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ABSTRACT
The current methods of pile design under earthquake loading is based on a bending mechanism. These codes do not consider the ef-
fect of axial load that the pile continues to carry at full liquefaction. Recent research has revealed, however, that buckling can occur in 
piles due to axial load and loss of soil stiffness owing to liquefaction. It is, therefore, necessary to evaluate the risk of the existing
piled foundations designed by the current codes of practice. This paper identifies the dominant parameters for such a risk evaluation. 

RÉSUMÉ
Les méthodes actuelles de conception de tas sous le chargement de tremblement de terre sont basées sur un mécanisme courbant. La
recherche récente a révélé, cependant, cet attacher peut arriver dans les tas en raison du chargement et la perte axiales de raideur de
sol dû à la liquéfaction. C'est, donc, nécessaire d'évaluer le risque des fondations entassées existantes conçues par les codes actuels de
pratique. Ce papier identifie les paramètres dominants pour une telle évaluation de risque. 

1 INTRODUCTION

1.1 Current understanding of pile failure i.e. bending 
mechanism

Collapse of piled foundations in liquefiable soils is still ob-
served after strong earthquakes; for example 1995 Kobe or 2001 
Bhuj earthquake. The current methods of pile design under 
earthquake loading, such as Eurocode 8, part 5 (1998), NEHRP 
(2000), Japanese Highway Code (JRA) or the Indian code (IS 
1893) is based on a bending mechanism where inertia and slope 
movement (lateral spreading of soil) induce bending moments 
in the pile. Piled foundations often collapse by forming plastic 
hinges. This suggests that the bending moment or shear forces 
experienced by the pile exceed the plastic moment capacity of 
the pile. All current design codes provide a high margin of 
safety using partial safety factor, yet occurrences of pile failure 
are abundant. Bhattacharya (2003) has shown that the overall 
factor of safety against plastic yielding of a typical concrete pile 
can range between 4 and 8. This is due to the multiplication of 
partial safety factors on load (1.5), material (1.5 for concrete), 
fully plastic strength factor (ZP/ZE = 1.67 for circular section) 
and practical factors such as minimum reinforcements. This im-
plies that the actual moments or shear forces experienced by the 
pile are 4 to 8 times those predicted by their design methods. 
Bhattacharya and Bolton (2004) have shown that bending 
mechanism due to lateral loads cannot always explain a pile 
failure. They have used the well-known case study of the Showa 
Bridge failure to illustrate that although the design of the piles 
in the bridge satisfies the latest guidelines of JRA (1996), yet 
the bridge actually failed during the 1964 Niigata earthquake. 

1.2 Buckling as a feasible pile failure mechanism in areas of 
seismic liquefaction 

Research carried out by Bhattacharya et al. (2004) has shown 
that if piles are too slender they require lateral support from the 
surrounding soil if they are to avoid buckling instability. During 
earthquake-induced liquefaction, the soil surrounding the pile 
loses effective confining stress and can no longer offer suffi-
cient support to the pile. A slender pile may then buckle side-
ways in the direction of least elastic bending stiffness pushing 
aside the initially liquefied soil, and eventually rupturing under 

the increased bending moment and shear force. Lateral loading 
due to slope movement, inertia or out-of-straightness increases 
lateral deflections, which in turn induces plasticity in the pile 
and reduces the buckling load, promoting more rapid collapse. 
These lateral loads are, however, secondary to the basic re-
quirements that piles in liquefiable soil must be checked against 
Euler’s buckling.  This theory has been formulated based on a 
study of fourteen case histories of pile foundation performance 
and verified using dynamic centrifuge tests. Analytical studies 
also support this theory of pile failure, see for example Kimura 
and Tokimatsu (2004). In other words, part of the pile in lique-
fiable soil needs to be treated as an unsupported structural col-
umn. In contrast, the piles in liquefiable soils are erroneously 
designed as beams. 

1.3 Need for risk evaluation of existing piled foundations 
designed based on bending mechanism  

Beam bending and column buckling require different ap-
proaches in design. Bending is a stable mechanism as long as 
the pile is elastic, i.e. if the lateral load is withdrawn, the pile 
comes back to its initial configuration. This failure mode de-
pends on the bending strength (moment at first yield, MY; or 
plastic moment capacity, MP) of the member. On the other 
hand, buckling is an unstable mechanism. It is sudden and oc-
curs when the elastic critical load is reached. It is the most de-
structive mode of failure and depends on the geometrical con-
figuration of the member, i.e. slenderness ratio, and not on the 
yield strength of the material. Bending failure may be avoided 
by increasing the yield strength of the material, i.e. by using 
high-grade concrete or additional reinforcements, but it may not 
suffice to avoid buckling. To avoid buckling, there is a need for 
a minimum pile diameter depending on the thickness of the li-
quefiable soil, such as Fig. 1. Thus there is need to reconsider 
the safety of the pile-supported structures (buildings and 
bridges) whose piles are designed based on a bending mecha-
nism.
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Figure 1: Minimum diameter of pile based on buckling considerations, 
Bhattacharya and Tokimatsu (2004). 

1.4 Aim of the paper 

The paper aims to identify the parameters involved in the risk 
evaluation of existing structures founded on end-bearing piles 
designed based on a bending mechanism. As many of such pa-
rameters are likely to be uncertain (random), a probabilistic ap-
proach of analysis would be more appropriate. A computational 
scheme for reliability (risk) analysis has been developed to de-
termine the probability of failure of piled foundations as well as 
its sensitivity to the different random parameters.  

2 THEORETICAL BACKGROUND BEHIND THE RISK 
ASSESMENT 

This section of the paper describes the theoretical background 
behind the mathematical formulation for the risk assessment. 
The case of a piled building/ tank (Fig. 2) is considered to dem-
onstrate the methodology. The different stages of loading in a 
piled foundation are explained schematically in Bhattacharya et 
al (2004). P is the static axial load acting on each pile beneath 
the building/tank assuming that each pile is equally loaded dur-
ing static condition neglecting any eccentricity of loading. 
However during earthquakes, inertial action of the superstruc-
ture will impose dynamic axial loads on the piles which will in-
crease the axial load on some piles. This increase may range be-
tween 10% to as high as 50% depending on various factors such 
as the type of superstructure, height of the centre of mass of the 
superstructure. This factor can be called as “Dynamic Axial 
Load Factor” denoted by �.

staticdynamic PP )1( ��� (1)

For buckling analysis, each pile needs to be evaluated with 
respect to its end conditions (fixed, pinned or free). Each pile in 
a group of identical piles will have the same buckling load as a 
single pile. If a group of piles is fixed in a stiff pile cap and em-
bedded sufficiently at the tip, as in Fig. 2, the pile group may 
buckle in either side sway or in simple vertical displacement. 
For side sway buckling mode, which is the most likely mode of 
failure, the effective length (Leff) for the pile is equal to the un-
supported length, Bhattacharya et al. (2004). The unsupported 
length of the pile is equal to the thickness of liquefiable soil 
(DL) plus some additional length necessary for fixity at the bot-
tom of the liquefiable soil. The theoretical buckling load (Pcr) is 
given by equation 2. 
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A parameter called “Critical Depth (Hc)” is now defined to 
identify the unsupported length of the pile required for buckling 
instability. This is essentially the length of the pile necessary to 
be unsupported during the liquefaction process for the initiation 
of buckling. Dynamic centrifuge tests carried out by Bhatta-

charya (2003) have shown that buckling initiates when a front 
of zero effective stress often known as liquefaction front 
reaches this critical depth. This is schematically shown in Fig-
ure 2. A piled structure becomes unstable when the critical 
depth is less than the thickness of the liquefiable soil (DL) as-
suming earthquake intensity is strong enough to cause liquefac-
tion to this depth. 

Figure 2: Schematic diagram showing the concept of “Critical depth” 
and the mode of sway buckling. 

The mechanism of failure of piles in liquefiable soil is to a 
great extent similar to the failure of slender columns. As a result 
fundamental principles for the analysis/design of slender struts 
can be applied to pile foundation. Experiments show that the ac-
tual failure load (Pfailure) of slender columns is much lower than 
that predicted by equation 2. Rankine (1866) recognized that the 
actual failure involved an interaction between elastic and plastic 
modes of failure. Lateral loads or inevitable geometrical imper-
fections lead to creation of bending moments in addition to ax-
ial loads. Bending moments have to be accompanied by stress 
redistribution that diminish the cross-sectional area available for 
carrying the axial load, so the failure loads Pfailure�Pcr. Equally, 
the growth of zones of plastic bending reduces the effective 
elastic modulus of the section, thereby reducing the critical load 
for buckling. Furthermore, these processes feed each other. As 
the elastic critical load is approached, all bending effects are 
magnified. Stability analysis of elastic columns, Timoshenko 
and Gere (1961), shows if lateral loads in the absence of axial 
load would create a maximum lateral displacement �0 in the 
critical mode-shape of buckling, then the displacement � under 
the same lateral loads but with co-existing axial load P is given 
by: 
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The term (�/�0) can be termed as “Buckling Amplification Fac-
tor” and is amplification of lateral displacements due to the 
presence of axial load (Pdynamic). It can be observed from equa-
tion 3 that if the applied load is 50% of Pcr the amplification of 
lateral deflection due to lateral loads is about 2 times. At these 
large deflections, secondary moments will generate which will 
lead to more deflections and thus more P-� moment. It must be 
mentioned here that structural engineers generally prefer to keep 
a factor of safety of at least 3 against linear elastic buckling to 
take into account the eccentricity of load, deterioration of elastic 
stiffness due to plastic yielding and unavoidable imperfections. 
The actual failure load (Pfailure) is therefore some factor, � (�
<1) times the theoretical Euler’s buckling load given by equa-
tion 4.  

crfailure PP .�� (4)
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For the specific case of the piled building/tank, � is taken as 
0.35 i.e. a factor of safety of about 3. However, this factor will 
depend of the axial load (Pdynamic), imperfections or the residual 
stresses in the pile due to driving. For the type structure shown 
in Figure 2, Leff = HC, and thus the limiting axial load that can 
be applied is given by equation 5 derived from equation 2. 

2

235.0
35.0
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EI
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�
��  (5) 

Rearranging equation 5 gives the estimate of “Critical Depth 
HC”, equation 6, for a pile for the type of structures shown in 
Figure 2. 

dynamic

C
P

EI
H
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�

 (6) 

3 RELIABILITY ANALYSIS  

In this paper, an attempt has been made to develop a computa-
tional scheme to estimate the probability of failure by buckling 
instability of an existing piled foundation for a future earth-
quake. Reliability analysis is carried out using Mean-Value First 
Order Second Moment method (MFOSM), Ang and Tang 
(1984). This section formulates the reliability analysis for the 
piled foundation. 

3.1 Performance function and the failure surface equation  

As discussed in the earlier section, the stability of the piled 
foundation under the action of axial load depends on the depth 
of liquefaction (DL) and the “Critical depth” (HC). The failure 
surface equation can be thus defined as follows: 

0)()( ��� Lc DHg X  (7) 

where, HC = Critical pile depth calculated from equation 5; 
DL = Depth of liquefaction;  
X = Vector representing the set of random variables; 

In the above, 

0)( �Xg  indicates failure state;  indicates limit 

state;  indicates safe state 

0)( �Xg

0)( �Xg

Failure in this context would mean that a piled foundation 
would become laterally unstable under the axial load and inevi-
table imperfections when the soil surrounding the piles lique-
fies.

3.2 Identification of variables for risk assessment analysis. 

The random variables identified for risk assessment can be 
categorized under four main headings, such as 
Earthquake characteristics. To estimate the depth of liquefi-
able soil, using Idriss and Boulanger (2004), the random vari-
ables identified are M (moment magnitude of the earthquake) 
and amax ie. Peak Ground Acceleration (P.G.A).  
Pile characteristics: Following equation 6, the pile has been 
characterized by axial load (Pdynamic), Young’s Modulus of the 
material of the pile (E) and pile diameter (D). From the diame-
ter, moment of inertia (I) can be estimated.  
Soil profile and ground condition: To use Idriss and Bou-
langer (2004), the soil at site has been characterized by SPT 
profile and an average fines content (FC) over the entire profile. 
The discrete SPT–N values can be treated as random variable 
and thus the depth wise variation can be included. The location 
of the water table (ZWT) is also a random variable as it varies in 
different seasons. The slope of the terrain (�), which is also a 
factor, can also be included in the analysis as a variable.  

Type of superstructure: The superstructure will dictate the 
“Dynamic Axial Load Factor” � defined by equation 1 and 
“Buckling Amplification Factor due to lateral load”� defined in 
equation 4. The random variables are � and �.
It must now be mentioned that most of the parameters are un-
certain and may be treated as random or probabilistic rather than 
deterministic. As a result reliability or probabilistic analysis 
rather than a conventional deterministic analysis is best suited.      

3.3  Reliability index (�), probability of failure (pF)

For the performance function g (X) defined in equation 7, the 
reliability index (�) based on the MFOSM method of reliability 
is given by equation 8. 
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where n = Number of random variables. Based on section 3.2, 
the random varibles are amax, M, E, D (outer dia. as well as inner 
dia. for a tubular pile), P, FC, �,�, a set of SPT values upto 
sufficient depth, ZWT,�.
E[g(X)]= Expected value i.e., the most likely value of the 

performance function;  
�[g(X)]= Standard deviation of g(X);  
�xi=   Mean value of design parameter Xi;
�[Xi]  =  Standard deviation of Xi ;
�=   Correlation coefficient between Xi  and Xj.

In this study, the random parameters have been assumed to be 
uncorrelated and therefore, � = 0. Equation 8 thus takes the 
form as given in equation 9. 
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In this study, the partial derivatives have been evaluated based 
on Finite Difference technique. Once the value of the reliability 
index, �, is determined, the probability of failure, pF is then 
obtained using equation 10. 

)( ����Fp  (10) 

where �(.) is the standard normal cumulative probability 
density function values of which  are tabulated in standard text 
books.

3.4 Sensitivity analysis of the parameters. 

It is often necessary to identify the parameters that strongly in-
fluence the failure. Once such parameters are identified, efforts 
can then be made to make best estimates of such parameters that 
will lead to a better reliability calculation. The usual technique 
of identifying such parameters is a thorough parametric study 
wherein each parameter is varied and the resulting change in the 
values of the probability of failure noted. However, such proce-
dure involves large computation making it unattractive and 
sometimes impractical. In structural reliability analysis, sensi-
tivity of a random variable is expressed in terms of its ‘Impor-
tance Factor’ defined by equation 12 following Adhikary and 
Langley (2002).  
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where IFi is the importance factor for the ith random parameter. 
The above computational scheme has been coded in a FOR-
TRAN computer program and has been used to carry out the 
computations for an example problem. 

4 ILLUSTRATIVE EXAMPLE 

The section of the paper demonstrates the application of the re-
liability and sensitivity analysis using a well-documented case 
history. Figure 3 shows a three storied building that collapsed 
during the 1995 Kobe earthquake (Moment mag. M = 7.2) 
along with the soil profile. Details of the case history can be 
seen in Tokimatsu et al (1998).     

Figure 3: A piled-building that collapsed during the 1995 Kobe earth-
quake along with the soil profile, Tokimatsu et al (1998). 

The static axial load (Pstatic) acting in the building is reported to 
be 416kN. Input motion measured in the nearby Higashi-Kobe 
Bridge showed a peak ground acceleration of 0.38g. However, 
the PGA at the building site is not known. The piles used in the 
building had an external dia. (DO) of 0.4m and inside dia. (Di)
of 0.24m. A preliminary analysis incorporating the SPT values 
and ZWT in the random vector revealed that the pF for this type 
of structure is insensitive to these variables. The soil profile and 
the water table is taken as deterministic and thus not included as 
a variable. Thus there are altogether nine variables in the analy-
sis, which are uncertain and therefore treated as random. Be-
cause the probability distributions and co-variances of these 
variables are not known, it is assumed that they are normally 
distributed and uncorrelated. Further due to non-availability of 
the relevant data, a uniform coefficient of variation of 0.1 has 
been assumed for all the variables. Table 1 lists the random 
variables and the result of the analysis. The data available from 
the case history have been considered as the mean value of the 
respective parameters/ random variables.  

It may be noted that the outside diameter has the highest value 
of importance factor. The second most dominant factor is the �
value i.e. the buckling amplification factor for lateral load. The 
third dominant factor is the internal diameter. �, M, amax, comes 
next in the order of importance. The analysis predicts that the 
probability of failure of the building is 73.5% with the input 
values chosen. Going by the conventional FACTOR OF 
SAFETY (F.O.S) approach, the FOS against buckling failure 
will be given by the ratio of HC to DL which is 0.83. It must be 
mentioned that the building actually failed.  

Table 1: Statistical property of the parameters and the results of the reli-
bility analysis.  a

Input Output of the program Parameters/ random variables 
Mean
value

Importance 
factor (IF)

Summary 

amax (P.G.A) 0.38g -0.014 
M (Earthquake magnitude) 7.2 -0.049 
D0 (Outside dia.) 0.4m 0.95 
Di (Inside dia.) 0.24m -0.21 
E (Young’s modulus) 25GPa 3.29x10-9

Pstatic (Axial load) 416kN -1.9x10-4

FC (Fines content) 14 2.13x10-4

�(Dynamic axial load factor) 0.2 -0.068 
� (Buckling amplification fac-
tor for lateral loads)  

0.35 0.235 

DL

(mean) = 
16.59m 
HC

(mean) = 
13.75m  
� = -0.63 
pF = 
73.5% 

5 CONCLUSIONS 

The current methods of pile design in liquefiable soils are based 
on bending mechanism. A recent study has established that 
buckling is a feasible pile failure mechanism. There is thus a 
need to evaluate the safety of the existing piled foundation 
against buckling instability. The parameters for risk evaluation 
against buckling instability have been identified. The parame-
ters have been classified into the earthquake characteristics, pile 
characteristics, soil profile, ground condition at the site and the 
type of superstructure. As many of the parameters are likely to 
be uncertain, a probabilistic approach of risk analysis rather 
than a conventional factor of safety approach is well suited and 
used. Computational scheme using MFOSM (Mean Value First 
Order Second Moment) method has been formulated and tested 
using a well-documented case history. The method predicted a 
high probability of failure for the parameters used in this case 
history of a failed piled foundation. Geometric configuration of 
the pile i.e. the external diameter comes out to be most domi-
nant parameter in the sensitivity analysis.   
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