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Uncertainty in analyses of rapid drawdown of reservoirs 
Incertitude dans les analyses de vidange rapide de réservoirs

G.Auvinet & N.P.LÔpez Acosta -  Institute of Engineering, National University of Mexico, Mexico

ABSTRACT: Stochastic Finite Element Method (SFEM) can be used to take uncertainty on hydraulic conductivity into account in 
steady groundwater seepage analyses. In the paper, the techniques allowing carrying out deterministic analysis using a variational ap­
proach for solving Laplace equation by finite element method are briefly reviewed. The additional steps required to evaluate uncer­
tainty on the results of this type of analysis using the First Order-Second Moments Method are described. Expected values, variances 
and covariances of hydraulic head, gradients and flow velocity are obtained. Typical results of stochastic seepage analysis in graduate 
materials dams for conditions of rapid drawdown of reservoir are presented.

RÉSUMÉ: La Méthode des Eléments Finis Stochastiques (SFEM) permet de tenir compte de l’incertitude sur la conductivité hydrau­
lique dans les analyses des écoulements permanents dans les sols. Cette communication présente en premier lieu un bref rappel des 
techniques variationnelles qui permettent de résoudre l'équation de Laplace par la méthode des éléments finis. On indique ensuite les 
pas supplémentaires à suivre pour évaluer les incertitudes sur les résultats de ce type d’analyse par la méthode du Premier Ordre- 
Seconds Moments. Les espérances, variances et covariances des charges hydrauliques, gradients et vitesses d’écoulement sont ainsi 
calculées. Les résultats typiques d’une analyse stochastique des écoulements dans un barrage en terre et en enrochement soumis à des 
conditions de vidange rapide du réservoir sont présentés.

1 INTRODUCTION

As was shown in a previous paper (Lopez & Auvinet 1998) it is 
possible to use the Stochastic Finite Element Method (SFEM) to 
calculate the uncertainty on the results of groundwater seepage 
analyses due to the uncertainty on the permeability coefficient, k, 
associated to lack of representative field and laboratory perme­
ability tests, and to spatial variation of this coefficient. Such un­
certainty can be modeled by means of random variables, which 
represent the different values that the permeability coefficient 
can take in distinct domains of the flow region, considered statis­
tically homogeneous. In this paper, after a brief review of the 
theoretical background, this technique is illustrated by an analy­
sis of the uncertainty in problems of rapid drawdown of reser-

2 TYPICAL ANALYSIS OF GROUNDWATER SEEPAGE

As it is well known, typical analysis of two-dimensional steady- 
state flow can be carried out by means of the Finite Element 
Method (FEM). A variational approach is used to solve Laplace 
equation, considering that the hydraulic head varies in a simple 
way (i.e. linearly) within each finite element (i.e. triangles). A 
system of linear equations can be established:

[S]{h} = 0 ( 1)

where [5] is a general matrix containing geometric and perme­
ability parameters and {h) is the vector of hydraulic heads at the 
nodes of all elements

Solving the previous system by Gauss Elimination Method, 
the hydraulic head, h, at each node of each element is deter­
mined. Hydraulic gradients and seepage forces per unit volume 
within each element are then easily obtained:

■ = — M M *
dh/dy 2A

(2 )

(3)

where [5] it is the geometric matrix of the element; A is the area 

of each element; {h)‘ is the vector of hydraulic heads at the 

nodes of each element; and is the volumetric weight of water. 
From Darcy’s law, seepage velocities are:

2A
(4)

where [./?] is the permeability matrix of the element, defined as:

[* ] =
kx 0

0 k„
(5)

The components of the discharge through the side of the tri­
angular finite element in front of node /, Q/r and 0 /y, in the x and 
y  directions, respectively, are:

Qtx = ~bi K }

Qlv -cl hi

(6 )

(7)

where b¡ and c¡ are terms of the geometric matrix [B],
Using a similar approach, it is possible to obtain the nodal 

values of the stream function, y/, to draw the flow net of the ana­
lyzed problem (Christian 1983, López & Auvinet 1998).

3 PROBABILISTIC ANALYSIS BY THE STOCHASTIC 
FINITE ELEMENT METHOD

Uncertainty on the results of seepage analyses performed by the 
Finite element Method can be estimated using the Stochastic Fi­
nite Element Method and specifically by the First Order-Second 
Moments Method.
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3 .1 Uncertainty on the hydraulic head 3.4 Uncertainty on seepage velocity

This analysis is carried out deriving the equations of System I 
with respect to the permeabilities kx and ky of the different mate­
rials. represented by N random variables gr:

[ s ] | W - | l i ] w
Ogp Ogp

(8)

Solving the previous system the vector of derivatives of the 
hydraulic head is obtained. The variance of h in each node and 
the covariance between heads in different nodes r and s can then 
be calculated using the following expressions based on a trun­
cated Taylor series expansion (Benjamin & Cornell 1970):

A' N

vark ] = X X
p=1<7=I

dhr

ds ,

d hr

N N

c o v M , ] S £ I  

/?=! </=>

ySq
1 q w ,

d hr dhs

d g P . d g p

\ g p , g q \ (9)

] ( 10)

where [<3/v'<3g;,]pi./’ means first derivative of hr with respect to gp 
evaluated for the average value of gp, and cov \gp, gq] is the 
covariance between random variables gp and g¥.

3.2 Uncertainty on the hydraulic gradient

Variance of hydraulic gradient components in the x and y  direc­
tions can be calculated for each element using the following ex­
pressions:

3 3

v a r W ^ I L  
p= 1 i/=l

1L
2A 2A

3 3

variW-ZZ
p=Iq=1 2A 2A

\ hp , hq\  

\hp ' hq \

(H )

( 12)

In the same way, uncertainty on the magnitude of the hydrau­
lic gradient vector, i , can be evaluated as follows:

• 4 1 = S Z
p = I </=I

where:

1 - 2 . 2  
l = ÿ j  + ‘ y

di di

d l x _ d i y

This analysis is carried out deriving the seepage velocity (Eq. 4) 
with respect to the permeabilities represented by gp.

Æ =M î !w _ w | s ] £ W
dgp dgp dgp

(16)

With these derivatives it is possible to calculate the variance 
of components of seepage velocity, in the x and y  directions, for 
each element and the covariances between velocity components 
in different elements r and i, using the following expressions:

N N

var[|/J = X S
p= 1 <7=1 dgP.

%

r , N N

covK ’’/J = Z Z
p=\q=\

1i ii

.  dgp . _ dgq _
^ [ g p ’gq

(17)

(18)

*<!

For uncertainty on seepage velocity in they direction, expres­
sions similar to the previous ones can be used.

The uncertainty on the magnitude of the seepage velocity 
vector, V , can be obtained as follows:

2 2

var
r i - z z

p=I </=!

'  d V  ‘ d V

. 8 V * .
W r

11

\ v x ,Vy \

where:

? 4 V? + V?2

(19)

(20)

And using a first-order development, cov [Fr, Vt] is approxi­
mately:

vk . ^ ] =
kxk>

2A
{c,b, var[h,]+c,bm cov[h,,hm]+c,bn cov[/i,,h„]

(13)

(14)

+ cmb, cov[hm,h,\+cmbm var[/jm]+ cmbn cov[hm,hn]

+ c„bi cov[hn,h,]+ c„b„, cov[h„,hm\ + cnb„ var[/i„]} (21)

3.5 Uncertainty on the discharge

In the same form, taking into account Equations 6-7, the uncer­
tainty on the components of the discharge is obtained as:

Using a first-order development of this expression, cov [/„ iy] 
can be shown to be approximately:

cov[/r , / v ]= {c,b, var[/i,]+c,6m cov[hh hm]+c,/>„ co\[hh hn]

+ cmb, cov[/jm,h ,} + cmbm var[/im ]+ cmb„ cov[/im,h„ ]

+ cnbj cov[/i„, h, ] + c„bm cov[h„,hm] + c„bn var[/i„]} (15)

var[0 /J  = i / 2 var[Kt ] 

var[g />,]= c /2var[K>,]

(22)

(23)

where var [Q/x] and var [Q/y\ are the variances of the components 
of the discharge through the side of the triangular element in 
front of node /, in the x and y  directions, respectively.

4 APPLICATION TO THE PROBLEM OF RAPID 
DRAWDOWN OF RESERVOIRS

3 .3 Uncertainty on seepage forces

Since seepage forces are simply obtained by the multiplication of 
the hydraulic gradient by the volumetric weight of water y* (Eq.
3), uncertainty on these forces is also calculated with Expres­
sions 11-13, multiplied by the constant value (y„)2.

4.1 General characteristics

It is possible to use the previous theory to analyze the problem of 
the seepage induced by a rapid drawdown in the external cover 
of a graduate materials dam (Fig. 1). It is admitted that the water 
level drops suddenly from Elev. 25 to Elev. 0 (L6pez 2000). The 
problem is of transitory type; however, the common practice
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Figure 2. CASE I. Expected flow net.

Figure 3. CASE II. Expected flow net.

(Marsal & Resendiz 1975) for relatively permeable materials 
(10'5 m/s < k < 10° m/s), consists of admitting that drawdown is 
instantaneous and that steady-state flow conditions prevail. The 
analysis by means of the FEM is carried out within the upstream 
part of the earth dam, in which the material is considered incom­
pressible and completely saturated. The soil is modeled with a 
net of 194 finite elements and 126 nodes. Boundary conditions 
imposed are: E {h} = 25 m at all nodes located on the upper 
horizontal line, and E {h} = z at all nodes located on the line de­
fining the slope. Furthermore, the following conditions are con­
sidered:
• CASE I. Homogeneous and isotropic soil: E {kr } = E {kv) =

1 x 1 O'4 m/s.
• CASE II. Homogeneous and anisotropic soil: E {£„} = 1x10'

4 m/s; and E {ky} = 2x l0 '5 m/s, where E { r̂ } =5  E {^}.
For the probabilistic analysis, a coefficient of variation of the 

permeability a* / E {k} = 50% in both soils and in both direc­
tions is assumed. In CASE I, the soil is isotropic but random, 
with a correlation coefficient p  = 1 between the vertical and 
horizontal permeabilities; in CASE II, vertical and horizontal 
permeabilities are not correlated (p = 0).

4.2 Expected values

Expected flow nets presented in Figures 2-3, for CASES I and II, 
respectively, were obtained with the FLOWNETS algorithm 
(Lopez 1998). The largest expected values of the hydraulic gra­
dient, £  { i }max = 0.60 and E { i }max = 0.84. for CASES I and II 
respectively, are observed in the upper part of the earth slope. 
The magnitude of the expected seepage forces is obtained multi­
plying the expected hydraulic gradient by the volumetric weight 
of the water. The maximum exgected values of the magnitude 
of_the seepage velocity are E { V }milI = 6 .1xl0 '5 m/s and E 
{ V }ma = 5.5x10'5 m/s, for CASES I and II, respectively; in 
CASE I, the largest velocity is reached in the upper part of the 
earth slope (where the maximum expected value of the hydraulic 
gradient is present); and in CASE II, it is located in the lower 
part of the earth slope (where the flow is practically horizontal 
for the condition E {kx) = 5  E {ky}). This analysis also provides 
the expected values of the total discharge that passes through a 
transverse section to the flow: E {Q,} = 4.20xl0'4 mVs and E 
{Q,) = 1,82x 10'4 m3/s, for CASES I and II, respectively.

4.3 Uncertainty

The results of the probabilistic analysis performed with the ME- 
FLUSKO algorithm (Lopez 1998) show that:

In CASE 1:
• There is no uncertainty on the hydraulic head, the hydraulic 

gradient and the seepage forces, since in a homogeneous and 
isotropic soil, the hydraulic head is independent of the per­
meability coefficient, k.

• The seepage velocity presents a constant uncertainty in the 
whole section, with a coefficient of variation that coincides 
with the coefficient of variation of the permeability coeffi­
cient: a , • / E {V) = ak / E {A} = 50%. In the same form, the 
variation coefficient of the discharge coincides with that of k. 

In CASE II:
• Of course, there is no uncertainty on the hydraulic head in 

those points where the values of h were imposed as boundary 
conditions of the problem. The largest standard deviation, 
G(,h)max = 2.2 m. is observed in the lower right comer of the 
analyzed permeable section, in the area located at the largest 
distance from these boundaries. The contours of the uncer­
tainty approximately follow the inclination of the slope (Fig.
4).

• As far as the magnitude of the hydraulic gradient is con­
cerned. the largest standard deviation. cr(; )maI = 0.18. is ob­
served in the upper part of the earth slope. On Figure 5, the 
distribution of the uncertainty on the gradient presents sev­
eral local irregularities, which suggest that Stochastic Finite 
Element Method generally requires a large number of ele­
ments to obtain an adequate accuracy.

• On the other hand, seepage forces are directly proportional to 
the hydraulic gradient (Eq. 3). so the distribution of its stan­
dard deviation is identical to the hydraulic gradient one. This 
type of uncertainty should be taken into account when evalu-
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Figure 5. CASE II. Standard deviation o f  hydraulic gradient magnitude 

(dimensionless).
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Figure 6 . CASE II. Standard deviation o f  seepage velocity magnitude 

(m/s).

ating the safety factor against failure of the slope by an 
analysis in terms of effective stresses.

• The. largest standard deviation of the seepage velocity, 
V )max = 2.4x10'5 m/s, is observed in the lower left part of 

the permeable region of the dam. As shown on Figure 6. this 
maximum value coincides with the area where the maximum 
expected value of the magnitude of the seepage velocity is 
reached.

5 CONCLUSIONS

It was shown in this paper that the random nature of the soil 
permeability coefficients could be taken into account in ground­
water seepage analyses in a simple way using the Stochastic Fi­
nite Element Method (SFEM) and specifically the First Order- 
Second Moments method. The SFEM allows to calculate the ex­
pected values of hydraulic heads, gradients, seepage velocity, 
discharges, and seepage forces, and a to obtain a measure of the 
uncertainty that affect them (variance, standard deviation, co- 
variances, etc.). When no reliable data are available, it is highly 
commendable to supplement the typical deterministic analyses 
with probabilistic evaluations, using stochastic methods such as 
the SFEM. It is then possible to evaluate the range of values that 
can be taken by the results of the seepage analyses considering 
the random nature of the soil permeability coefficients, instead of 
accepting unique values of doubtful validity. In this way it is 
possible to introduce a bigger degree of realism in the conven­
tional groundwater seepage analyses. The probabilistic analysis 
of the seepage conditions induced in earth dams by rapid draw­
down conditions presented in this paper illustrates the previous 
points.
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