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FEM simulation of elasto-visco-plastic stress-strain behavior of stiff geo-materials
Simulation FEM des comportement de la tension élasto-visco-plastique des matériaux géologiques

M.S.A.Siddiquee, S.J.M.Yasin & E.Hoque ~ Department of Civil Engineering, Bangladesh Universily of Engineering and Technology,
Dhaka, Bangladesh
F.Tatsuoka — University of Tokyo, Tokyo, Japan

ABSTRACT: A modeling of time-dependent (viscous) shear stress and shear strain behavior of clean sands in drained planc strain
compression tests is presented. The gencral three-component model is used as the framework for conslilutive modeling. A viscous
model is developed to incorporale decaying properlics of the viscous response ol sand taking place by a change in the slrain rale,
called the TESRA (Temporary Elfects of Strain Rate and Accelcration) model
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I INTRODUCTION

The paper describes-a general clasto-viscoplastic model, called
the TESRA model, formulated within the (ramework of classical
threc-component model and cxplains its implementation within
the scope of gencralized clasto-plastic isolropic strain-hardening
Finitc Element code. The TESRA model states the scaling of the
shear stress ol soil according lo the instantancous rate of irrccov-
crable strain and strain rate and decay of the viscous cffects. The
model can be casily integrated analytically or numerically in
unc-dimensional cases. But the integration scheme in FEM
analysis needs some specific considerations. Choice of suilable
invarian! parameters is the key to the implementation of the

model into a FEM code. The model has been successfully inte- Ceaves

grated with an existing FEM code, Some example problems have -

heen solved with FEEM, The FEEM code can predict the lime-

dependent behavior ol a wide varicly of gcomalerials quite aceu- T .
€

ratcly without spending any extra compulational lime or slorage.

2 FUNDAMUENTAL THEORY Figure 1. Behavior of the TESRA model.

2.1 Three-component viscous model LZq. 1b can be rewrillen as follows:

The following specific model (the new isotach model) within the i gr
framicwork ol the genceral three-component model is known to be O'V= f ldoy] = [d{o'f gv(g )}] (3 )
relevant 1o several types of geomaterials, including solt clays ? ir ) a
and soft rocks (Tatsuoka et al., 2000b): = "7"’-1
] " -ir b :
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where & (€77 ) s the viscosily function, which is always zcro (3b)
ir v

or posilive and is given as follows for any strain ( £") or stress (o7 20)

/ . . . .
17 ) path (with or without cyclic loading):

1} . .
L-"i" where O (Z 0) is the current viscous stress component.

A
5 (8 )=« [l - expil _( + I) }] (=0) (2) where &7 = ¢g" ; [([U"] is the viscous clfccl on the stress
& (r)

r o, .
that took piace when & =T, €, s the strain at the start of

2.0 Formulation of TESRA maodel
integration, where oV'= 0; the first term ol the right-hand side

ol Lq. 3b represents the companent of the increment (/()‘ as

271



where;
1. |d£"| is the .hsolute value of irreversible strain incre-

mentd € :

/

2. O, isthe value of O at the latest stage where the sign of

ir
de” was changed:

3. lov ] is the viscous stress at one step belore where
(" -Ae )

the irreversible strain is equal to Eir -Ae";

4. A€" is the difference in the irreversible strain between the
current step and the step immediately before Ag” ; and

S. A{(Of -0g,): gv(éi’)} is the difference in the value of
(O’f —O‘r)'gl,(éir') between the current step and the step

immediately before, given as

Ao o )lé|=Ad o) glé o o) aglé)
|
The term A{(Of —o,)-gv(e'"’)}-rlT in Eq. 7 is the

ir

!
viscous effects that took place for this range of A€ that has

I

decayed by an amount of 7} 2

So, for known values of [O’V] L AT A (e
(E"—AE") .

. Ir
314 ir v
£ = ) and £, the value of O at the current state,

where £ =", can be obtained by Eq. 7, without doing an in-

tegration.

Repeating this procedure from the start of loading, the
whole stress-strain-time relationship can be obtained for any
given history of strain or stress with or without eyclic loading.

4.2 Implementation into FEM Code

An existing nonlinear FEM code will be used, which is based on
the matrix-free dynamic relaxation technique (Siddiquee el al.,
1999), highly optimized for very fast and accurate computation
of highly nonlinear equations emerging from material nonlinear-
ity. Due to the specialty of the DR (Dynamic Relaxation), the
following steps to be considered carefully for relevant imple-
mentation of the TESRA model into the FEM code.

Computation of irrecoverable strain rate

In case of modeling granular materials, obviously for the rale of
effective plasticity parameter, &, the primary candidate is the rate
of the second irrecoverable strain invariant. This is a scalar
quantity and il is already being calculated in the FEM code. But
there is one problem with this; i.e., as it is always positive, it
cannot be used in unloading situations. So the following variable
is used in the present formulation:

Pk
dr

k=¢ —€b (10)

Selection of current stress variable
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Stress ratio, f{ = ag, /(T‘ is selected lo represcnt the current

shear stress level.

4.3 Pseudo-algorithm

The following steps are tollowed to calculate the viscous stress:

1. Calculation of irial strain
2. Stress increment calculation by the hypo-celastic constitutive
law (Hoque, 1998):
H n
Elt = E()()h 4 Ev = Eﬂov
Elasto-plastic solution (without viscous effects) is calcu-

lated. Plastic consistency conditions and a flow rule are ap-
plied and each trial stress is integrated back to the inviscid

yield surface, f[

99
/ = P o_
df ! (0,;,k)=0, def =1—
g,
/
(a) The current strain rate is calculated from the plastic
strain rale generated in the previous step.

(b)The iterating inviscid stress is further corrected by the
TESRA Model Eq. (7).

3. Nodal forces are calculated and compared with the applied
load and the iteration continues, starting from | again, until
the equilibrium is reached.

5 NUMERICAL SIMULATION
5.1 Problem definition

In order to perform numerical simulations, the following one-
element configuration has been devised. The material is Toyoura
sand with a void ratio, e=0.66 and a confining pressure, 0;=98
kPa.

Displacement/Load rates
Y 2

10

24y 86="

V

10 cm

Figure 3. Definition of the problem.

5.2 Material model

An isotropically strain-hardening-softening elasto-visco-plastic
model is used here (Siddiquee 1999). Essentially this is a non-
associated flow analysis and the relevant dilatancy is modeled by
adapting the Rowe’s stress-dilatancy relationship. The growth
function represented by strain hardening is modeled by the Gen-
eral Hyperbolic Equation (GHE) (Siddiquee 1999). The viscous
model parameters those were employed: & = 0.23, m=0.045.
€, =0.0001 and r,=0.3 (the TESRA model).

ir
. . . . J
the elteet of the irreversible strain increment €€ when load-

. . r . . .
ing counlinues at a constant € (i.e.. the effect of irreversible
~train rate): and the second lerm represents the component of the



werement do’ as the cffect of the increment of irreversible

strain rate d € applicd al a certain constant €' (i.e., the effect
ol irreversible strain acceleration),

22,1 Inroducing the decay function

Giranular material always shows a tendency with straining

ol decay of the stress jump that takes place by a strain-jump
(Fig. 1). Tp model thigeffhenpmenon, the decay function

8 decay -T)=1 is incorporated in to Eq. (3)
lo obtain:
wor , 2 % s
3 f i ir\\ s
o' g [—ao-- W‘&(é" pof | BEDE | (0
o \65" oc" ) &
=i @

4
where /| is a positive constant less than 1.0. In caser,=
1.0, IXq. 4 becomes Eq. 3, therelore Bq. 1.

2.3 Formulation of the General TESRA model

Some materials show an increasing degree of decay with
the increase in the stress level. For these cases, the decay
function is made dependent on the irreversible strain as:

oo

f (a_ué‘.gr(éV)_'_U/ (&i”))f;
E

(€)Y dr
d€ J¢ n )

v
J =

t
Tery

5)
where I'(E'r) means that the decay parameter r decreases with

ir

£

The following function was chosen for r(e") to simulate the
primary loading stress-strain behaviour:

r(e")=r, ate” =0 (6a)
wy LA, K-r, er\" l
r(e")=-— 2’ + 2 ‘cos{m- for
c) |
0<e"=c (6b)
r(e") = r for 6" = ¢ (6¢)

Figure 4. Stress-strain behavior of the general TESRA model
with variable decay function.

where #; and I, are the initial and ultimate values of r, where

0s resrns= 1.0: and c and n are positive constants.

For primary loading cases, all of the new isotach model, the
TESRA model and the general TESRA model can be represented
by a set of common equations (Eqgs. 4, 5 and 6) using the follow-

ing different values of /5 and c:

C =% and }; = 1.0 (always # = 1.0): no decay (the new
isotach model):

€= and 0 <f;< 1.0 (always ¥ =7F; < 1.0) (the TESRA
modc); and

<C <% and 0 <rp<h< 1.0 (the general TESRA model).
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3 VALIDATION OF THE MODEL

Fig. 2 shows the relationship between the stress ratio
R = O"|, /O 'h and the shear strain ¥ = €, — €, from a PSC
test on Toyoura sand and its simulation by the TESRA model.

6.0
Test Combil (Toyoura sand)
= 0.25; m= 0.05; L
55 . 0. _7', m= 0.05; o
£"= 10" (%/sec); and — N\
o® r,= 0.2 (fur strain difference in %) ,"//
. S0 R f
w |
-4 —
o _.//
.é 4.5 |- /\/
7 7 |
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3.5k / (in terms of total strain)
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Fig. 2 Measured stress-strain relations for a drained PSC test
(eo= 0.730) on Toyoura and its simulation by the TESRA model.

Toyoura sand, from Japan, is a quartz-rich sub-angular poor-
graded medium-sized sand with Ds,= 0.18 mm, U= 1.64, G=
2.65, €par= 0.99 and e,,;,= 0.62. The PSC specimen was rectan-
gular-prismatic of 20 cm high, 16 cm long and 8 cm wide (in the
O, direction) with lubricated top and bottom ends. The speci-
men was prepared by pluviating air-dried sand particles through
air and were then made saturated. The specimen was anisotropi-
cally consolidated at a stress ratio R= 3.0 and at a constant rate
of axial strain, E,, = 0.0125 %/min., from the initial stress state
with O ',, = 29 kPa towards the final consolidation stress state
with O ',, =392 kPa. The axial strain rates during PSC loading
was basically either 0.0005%/sec or 0.006%/sec. At several in-
termediate stages, the axial strain rate was increased and de-
creased al a conslant rate, while one creep test was performed for
about 24 hours. It can be seen that the test result is simulated
very well by the TESRA model. The model parameters are
shown in Fig. 2. The validation of the TESRA model is fully re-
ported by Di Benedetto et al. (2000) and Tatsuoka et al. (2000b).

4 IMPLEMENTATION DETAILS

4.1 Numerical integration scheme

The basic TESRA equation (Eq. 4) can be generalized to include
unloading-reloading cases as:

PV

o'a f [(10'"](”,.M+Au" )

e

o A PR L Py N T BN GO

Buen (D) =1, D = }|c1£”| ()

5.3 FEM Analysis

The following two cases were simulated :
1) a displacement control test with varying displacement rates
(Fig. 4); and
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Figure 4. Displacement vs. time relationship for displacement
control loading
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Figure 5. Load rate vs. time relationship Load control loading

2) aload control test with varying load rates (Fig. 5).

It may be seen from the results from the analysis (Figs. 6 and
7), while referring to Fig. 6, that the simulation is very realistic,
in particular with the following phenomena;

1) temporary over- and under-shooting in the stress by a sudden
increase and decrease in the displacement rate (i.e., strain
rate) or the loading rate (i.e., stress rate); i.e., a sudden
change in the stiffness immediately after a sudden change in
the strain or stress rate, followed by a sudden change in the
tangent stiffness and rejoining to the original stress-strain
behaviour with subsequent loading;

One Element FEM
Displacement Control

sirain rale chage /100

/s

ralo

a4 0.006 D.coe

Shear strain (y,-y,)

Figure 6. Stress-strain result obtained from FEM computation
(Displacement-control).

2) creep behaviour, followed by very stiff behaviour when
loading is resumed at a constant stress rate (Fig. 7); and con-
tinuation of the development of shear strain for a some stress

274

One Elcment FEM

5.00 Loud Control

strivin e chage 1/1000

Stress ratio ( 0,/0)

4.00

'.trl'l"«‘; 0.004% 00055 00060 00065 00070 00075 00080

0.005(¢

Shear strain (y,-y,)

Figure 7. Stress-strain result obtained from FEM computation
(Load-control).

range after the shear stress has started decreasing (from point
d in Fig. 7), followed by a switching from an increase to a
decrease in the shear strain in the course of stress decreasing.

6 CONCLUSIONS

The following conclusions can be drawn:

1. Time-dependent stress-strain behavior of granular mate-
rials is a function of previous and instantaneous strain-
rate and acceleration.

2. With granular materials, the viscous effects on the stress
value decay with the increase in the irreversible strain.
3. The above viscous features can be modeled and have

been implemented in ordinary FEM codes without major
modifications.
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