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ABSTRACT: A modeling of lime-dependent (viscous) shear slrcss and shear slrain behavior of clcan sands in drained plane slrain 

compression tests is presented. The general thrcc-componcnl model is used as the framework for constitutive modeling. A viscous 

model is developed to incorporate decaying properties of the viscous response of sand taking place by a change in the slrain rate, 

called the TESRA (Temporary Effects of Strain Rate and Acceleration) model

1 INTRODUCTION

The paper describes-a general elasto-viscoplaslic model, called 

the TESRA model, formulated within the framework of classical 

llircc-componcnt model and explains its implementation within 

tlie scope of generalized elaslo-plaslic isotropic strain-hardening 

Finite Element code. The TESRA model states the scaling of the 

shear stress of soil according to the instantaneous rale of irrecov­

erable slrain and strain rate and decay of the viscous effects. The 

model can be easily integrated analytically or numerically in 

onc-dimcnsional eases. Hut the integration schemc in FEM 

analysis needs some specific considerations. Choice of suitable 

invariant parameters is the key to the implement;,lion of the 

model inio a FEM code. The model has been successfully inte­

grated with an existing FEM code. Some example problems have 

been solved with FEM. The FEM code can predict the linie- 

dependcnl behavior of a wide variety of geomalerials quite accu­

rately without spending any extra computational time or storage.

2 FUNDAMENTAL THEORY

2 .1 Thrcc-coiii/ionc/it viscous model

The following specific model (the new isotach model) within the 

framework of the general Ihrcc-componcnt model is known to be 

relevant to several types of geomalerials, including soft clays 

anil soft rocks (Tatsuoka cl al., 20001)):
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where ¿ V ( t ’ ) is tlie viscosity function, which is always zero 
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F'igure 1. Behavior of the TESRA model.

Eq. lb can be rewritten as follows:
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where Cl' ( ^ 0 ) is 1 lie current viscous stress component, 

where c 'r — £ >r ; ĵ t"/CT' J is the viscous effect on the slrcss

that look place when e "  = X  ; £'[r is the slrain al llie start of 

integration, where o ' = I); llie first term ol the right-hand side 

of Eq. ,1b represents llie component of llie increment d (J  as
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where;

1 . | ^ £ l r | is Ihe .ihsolute value of irreversible strain incre­

ment i / s "  ;

2 . O r is the \alue of at the latest stage where llie sign of 

d E >r was changed:

3. I ( J v is the viscous stress at one step before where
L i

Ihe irreversible strain is equal to £ ,r — A £ l r ;

4. Ae,r is the difference in the irreversible strain between the 

current step and the step immediately before A s ' r ; and

5. A {(C7^ — O r ) ‘ g v { s ‘r )}  is the difference in the value of

( O ^  — (7r )  ' g t. ( ¿ , r )  between the current step and the step 

immediately before, given as

(9)

The term A { ( c r f  ~  CTr )  ■ g v ( e ‘r ) } - ^  2 in Eq. 7 is the

ir
viscous effects that took place for this range of A e  that has

| ^ |

decayed by an amount of 2 .

So, for known values of T o ^ l  , Ae‘r , A t  (i.e.,
L J(e"-A e")

■ir A e zr
£  = --------- ) and E , the value of O  at the current state,

A t

where E ir  = E lr  , can be obtained by Eq.. 7, without doing an in­

tegration.

Repeating this procedure from the start of loading, the 

whole stress-strain-time relationship can be obtained for any 

given history of strain or stress with or without cyclic loading.

4.2 Implementation into FEM  Code

An existing nonlinear FEM code will be used, which is based on 

the matrix-free dynamic relaxation technique (Siddiquee el al., 

1999), highly optimized for very fast and accurate computation 

of highly nonlinear equations emerging from material nonlinear­

ity. Due to the specialty of the DR (Dynamic Relaxation), the 

following steps to be considered carefully for relevant imple­

mentation of the TESRA model into the FEM code.

Computation of irrecoverable strain rate

In case of modeling granular materials, obviously for the rale of 

effective plasticity parameter, k, Ihe primary candidate is the rale 

of the second irrecoverable strain invariant. This is a scalar 

quantity and il is already being calculated in the FEM code. Bui 

there is one problem with this; i.e., as il is always positive, il 

cannot be used in unloading situations. So the following variable 

is used in the present formulation:

/ kk = —  ( 10 ) 
d t

Stress ratio, R  — C7i I C T ,  is selected lo represent ihe current 

shear stress level.

4.3 Pseudo-ul^i/riihm

The following steps are followed to calculate the viscous stress:

1. Calculation of Irial strain

2. Stress increment calculation by the hypo-elastic constitutive 

law (H oque, 199N):

E h = E {]o l ,  E v = E qo ’:

Elasto-plastic solution (without viscous effects) is calcu­

lated. Plastic consistency conditions and a flow rule are ap­

plied and each trial stress is integrated back to Ihe inviscitl

yield surface, f  1 .

df(as,k). 0, ds'.
° U

(a) The current strain rate is calculated from the plastic 

strain rale generated in the previous step.

(b)The iterating inviscid stress is further corrected by the 

TESRA Model Eq. (7).

3. Nodal forces are calculated and compared wilh the applied 

load and the iteration continues, starting from 1 again, until 

the equilibrium is reached.

5 NUMERICAL SIMULATION

5.1 Problem definition

In order to perform numerical simulations, the following one- 

element configuration has been devised. The material is Toyoura 

sand with a void ratio, e=0.66 and a confining pressure, cj3=98 

kPa.

Displacement/Load rates

k  = £ [r - £ ' ;

Selection of current stress variable

Figure 3. Definition of the problem.

5.2 Material model

An isotropically strain-hardening-softening elasto-visco-plaslic

model is used here (Siddiquee 1999). Essentially this is a non-

associated flow analysis and Ihe relevant dilatancy is modeled by

adapting ihe Rowe’s slress-dilatancy relationship. The growth

function represenled by strain hardening is modeled by Ihe Cien-

eral Hyperbolic Equation (GHE) (Siddiquee 1999). The viscous

model parameters those were employed: CL = 0 .2 3  , 111=0.045.

én =  0 .0 0 0 1  and r,=0.3 (the TESRA model). .
ir

ilie eflect of the irreversible strain increment u £  when load­

ing continues at a constant é 'r (i.e.. the effect of irreversible 

strain rate): and Ihe second lerm represents Ihe componenl of Ihe
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inc rem ent  d o '  as  I lie effect  o f  the increm enl  o f  irrevers ib le  3 V A L ID A T I O N  O F  T H E  M O D E L

-.inmi rale d e "  applied al a certain constant e "  (i.e., the effect 

ill irreversible strain acceleration).

2 2.1 Introducing the decay function

(iramilar material always shows a tendency with straining 

of decay of the stress jump that takes place by a strain-jump 

(Fig. I). T# model thi.^ff/hen^menon, the decay function 

Sdecav ( E -  T ) =  's incorporated in to Eq. (3)

lo obtain:
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where is a positive constant less than 1.0. In case r,= 

1.0. Iu|. 4 bccomcs Eq. 3, therefore Eq. 1.

2.3 Formulation o f  the General TESRA model

Some materials show an increasing degree of decay with 

I he increase in the stress level. For these cases, the decay 

function is made dependent on the irreversible strain as:

- i x o n + c r ' ■ H f l d r

(t-)

(5)
where / ' ( g , r )  means that the decay parameter r  decreases with

e ' r .

The following function was chosen for r { E >r)  to simulate the 

primary loading stress-strain behaviour:

at e ,r =  0 (6a)
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Fig. 2 shows the relationship between the stress ratio 

R  = o \ ,  / O  'h and the shear strain y  =  £ v — £h from a PSC 

test on Toyoura sand and its simulation by the TESRA model.
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Figure 4. Stress-strain behavior of the general TESRA model 

with variable decay function.

where /} and /y  are the initial and ultimate values of r, where

0  <, Vf /' ^  1 .0 ; and c and n are positive constants.

For primary loading cases, all of the new isotach model, the 

TESRA model and the general TESRA model can be represented 

by a set of common equations (Eqs. 4, 5 and 6) using the follow­

ing different values of and c:

C =  oo anil / }  = 1 . 0  (always V =  1 . ( )  ) : no decay (the new 

isotach model):

C =  oo anil 0 < /]■ < 1.0 (always F =  F- < 1.0) (the TESRA 

mode); and

()< c  < 00 and 0 < r y  </]■< 1.0 (the general TESRA model).

2 3 4

Shear strain , Y = V Eh

Fig. 2 Measured stress-strain relations for a drained PSC test 

(e0= 0.730) on Toyoura and its simulation by the TESRA model.

Toyoura sand, from Japan, is a quartz-rich sub-angular poor- 

graded medium-sized sand with Dso= 0.18 mm, Uc= 1.64, Gs= 

2.65, cmwc= 0.99 and emi„= 0.62. The PSC specimen was rectan- 

gular-prismatic of 20  cm high, 16 cm long and 8 cm wide (in the 

CT3 direction) with lubricated lop and bottom ends. The speci­

men was prepared by pluviating air-dried sand particles through 

air and were then made saturated. The specimen was anisotropi- 

cally consolidated at a stress ratio R= 3.0 and at a constant rate 

of axial strain, = 0.0125 %/min., from the initial stress state 

with CT /( = 2 9  kPa towards the final consolidation stress state 

with O  'u =  392 kPa. The axial strain ratés during PSC loading 

was basically either 0.0005%/sec or 0.006%/sec. At several in­

termediate stages, the axial strain rate was increased and de­

creased al a constant rate, while one creep test was performed for 

about 24 hours. It can be seen that the test result is simulated 

very well by the TESRA model. The model parameters are 

shown in Fig. 2. The validation of the TESRA model is fully re­

ported by Di Benedetto et al. (2000) and Tatsuoka et al. (2000b).

4 IMPLEMENTATION DETAILS 

4.1 Numerical integration scheme

The basic TESRA equation (Eq. 4) can be generalized to include 

unloading-reloading cases as;

t" - A f ,r

a ' a  /  [i/c7 'X , '.M  + A a" (7)
T'fy

5.3 FEM Analysis

D - / M (»>

The following two cases were simulated :

1) a displacement control test with varying displacement rates 

(Fig. 4); and
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E la p sed  tim e (sec )

F ig u re  4 . D isp lacem en t vs. tim e re la tio n sh ip  fo r d isp lac em en t 

co n tro l lo ad in g

9.910.000 9.910.500 9.911.000 9.911.300

Elapsed time (sec)

Figure 5. Load rate vs. time relationship Load control loading

2) a load control test with varying load rates (Fig. 5).

It may be seen from the results from the analysis (Figs. 6  and

7), while referring to Fig. 6 , that the simulation is very realistic, 

in particular with the following phenomena;

1) temporary over- and under-shooting in the stress by a sudden 

increase and decrease in the displacement rate (i.e., strain 

rate) or the loading rate (i.e., stress rate); i.e., a sudden 

change in the stiffness immediately after a sudden change in 

the strain or stress rate, followed by a sudden change in the 

tangent stiffness and rejoining to the original stress-strain 

behaviour with subsequent loading;

Shear strain (y,-Y3)

F igu re  6 . S tre ss -s tra in  resu lt o b ta in ed  from  FEM  co m p u ta tio n  

(D isp la c e m e n t-c o n tro l ).

Shear strain (y,'Y3)

Figure 7. Stress-strain result obtained from FE M  computation 

(Load-control).

range after the shear stress has started decreasing (from point 

d in Fig. 7), followed by a switching from an increase to a 

decrease in the shear strain in the course of stress decreasing.

6 CONCLUSIONS

The following conclusions can be drawn;

1. Time-dependent stress-strain behavior of granular mate­

rials is a function of previous and instantaneous strain- 

rate and acceleration.

2. With granular materials, the viscous effects on the stress 

value decay with the increase in the irreversible strain.

3. The above viscous features can be modeled and have 

been implemented in ordinary FEM codes without major 

modifications.
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2 ) creep behaviour, followed by very stiff behaviour when 

loading is resumed at a constant stress rate (Fig. 7); and con­

tinuation of the development of shear strain for a some stress
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