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Artificial intelligence for modeling load-settlement response of axially loaded (steel) 
driven piles 

Application de l’intelligence artificielle à la modélisation de la courbe effort-tassement des pieux 
battus (en acier) soumis à un chargement axial 

Shahin M.A. 
Department of Civil Engineering, Curtin University, Perth WA, Australia  

ABSTRACT: The design of pile foundations requires good estimation of the pile load-carrying capacity and settlement. Design for 
bearing capacity and design for settlement have been traditionally carried out separately. However, soil resistance and settlement are
influenced by each other and the design of pile foundations should thus consider the bearing capacity and settlement in-separately. 
This requires the full load-settlement behavior of piles to be well predicted. However, it is well known that the actual load-settlement 
behavior of pile foundations can only be obtained by load tests carried out in-situ, which are expensive and time-consuming. In this 
paper, artificial intelligence (AI) using the recurrent neural networks (RNN) is used to develop a prediction model that can resemble 
the full load-settlement response of steel driven piles subjected to axial loading. The developed RNN model is calibrated and
validated using several in-situ full-scale pile load tests, as well as cone penetration test (CPT) data. The results indicate that the RNN
model has the ability to predict well the load-settlement response of axially loaded steel driven piles and can thus be used by
geotechnical engineers for routine design practice.  

RÉSUMÉ: Le dimensionnement des fondations sur pieux nécessite une estimation précise de la capacité portante et du tassement d’un
pieu. Traditionnellement, la détermination de la capacité portante et du tassement d’un pieu est effectuée de manière séparée. 
Cependant, la résistance du sol et le tassement du pieu sont interdépendants. Ainsi, le dimensionnement des fondations sur pieux
devrait considérer de manière simultanée la capacité portante et le tassement du pieu. Ceci nécessite une bonne prédiction de la courbe 
effort-tassement du pieu. Cependant, il est bien connu que la courbe effort-tassement du pieu ne peut être obtenue que par des essais 
de chargement du pieu in-situ, et qui sont coûteux et consommateurs en temps. Dans cet article, l’intelligence artificielle (IA) utilisant 
les réseaux de neurones récurrents (RNN) est utilisée pour développer un modèle de prédiction qui simule la courbe effort-tassement 
des pieux en acier soumis à un chargement axial  à partir des essais in-situ. Le modèle RNN développé est calibré et validé en utilisant 
plusieurs résultats d’essais de chargement de pieux in-situ, ainsi que des résultats d’essais pénétrométriques (CPT). Les résultats
obtenus indiquent que le modèle RNN a la capacité de prédire avec précision la courbe effort-tassement d’un pieu en acier chargé 
axialement et il peut ainsi être utilisé dans la pratique par les géotechniciens. 
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1 INTRODUCTION 

Bearing capacity and settlement are the two main criteria that 
govern the design process of pile foundations so that safety and 
serviceability requirements are achieved. Design for bearing 
capacity is carried out by determining the allowable pile load, 
which is obtained by dividing the ultimate pile load by an 
assumed factor of safety. Design for settlement, on the other 
hand, consists of obtaining the amount of settlement that occurs 
when the allowable load is applied to the pile, causing the soil 
to consolidate or compress. Design for bearing capacity and 
design for settlement have been traditionally carried out 
separately.  However, Fellenius (1988) stated that: “The 
allowable load on the pile should be governed by a combined 
appraoch considering soil resistance and settlement 
inseparately acting together and each influencing the value of 
the other”. In addition, there is a strong argument regarding the 
definition of the ultimate pile load and many methods have been 
proposed in the litearture, some result in interpreted ultimate 
loads that greatly depend on judgement and the shape of the 
load-settlement curve (1980). Consequenlty, for design 
purposes, the full load-settlement response of piles needs to be 
well predicted and simulated; the designer can thus decide the 
ultimate load and comply with the srevieability requirement.    

Good prediction of the full load-settlement response of pile 
foundations needs thorough understanding of the load transfer 
along the pile length, which is complex, indeterminate and 
difficult to quantify (Reese et al. 2006). The actual load-

settlement response of pile foundations can only be obtained by 
carrying out load tests in-situ, which is expensive and time-
consuming. On the other hand, the load-settlement response of 
pile foundations can be estimated using many methods available 
in the literature. However, due to many complexities, available 
methods, by necessity, simplify the problem by incorporating 
several assumptions associated with the factors that affect the 
pile behavior. Therefore, most existing methods failed to 
achieve consistent success in relation to the predictions of pile 
capacity and corresponding settlement. In this respect, the 
artificial intelligence (AI) can be efficient as they can resemble 
the in-situ full-scale pile load tests without the need for any 
assumptions or simplifications. AI is a data mining statistical 
technique that has proved its potential in many applications in 
geotechncial engineering (see Shahin et al. 2009).  

In this paper, the feasibility of using one of the most 
commonly used AI techniques, i.e. recurrent neural networks 
(RNN), is used for modeling the load-settlement response of 
steel driven piles subjected to axial loading. To facilitate the use 
of the developed RNN model for routine design by 
practitioners, the model is translated into an executable program 
that is made available for interested readers upon request.   

2. OVERVIEW OF RECURRENT NEURAL NETWORKS 

The type of neural networks used in this study are multilayer 
perceptrons (MLPs) that are trained with the back-propagation 
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algorithm (Rumelhart et al. 1986). A comprehensive description 
of backpropagation MLPs is beyond the scope of this paper but 
can be found in Fausett (1994). The typical MLP consists of a 
number of processing elements or nodes that are arranged in 
layers: an input layer; an output layer; and one or more 
intermediate layers called hidden layers. Each processing 
element in a specific layer is linked to the processing element of 
the other layers via weighted connections. The input from each 
processing element in the previous layer is multiplied by an 
adjustable connection weight. The weighted inputs are summed 
at each processing element, and a threshold value (or bias) is 
either added or subtracted. The combined input is then passed 
through a nonlinear transfer function (e.g. sigmoidal or tanh 
function) to produce the output of the processing element.  The 
output of one processing element provides the input to the 
processing elements in the next layer. The propagation of 
information in MLPs starts at the input layer, where the network 
is presented with a pattern of measured input data and the 
corresponding measured outputs. The outputs of the network are 
compared with the measured outputs, and an error is calculated.  
This error is used with a learning rule to adjust the connection 
weights to minimize the prediction error. The above procedure 
is repeated with presentation of new input and output data until 
some stopping criterion is met. Using the above procedure, the 
network can obtain a set of weights that produces input-output 
mapping with the smallest possible error. This process is called 
“training” or “learning”, which once has been successful, the 
performance of the trained model has to be verified using an 
independent validation set. 

In simulations of the typical non-linear response of pile load-
settlement curves, the current state of load and settlement 
governs the next state of load and settlement; thus, a recurrent 
neural network (RNN) is recommended. A recurrent neural 
network proposed by Jordan (1986) implies an extension of the 
MLPs with current-state units, which are processing elements 
that remember past activity (i.e. memory units). The neural 
network then has two sets of input neurons: plan units and 
current-state units (Figure 1). At the beginning of the training 
process, the first pattern of input data is presented to the plan 
units while the current-state units are set to zero. As mentioned 
earlier, the training proceeds, and the first output pattern of the 
network is produced. This output is copied back to the current-
state units for the next input pattern of data.  

  

 
Figure 1. Schematic diagram of the recurrent neural network. 

3. DEVELOPMENT OF NEURAL NETWORK MODEL 

In this work, the RNN model was developed with the computer-
based software package Neuroshell 2, release 4.2 (Ward 2007). 

The data used to calibrate and validate the model were obtained 
from the literature and included a series of 23 in-situ full-scale 
load-settlement tests reported by Eslami (1996). The tests were 
conducted on sites of different soil types and geotechnical 
conditions, ranging from cohesive clays to cohesionless sands. 
The pile load tests include compression and tension loading 
conducted on steel driven piles of different shapes (i.e., circular 
with closed toe and H-pile with open toe). The piles ranged in 
diameter between 273 and 660 mm with embedment lengths 
between 9.2 and 34.3 m.    

3.1 Model inputs and outputs 

Six factors affecting the capacity of driven piles were presented 
to the plan units of the RNN as potential model input variables 
(Figure 2). These include the pile diameter, D (the equivalent 
diameter is rather used in case of H-pile as: pile perimeter/π), 
embedment length, L, weighted average cone point resistance 
over pile tip failure zone, 

tipc
q  , weighted average sleeve friction 

over pile tip failure zone, tipsf  , weighted average cone point 
resistance over pile embedment length,  

shaftc
q  , and weighted 

average sleeve friction over pile embedment length, shaftsf  . The 
current state units of the neural network were represented by 
three input variables: the axial strain, 

ia
ε , , (= pile 

settlement/pile diameter), the axial strain increment,
ia

ε , , and 
pile load, Qi. The single model output variable is the pile load at 
the next state of loading, Qi+1.  

Figure 2. Architecture of the developed recurrent neural network. 

In this study, an axial strain increment that increases by 
0.05% was used, in which aε = (0.1, 0.15, 0.2, …, 1.0, 1.05, 
1.1, …) were utilized. As recommended by Penumadu and 
Zhao (1999), using varying strain increment values results in 
good modeling capability without the need for a large size 
training data. Because the data points needed for the RNN 
model development were not recorded at the above strain 
increments in the original pile load-settlement tests, the load-
settlement curves were digitized to obtain the required data 
points. This was carried out using Microcal Origin version 6.0 
(Microcal 1999) and then implementing the cubic spline 
interpolation (Press et al. 1992). A range between 14 to 28 
training patterns was used in representing a single pile load-
settlement test, depending on the maximum strain values 
available for each test.       

It should be noted that the following aspects were applied 
to the input and output variables used in the RNN model: 

 The pile tip failure zone over which 
tipc

q  and tipsf   
were 

calculated is taken in accordance with Eslami (1996), in 
which the influence zone extends to 4 D below and 8 D 
above pile toe when the pile toe is located in 
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nonhomogeneous soil of dense strata with a weak layer 
above. Also, in non-homogeneous soil, when the pile toe is 
located in weak strata with a dense layer above, the 
influence zone extends to 4 D below and 2 D above pile toe. 
In homogeneous soil, however, the influence zone extends 
to 4 D below and 4 D above pile toe.   

 Both measurements of cone point resistance and sleeve 
friction are incorporated as model inputs. This allows the 
soil type (classification) to be implicitly considered in the 
RNN model.   

 Several CPT tests used in this work include mechanical 
rather than electric CPT data and thus, it was necessary to 
convert the mechanical CPT readings into equivalent 
electric CPT values as the electric CPT is the one that is 
commonly used at present. This is carried out for the cone 
point resistance using the following correlation proposed by 
Kulhawy and Mayne (1990):  
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 For the cone sleeve friction, the mechanical cone gives 

higher reading than the electric cone in all soils with a ratio 
in sands of about 2, and 2.5–3.5 for clays (Kulhawy and 
Mayne 1990).  In the current work, a ratio of 2 is used for 
sands and 3 for clays. 

3.2 Data division and preprocessing 

The next step in the development of the RNN model is dividing 
the available data into their subsets. In this work, the data were 
randomly divided into two sets: a training set for model 
calibration and an independent validation set for model 
verification. In total, 20 in-situ pile load tests were used for 
model training and 3 tests for model validation. A summary of 
the tests used in the training and validation sets is not given due 
to the lack of space. Once the available data are divided into 
their subsets, the input and output variables are preprocessed; in 
this step the variables were scaled between 0.0 and 1.0 to 
eliminate their dimensions and to ensure that all variables 
receive equal attention during training.   

3.3 Network architecture and internal parameters 

Following the data division and the preprocessing, the optimum 
model architecture (i.e., the number of hidden layers and the 
corresponding number of hidden nodes) must be determined. It 
should be noted that a network with one hidden layer can 
approximate any continuous function if sufficient connection 
weights are used (Hornik et al. 1989). Therefore, one hidden 
layer was used in the current study. The optimal number of 
hidden nodes was obtained by a trial-and-error approach in 
which the network was trained with a set of random initial 
weights and a fixed learning rate of 0.1; a momentum term of 
0.1; a tanh transfer function in the hidden layer nodes; and a 
sigmoidal transfer function in the output layer nodes. The 
following number of hidden layer nodes were then utilized: 2, 4, 
6, …, and (2I+1), where I is the number of input variables. It 
should be noted that (2I+1) is the upper limit for the number of 
hidden layer nodes needed to map any continuous function for a 
network with I inputs, as discussed by Caudill (1988). To obtain 
the optimum number of hidden layer nodes, it is important to 
strike a balance between having sufficient free parameters 
(connection weights) to enable representation of the function to 
be approximated and not having too many, so as to avoid 
overtraining (Shahin and Indraratna 2006).   

To determine the criterion that should be used to terminate 
the training process, the normalized mean squared error 
between the actual and predicted values of all outputs over all 

patterns is monitored until no significant improvement in the 
error occurs. This was achieved at approximately 10,000 
training cycles (epochs). Figure 3 shows the impact of the 
number of hidden layer nodes on the performance of the RNN 
model. It can be seen that the RNN model improves with 
increasing numbers of hidden layer nodes; however, there is 
little additional impact on the predictive ability of the model 
beyond 8 hidden layer nodes. Figure 3 also shows that the 
network with 19 hidden layer nodes has the lowest prediction 
error; however, the network with 8 hidden nodes can be 
considered optimal: its prediction error is not far from that of 
the network with 19 hidden nodes, and it has fewer connection 
weights and is thus less complex. As a result of training, the 
optimal network produced 9 × 8 weights and 8 bias values 
connecting the input layer to the hidden layer and 8 × 8 weights 
and one bias value connecting the hidden layer to the output 
layer. 
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Figure 3. Effect of number of hidden nodes on RNN performance. 

3.4 Model performance and validation 

The performance of the optimum RNN model in the training 
and validations sets is given numerically in Table 1. It can be 
seen that three different standard performance measures are 
used, including the coefficient of correlation, r, the coefficient 
of determination (or efficiency), R2, and the mean absolute 
error, MAE. The formulas of these three measures are as 
follows: 

 

  

 






N

i
i

N

i
i

i

N

i
i

PPOO

PPOO

r

1

2

1

2

1

)()(

)()(
 

 
 
(2) 

 

 





N

i
i

N

i
ii

OO

PO

R

1

2

1

2

2

)(

)(
1  

 
(3) 

 


N

i
ii PO

N
MAE

1

1
 

 
(4) 

 
where N is the number of data points presented to the model; Oi 
and Pi are the observed and predicted outputs, respectively; and 

O and P are the mean of the predicted and observed outputs, 
respectively. 
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The coefficient of correlation, r, is a measure that is used to 
determine the relative correlation between the predicted and 
observed outputs. However, r sometimes may not necessarily 
indicate better model performance due to the tendency of the 
model to deviate toward higher or lower values, particularly 
when the data range is very wide and most of the data are 
distributed about their mean (Das and Sivakugan 2010). 
Consequently, the coefficient of determination, R2, is used as it 
can give unbiased estimate and may be a better measure for 
model performance. The MAE eliminates the emphasis given to 
large errors, and is a desirable measure when the data evaluated 
are smooth or continuous. The performance measures in Table 1 
indicate that the optimum RNN model performs well and has 
good prediction accuracy in both the training and validation 
sets. Table 1 also indicates that the RNN model has consistent 
performance on the validation set with that obtained on the 
training set.  

 
T able 1. Performance results of the optimal RNN model. 

Performance measures 
Data sets 

r R2 MAE (kN) 

Training 0.998 0.996 34 

Validation 0.994 0.988 38 

 
The performance of the optimum RNN model in the training 

and testing sets is further investigated graphically, as shown in 
Figures 4 and 5. It should be noted that, for brevity, only five of 
the most appropriate simulation results in the training set are 
given in Figure 4. These five simulations are chosen because 
they reflect the entire range of the in-situ pile load-settlement 
tests used in this study. As can be seen in Figures 4 and 5, 
excellent agreement between the actual pile load tests and the 
RNN model predictions is obtained, in both the training and 
validation sets. The nonlinear relationships of the load-
settlement response are well predicted, and the results 
demonstrate that the RNN model has a strong capability to 
simulate the behavior of steel driven piles. 
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Figure 4. Some simulation results of RNN model in the training set. 
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Figure 5. Simulation results of RNN model in the validation set. 

4. CONCLUSION 

This work presented in this paper has used a series of full-scale 
in-situ pile load-settlement tests and CPT data collected from 
the literature to develop a recurrent neural network (RNN)-
based model for simulating the load-settlement response of steel 
driven piles. The results indicate that the RNN model was 
capable of simulating the behavior of steel driven piles 
reasonably well. The graphical comparison of the load-
settlement curves between the RNN model and experiements 
showed an excellement agreement and indicates that the RNN 
model can capture the highly non-linear load-settlement 
response of steel driven piles. To facilitae the use of the 
developed RNN model, it is translated into C++ code and 
executable program, which are made available upon request.  
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