 
transversal direction. The cases of load application both on the 
structure and on the soil continuum due to tunnelling were 
considered. Results for different beam stiffness and tunnel-
structure layout are obtained and analyzed.  

(2) 
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