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ABSTRACT: This paper presents a mathematical model for the study of time-harmonic vibrations of a pile 
embedded in a transversely isotropic soil. The pile-soil interaction problem requires the derivation of Green’s 
functions corresponding to buried distributed vertical loading in a half-space. The motion of the pile is repre-
sented by a time-harmonic polynomial function containing a set of generalized coordinates. The body force 
field in the layered medium corresponding to each polynomial shape function of the pile is obtained numeri-
cally by solving a flexibility equation system based on the Green’s functions corresponding to buried distribut-
ed vertical body forces in the layered soil. The generalized coordinates of the pile displacement function are 
thereafter computed by formulating the Lagrange’s equations of motion for the pile. The present formulation 
can be extended to study pile groups as well as piles under lateral and torsional excitations. 

1 INTRODUCTION 

A review of the literature reveals that an exact ana-
lytical formulation of the problem of embedded 
piles is not available even for the case of static 
loadings. A limited number of reports are available 
in the literature on the solution of the dynamic case 
using numerical schemes. Novak (1977) has inves-
tigated the harmonic response of piles embedded in 
layers of soil. Apsel (1979) solved the problem of a 
rigid cylinder embedded in an elastic half-space. 
Sen et al. (1985) presented a scheme to deal with 
the problem of a finite elastic bar under lateral dy-
namic loads. Rajapakse and Shah (1987) presented 
solutions for the longitudinal, rocking, transverse 
and coupled rocking-transverse behaviors of an 
elastic bar embedded in an elastic isotropic half-
space. Models of finite beam elements have been 
used by Barros (2003) and Barros (2004) to study 
respectively the axial and transverse response of 
piles embedded in a half-space. In these two 
works, the surrounding medium of the piles were 
transversely isotropic continua. More recently, Lu 
et al. (2009) have investigated the axial response of 
piles embedded in multilayered poroelastic media. 

This paper presents a mathematical model for 

the study of time-harmonic vibrations of an elastic 

pile embedded in a transversely isotropic half-

space (Fig. 1). The formulation is presented within 

the framework of linear theory of elastic wave 

propagation that is applicable for most cases of 

foundation vibration problems under external exci-

tations.  

 
Fig. 1 Geometry of the bar and its surrounding medium. 

 

The pile-soil interaction problem requires the 

derivation of Green’s functions corresponding to 

buried distributed vertical loading in the half-

space. The motion of pile is represented by a time-

harmonic exponential function containing a set of 

generalized coordinates. The body force field in 

the half-space corresponding to each exponential 

shape function of the pile is obtained numerically 

by solving a flexibility equation system based on 

the Green’s functions corresponding to buried dis-

tributed vertical body forces in the half-space. The 

generalized coordinates of the pile displacement 

function are thereafter computed by formulating 

the Lagrange’s equations of motion for the pile. 

Numerical solution of the equation motion results 

in the solutions for generalized coordinates. The 

pile displacements and axial load profiles are de-
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termined from the solutions for generalized coor-

dinates. The present formulation can be extended 

to study pile groups (Taherzadeh, Clouteau and 

Cottereau, 2009) as well as piles under lateral and 

torsional excitations. 

2 GREEN’S FUNCTION AND BOUNDARY 
VALUE PROBLEM 

Consider an elastic, transversely isotropic, three-
dimensional full-space. The problem is governed 
by the Cauchy-Navier differential equations, which 
couples the displacement components 
ui=ui(r,θ,z,ω) (i=r,θ,z). Rajapakse and Wang 
(1993) proposed a solution for this coupled prob-
lem in terms of Hankel integral transforms and se-
ries expansion. The solution is written in terms of 
arbitrary functions, the values of which are deter-
mined from the boundary and continuity conditions 
of a given problem.  

In order to invoke the appropriate boundary 
conditions for the modeling of the pile problem, 
consider a half-space of Young’s modulus Eh and 
mass density ρh, containing a buried vertical load 
of unit intensity. In the r direction, the load is con-
centrated on the circumference of a circle of radius 
a. In the z direction, the load is distributed from 
z1≤z≤z2. The load is, therefore, uniformly distrib-
uted on a finite cylindrical shell within the half-
space. In this paper, the vertical displacement of a 
ring of points of coordinates (ri, zi) due to this cy-
lindrical vertical load is called uZZ(ri, zi, a, z1, z2), 
in reference to the position of the load and the 
measuring point. A detailed description of these 
calculations is presented by Labaki et al. (2014). 

3 MODEL OF AN ELASTIC BAR 

Consider an elastic cylindrical bar of radius a 
and length h embedded within an elastic half-space 
(Fig. 1). The bar is assumed to behave like a 1-
dimensional continuum with Young’s modulus Eb 
and mass density ρb. The surface of the bar, de-
scribed by (r=a, 0≤θ≤2π, 0≤z≤h) and (z=h, 0≤r≤a) 
is perfectly bonded with its surrounding half-space. 
The top surface of the bar is under axisymmetric, 
time-harmonic vertical load of intensity P0. 

The linear partial differential equation that re-

lates the deflection profile w(z) of the 1D pile and 

the loading p(z) applied on it is: 

( ) ( ) ( )
2

2

* *d
b b z

dz
A E w A w z pz z−ρ = −&&  (1) 

in which Ab is the cross-sectional area of the 

bar, Ab=πa
2
, and E*=Eb−Eh and ρ*=ρb−ρh. A trial 

deflection profile is established for the bar in the 

following form: 

( ) ( ) ( )
N
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n
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w z, t t e
− −

=
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The summation in Eq. (2) comprises an 

approximation for the deflection of the pile w(z) by 

a series of exponential functions. Each exponential 

profile is weighed by a generalized coordinate αn 

(n=1,N). The corresponding derivative of the 

deflection profile with respect to time is given by: 

( ) ( ) ( )
N

n 1 z h
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− −

=
= α∑ &&  (3) 

Based on Eqs. (2) and (3), the strain and kinetic 

energy of the bar can be expressed as: 
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Let Bz(z) represent the body force along the 

body of the bar in the vertical direction. It is 

assumed that the influence of radial body forces is 

negligible (Rajapakse, 1988). Let B
n
z(z) be the 

vertical body force corresponding to each term 

within the summation in Eq. (2). The resulting total 

body force will be given by all these individual 

terms by: 
N

n
z n z

n 1

B B

=
= α∑  (10) 

A solution for B
n
z(z) by analytical methods is 

not feasible due to the complexity of the problem. 

A numerical solution is obtained by considering a 

discretization of the pile. 

Rajapakse and Shah (1987) presented an 

extensive, detailed model of this problem and 

discussed the implications of the discretization 

models proposed by Fowler and Sinclar (1978) and 

Sen et al. (1985) to deal with this problem. 

Rajapakse and Shah (1987) considered a 

discretization of the body of the pile into a number 

of toroidal elements and a discretization of its end 

surfaces (z=0) and (z=h) into a number of 
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concentric annular discs. For the present case in 

which long bars are considered and frequencies 

within practical ranges are assumed, a simplified 

discretized model suffices. The present model 

considers that the body of the bar is discretized 

into M shaft elements, within which the body 

forces are assumed to be uniformly distributed. 

With the proposed discretization, the following 

flexibility equation can be established for the bar: 

{ }n 1 2 N
ij z M N

A B w w w ×
   =    K  (11) 

( )ij zz i j1 j2M M
A u 0,z ,a,z ,z

×
=  (12) 

{ } ( ) ( )
N1

T
n 1 z / hn 1 z / hnw e e

− −− −= L  (13) 

In Eqs. (11) to (13), M is the number of shaft 

elements used to discretize the bar. The function 

uZZ is described in Section 2. w
n
 is the vertical 

displacement corresponding to the n
th
 term inside 

Eq. (2) when αn=1. 

The Lagrangian of the embedded bar problem is 

written as: 

*

1 1
h i i i i2 t 2V V

L w w dV w B dV∂
∂= ρ −∫ ∫&  (14) 

The application of the Lagrange’s equation of 

motion to the bar–half-space system results in the 

following algebraic equations: 

( )
N M

2 i n
n ni ni j z nj zj ij j j 0

n 1 j 1

2 C 2D r B e B e z r P

= =

 
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∑ ∑

(15) 

In which enj=e
−(n−1)zj/h

 and eij=e
−(i−1)zj/h

. 

The solution of Eq. (15) results in the generalized 

coordinates from which the deformation profile of 

the pile can be obtained (Eq. 2). For example, the 

displacement of the top end of the bar can be ob-

tained from Eq. (2) by making z=0: 
N

0 n

n 1=
∆ = α∑  (16) 

 

 
Fig. 2 Discretized model of the bar. 

4 NUMERICAL RESULTS 

This paper presents two selected numerical results 

for the vibration of the embedded bar. Figs. 3 and 4 

show respectively the vibration of a bar of length 

h/a=5 and h/a=15. These cases employ a discreti-

zation of M=20 and M=60 cylindrical shell ele-

ments, respectively. In all cases, the Poisson ratio 

of the half-space is ν=0.25, and the relative mass 

density of the bar and half-space is ρ’=ρb/ρh=1. 

Figs. 3 and 4 show that the axial impedance Kv 

(Kv=P0/µha∆0) of the bar is significantly affected 

by the relative stiffness of the bar, E’=Eb/Eh. All 

cases consider a profile described by N=6 general-

ized coordinates (see Eq. 2). 

 

 
Fig. 3a Real part of the vertical impedance Kv(a0) of the 

elastic bar of length h/a=5 for varying E’. 

 

 
Fig. 3b Imaginary part of the vertical impedance Kv(a0) 

of the elastic bar of length h/a=5 for varying E’. 
 

These results have been compared with a solu-

tion by Barros (2006). Barros solved the problem 

of vertical vibration of the elastic bar by an indirect 

formulation of the Boundary Element Method. In 

Figs. 3 and 4, the results by Barros are shown by 
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black markers. These results also agree with the 

former model by Rajapakse and Shah (1987). 

 

 
Fig. 4a Real part of the vertical impedance Kv(a0) of the 

elastic bar of length h/a=15 for varying E’. 
 

 
Fig. 4b Imaginary part of the vertical impedance Kv(a0) 

of the elastic bar of length h/a=15 for varying E’. 

5 CONCLUDING REMARKS 

The present paper showed the mathematical formu-

lation of the time-harmonic response of an elastic 

pile embedded in a transversely isotropic half-

space. The model is based on a simplification of a 

previous model from the literature. The present 

model considers that the body of the bar is discre-

tized into shaft elements, within which the body 

forces are assumed to be uniformly distributed. For 

the present case in which long bars are considered 

and frequencies within practical ranges are as-

sumed, this simplified discretized model suffices. 

The model was used to investigate the variation of 

the axial impedance with frequency of excitation. 

Different cases of relative stiffness between the 

pile and its surrounding half-space have been con-

sidered. The results show good agreement with an-

other model in which the indirect-BEM has been 

used to solve the embedded pile problem. 
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