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ABSTRACT 
Existing methods used to infer soil properties from piezocone penetration test (PCPT) data are not always reliable due to the
complexity of cone penetration.  This study examines the feasibility of training an artificial neural network (ANN)-based data fusion 
model to estimate soil properties, including overconsolidation ratio (OCR), coefficient of lateral earth pressure at rest (Ko), and 
undrained shear strength (su), directly from multiple piezocone penetrometer sensor measurements.  Additional features were created
by mathematically combining the PCPT measurements in a manner consistent with the work of previous researchers in an attempt to
improve the performance of the trained data fusion model.  Overall, the values of OCR, Ko, and su predicted by the data fusion models 
were found to compare very well with the reference values and to be generally more reliable than the results of the current
interpretation methods. 

RÉSUMÉ
Les méthodes courantes, qui sont utilisées pour déduire les propriétés des sols à partir de données du piezocone penetration test
(PCPT), ne sont pas toujours fiables à cause de la complexité du pénétromètre. Cette étude examine la possibilité d’entraîner un
modèle de fusion de données basé en artificial neural network (ANN) pour estimer les propriétés des sols, inclus overconsolidation
ratio (OCR), coefficient of lateral earth pressure at rest (Ko), undrained shear strength (su), directement des mesures détectées par le 
pénétromètre. Des caractéristiques additionnelles ont été développées en combinant mathématiquement les mesures du PCPT d’une 
manière consistante avec les travaux de chercheurs pour améliorer la performance du modèle de fusion de données. Dans l’ensemble,
les valeurs OCR, Ko, et su, prédites par les modèles, comparent bien avec les valeurs de référence et sont plus fiables que les résultats 
interprétés par les méthodes courantes. 
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1 INTRODUCTION 

Data fusion techniques combine data from multiple sensors or 
sources in order to achieve inferences that may not be feasible 
from data obtained using just a single sensor (Hall and Llinas 
1997).  This is because a combination of additional independent 
and/or redundant data tends to have a synergistic effect, 
resulting in improved inferences.  For example, having two eyes 
(visual sensors) allows for stereoscopic vision (i.e., depth 
perception) in humans.  The brain, which fuses data (sight, 
sound, smell, taste, touch) from multiple sensors (eyes, ears, 
nose, tongue, skin) and uses its memory, experience, and a 
priori knowledge to make inferences about the external world, is 
an excellent example of a data fusion system (Gros 1997).  Data 
fusion is currently being used in numerous applications, 
including military defense, robotics, medical diagnosis, 
non-destructive evaluation of equipment, and weather 
forecasting.  In this study, it is proposed that the process of data 
fusion be used to estimate soil properties, including 
overconsolidation ratio (OCR), coefficient of lateral earth 
pressure at rest (Ko), and undrained shear strength (su), directly 
from in situ test measurements and additional created features, 
and that data fusion algorithms, through training, may be able to 
overcome some of the limitations of the current piezocone 
penetration test (PCPT) interpretation methods. 

2 DATA FUSION FOR INTERPRETING PCPT DATA 

The most popular area of data fusion is feature-level identity 
fusion, which is the fusion of parametric data to determine the 

identity and/or attributes of an observed object.  In the feature-
level fusion approach, “feature extraction” is performed on the 
raw data (i.e., sensor measurements) to yield a feature vector 
from each sensor.  The feature vectors consist of characteristics, 
or features, of the data that will aid in the identification of the 
object.  The feature vectors from all sensors are then 
concatenated together into a single joint feature vector from 
which an identity declaration is made (Hall and Llinas 1997).  
Because feature-based pattern recognition techniques, such as 
artificial neural networks (ANNs), are often used for identity 
fusion, the success of these methods depends on the selection of 
good, representative features (Hall and Llinas 2001).  Figure 1 
depicts the feature-level identity approach for extracting 
features (qt, u2) from raw piezocone sensor data and using an 
ANN to perform a nonlinear transformation between the input 
feature vector and the output declaration of identity (i.e., soil 
attributes of OCR, Ko, and su). 

Figure 1.  Feature-level data fusion system 
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3 PREDICTION OF OCR, KO, AND SU FROM PCPT DATA 
USING DATA FUSION 

3.1 Overview of Methodology 

In order to predict values of OCR, Ko, and su from PCPT data, a 
database consisting of values of corrected cone tip resistance 
(qt), pore pressure measured just behind the cone base (u2), 
vertical total stress ( v), and hydrostatic pore pressure (uo), 
together with reference values of OCR, su, and Ko obtained from 
one-dimensional consolidation test results, triaxial compression 
and field vane shear test results, and empirical correlations, 
were used to train and test an ANN-based data fusion model 
(Griffin 2007).  Data fusion model predictions were compared 
with the reference values, as well as with the estimates obtained 
using existing interpretation methods, to determine if the 
reliability of inferred soil properties can be improved by using 
data fusion techniques. 

3.2 Database 

The database used herein, obtained from Sandven (1990) and 
Chen (1994), contained PCPT measurements (qt and u2) and 
corresponding OCR, su, and Ko data obtained from 19 intact 
clay sites located in seven countries, including Norway, Canada, 
Sweden, the United States, Scotland, Singapore, and Taiwan.  
Sleeve friction (fs) measurements were not available from all of 
these sites; therefore, fs was not used.  The reference values of 
OCR were determined from one-dimensional consolidation 
tests, while the reference values of su were estimated from 
isotropically consolidated undrained triaxial compression 
(CIUC) tests, anisotropically consolidated undrained triaxial 
compression (CAUC) tests, and in situ field vane shear tests.  
Since Ko was not measured in the laboratory or in situ, the 
reference values included for each case in the database were 
calculated using empirical correlations for normally 
consolidated and overconsolidated soils (e.g., Jaky 1944; Mayne 
and Kuhawy 1982).  In total, the database contained 153 cases, 
ranging from soft, normally consolidated cohesive deposits to 
stiff, overconsolidated clays.  OCR values in the database fell 
between 1.0 and 11.4; values of su ranged from 8 to 286 kPa for 
the laboratory tests (99 cases) and from 12 to 94 kPa for the 
field tests (54 cases); and computed Ko values ranged from 0.45 
to 1.51. 

3.3 Feature Creation 

In an attempt to improve the performance of the data fusion 
model, additional features were created by mathematically 
combining the original set of features in a manner consistent 
with the work of previous researchers.  Domain knowledge (i.e., 
that of a geotechnical expert) was employed to construct seven 
new features, or input variables, from the PCPT and in situ 
stress data for use in training the data fusion models.  These 
new features included vertical effective stress ( v'= v-uo), 
excess pore pressure at the u2 location ( u2=u2-uo), net cone 
resistance (qn=qt- v), normalized net cone resistance 
[Qt=(qt- v)/ v'], effective cone resistance (qe=qt-u2), pore 
pressure ratio [Bq= u2/(qt- v)], and normalized excess pore 
pressure (NEPP= u2/ v').  Many of these relationships, or 
features, have been proposed for interpretation of PCPT 
measurements since the piezocone was first introduced in the 
early 1970s.  In particular, qn has been related to both 
preconsolidation pressure (Tavenas and Leroueil 1987) and su

(Robertson and Campanella 1983), while qe has been correlated 
to su (Senneset et al. 1982; Campanella et al. 1982; Chen and 
Mayne 1994).  Wroth (1988) reasoned that Qt could be 
effectively used to evaluate OCR in natural clays, while 
Kulhawy and Mayne (1990) proposed a correlation between Qt

and Ko.  Azzouz et al. (1983) and Mayne (1986) proposed 

relationships between NEPP and OCR; and Senneset et al. 
(1982), Wroth (1984), and Robertson et al. (1986) offered 
correlations for OCR using Bq.  Finally, a number of 
relationships have been proposed between u2 and su (Vesic 
1972; Massarsch and Broms 1981). 

3.4 Training and Testing Data Fusion Models 

Two feature-level data fusion models were developed using the 
general regression neural network (GRNN), a feature-level data 
fusion technique developed by Specht (1991) and presented in 
Kurup and Griffin (2006).  Split-sample, or holdout, validation, 
in which a representative portion of the cases is reserved for 
testing, was used to estimate generalization error in the data 
fusion models.  The testing set was comprised of 51 cases, 
representing approximately one-third of the available data, 
while the training set was comprised of the remaining 
102 cases.  In accordance with standard testing procedures, the 
testing cases were chosen randomly from each piezocone site 
and were not used in any way during training. 

The PCPT data and in situ stresses (inputs), together with the 
corresponding values of OCR, Ko, and su (targets), were used to 
develop two GRNN-based data fusion models (Models 1 and 2).  
The smaller feature vector for Model 1 consisted of five input 
variables, including v, uo, qt, u2, and su type.  The larger feature 
vector for Model 2 consisted of 12 input variables, including v,

'v, qt, u2, u2, qn, qe, Qt, Bq, NEPP, and su type.  The “su test 
type” input was used in order to predict values of both su(TC) and 
su(FV), with an “su type” of 1 denoting a triaxial compression 
(TC) test  and an “su type” of 2 denoted a field vane shear (FV) 
test.  The architecture of the GRNN is depicted in Figure 1, in 
which a feature vector is input on the left side of the neural 
network, the trained GRNN performs a nonlinear transformation 
(feature-level fusion) between the input and target variables, 
and an identity declaration is output on the right side of the 
neural network. 

Prior to training the data fusion models, all input and output 
data were scaled, or normalized, so that they fell within the 
range of 0 to 1.  Training then consisted of repeatedly 
presenting 85% of the training data to the network and 
subsequently testing it with the remaining 15% (termed “tuning 
data”) to find the optimal value of the smoothing parameter, ,
which essentially determines how closely the function 
implemented by the GRNN fits the training data (smaller  for 
large training sets or “clean” data, larger  for small training 
sets or “noisy” data).  Because this process can result in 
different optimum  values for each target parameter (OCR, Ko,
and su), a  which gave favorable results for all three targets 
was chosen.  This training procedure was repeated twice more, 
each time with a different 15% of the training data being used 
for tuning.  After the optimum  was found for each data fusion 
model (0.05 for Model 1 and 0.10 for Model 2), the models 
were tested with a testing set consisting of previously unseen 
data obtained from the same clay sites used in training. 

3.5 Data Fusion Model Results 

After testing, the GRNN data fusion model predictions were 
compared to the reference OCR, Ko, and su values to determine 
the models’ success.  For Model 1, which simultaneously 
predicted these target soil parameters from a smaller feature 
vector, the predicted values are plotted against the 
corresponding reference values and the normalized predicted 
values are plotted for each testing case in Figure 2.  For 
Model 2, which simultaneously predicted the target soil 
parameters from a larger feature vector, both the predicted 
values and the normalized predicted values are plotted in 
Figure 3.  Note that perfect predictions fall on the 1 to 1 (45°) 
correlation line and have normalized values of unity.  Included 
on all numeric plots are the correlation coefficient (CC), mean 
absolute error (MAE), and relative absolute error (RAE) of the 
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numeric predictions, which provide a measure of error for the 
predicted values.  Included on all normalized plots are the mean 
and standard deviation (SD) of the normalized predictions, 
which give an indication of the central tendency and variability 
of the normalized values, respectively. 

The larger feature vector used for Model 2, which included 
the additional constructed features, resulted in better predictions 
of OCR, Ko, and su than the smaller feature vector used for 
Model 1.  The computed performance measures for the 
predictions of Model 2 all showed improvement over the 
performance measures for the predictions of Model 1, including 
a higher CC, lower MAE, and lower RAE for the predicted 
values and a better mean (closer to 1) and lower SD for the 
normalized predicted values. 

Figure 2.  Data fusion Model 1 results 

3.6 Interpretation Method Results 

For comparative purposes, values of OCR, Ko, and su were each 
estimated using an existing interpretation method.  The values 
of OCR were estimated using the normalized effective cone 
resistance correlation proposed by Chen and Mayne (1994); 
values of Ko were estimated using the normalized net cone 
resistance correlation proposed by Kulhawy and Mayne (1990); 
and values of su were estimated using the net cone resistance 
empirical correlation (su=qn/Nkt).  In using the net cone 
resistance relationship to predict su, site-specific correlations for 
the empirical cone factor, Nkt, were not developed for each 
piezocone site; instead, values of Nkt were varied until single 
values which worked well were found for each su test type 
(su(TC) and su(FV)) in the training set.  For this database, the value 
of cone factor Nkt was chosen as 11 for su(TC) and 17 for su(FV).
The interpretation method results are plotted in Figure 4.  The 
CC, MAE, and RAE of the numeric predictions are included on 
the numeric plots, and the mean and SD of the normalized 
predictions are included on the normalized plots. 

Figure 3.  Data fusion Model 2 results 

Figure 4. Interpretation method results 
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4 DISCUSSION OF RESULTS 

The GRNN feature-level data fusion technique performed well 
in predicting OCR, Ko, and su from the PCPT data and related 
features.  The use of additional features improved the 
“accuracy” of the OCR, Ko, and su predictions of the GRNN-
based data fusion model.  Greater accuracy is defined herein as 
those values exhibiting an overall decrease in MAE and RAE 
and an increase in CC, and whose normalized values typically 
exhibit a better mean (closer to 1) and a decrease in SD.  The 
use of the smaller feature vector for Model 1 resulted in OCR 
predictions having a MAE of 0.7, RAE of 42%, and CC of 0.86; 
Ko predictions having a MAE of 0.10, RAE of 53%, and CC of 
0.84; and su predictions having a MAE of 8 kPa, RAE of 26%, 
and CC of 0.96 (Figure 2).  The use of the large feature vector 
for Model 2 resulted in OCR predictions having a MAE of 0.5, 
RAE of 33%, and CC of 0.90; Ko predictions having a MAE of 
0.07, RAE of 36%, and CC of 0.91; and su predictions having a 
MAE of 7 kPa, RAE of 20%, and CC of 0.97 (Figure 3). 

Overall, the data fusion models performed better than the 
PCPT interpretation methods in predicting OCR, Ko, and su.
Compared to both data fusion models, Chen and Mayne’s 
(1994) correlation for estimating OCR and Kulhawy and 
Mayne’s (1990) correlation for estimating Ko resulted in 
predictions having higher values of MAE and RAE and a lower 
CC for the numeric predictions and a higher value of SD for the 
normalized predictions (Figure 4).  In estimating values of su,
data fusion Model 1 resulted in predictions having values of 
MAE, RAE, CC, and SD comparable to the predictions using 
the net cone resistance (qn) empirical correlation, as the 
interpretation method resulted in su values having an MAE of 
9 kPa, an RAE of 28%, and a CC of 0.96 for the numeric 
predictions and an SD of 0.24 for the normalized predictions 
(Figure 4).  Data fusion Model 2 yielded better su predictions 
than the interpretation method. 

The GRNN performs well as a feature-level data fusion 
technique.  Because the GRNN has the ability to deal with noisy 
training data caused by errors or anomalies in the laboratory and 
field test methods, it is very effective in modeling nonlinear 
multivariate problems.  As such, the ANN-based data fusion 
models generally outperform the existing PCPT interpretation 
methods.  Because the interpretation methods used herein do not 
account for such factors as soil fabric, sensitivity, mineralogy, 
aging, and geologic origin, it is hoped that the data fusion 
models may be able to “learn” some of these complex nonlinear 
relationships among sample data through training. 

5 CONCLUSIONS 

This study has demonstrated the effectiveness of data fusion in 
inferring soil properties from PCPT measurements, and the use 
of additional created features was shown to improve soil 
property predictions.  The values of OCR, Ko, and su predicted 
by the data fusion models were found to compare very well with 
the reference values and to be generally more reliable than the 
results of the current interpretation methods.  Thus, data fusion 
may represent an improvement over the methods currently 
being employed to interpret piezocone penetrometer sensor 
data.  In addition, data fusion techniques may be capable of 
combining the features constructed from PCPT measurements 
into one predictive model, essentially combining years of 
previous PCPT research. 
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