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ABSTRACT: Rock mass classification provides a guideline for a tunnel excavation and reinforcement design.
The borehole data and geophysical site investigation results have been popularly used for rock mass classification,
but the locality and limited information from the borehole data and qualitative characteristics of geophysical data
have been problematic. A geostatistical method such as kriging can be an alternative to solve these problems.
This paper describes a design of tunnel supporting system based on geostatistical tools. Korean tunnel supporting
system is typically composed of six different types of combination of shotcrete, rockbolts, and concrete lining
based on rock mass rating (RMR). Ordinary kriging (OK), indicated kriging (IK), and sequential indicator
simulation (SIS) were used to estimate RMR around the tunnel. Kriging methods could estimate RMR with
the best linear unbiased estimator. Using SIS, RMR was presented in the probabilistic term such as mean,
variation, and confidence interval. Reliability of the estimated values was verified by split-sample validation
and compared with the real RMR obtained from the side wall of the tunnel while excavating carried out. Based
on 100 equally probable simulations, RMR could be presented in the form of a probability distribution function
and the uncertainty of estimation could be successfully quantified.

1 INTRODUCTION This paper describes a design of tunnel supporting
system based on geostatistical tools. Typical Korean

Tunnel excavation and reinforcement design are made  tunnel supporting system was composed of six types

according to the rock mass classification. Engineers
have been using the borehole data of rock mass classi-
fication and geophysical site investigation results. Due
to the locality and limited information from the bore-
hole data and qualitative characteristics of geophysical
data, geostatistical method such as kriging should be
considered for the rock mass classification.

Kriging is one of the most widely used interpolation
methods in geostatistics. There has been considerable
researches conducted using this technique (Taboada
et al., 1997; Facchinelli et al., 2001; Marinoni, 2003;
Pardo-Iguzquiza and Dowd, 2005). Despite its wide
use, the kriging map flattens out the local details of
the spatial variation with the overestimation of small
values and underestimation of large values. This type
of selective bias is a serious shortcoming because of
the loss of the distribution features of the original data.

Kriging is focused on the estimation of unknown
points by one deterministic value, whereas sequential
simulation is on the stochastic simulation by proba-
bilistic form. Juang et al. (2003) showed the spatial
distribution of soil contamination by the sequential
indicator simulation, and Feng et al. (2006) proposed
an improved sequential indicator simulation.
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of combination of shotcrete, rockbolts, and concrete
lining based on the rock mass rating (RMR). Ordinary
kriging (OK), indicated kriging (IK), and sequential
indicator simulation (SIS) were used to estimate RMR
around the tunnel. For IK, we estimated the three-
dimensional distribution of RMR with the field data
of borehole logging and geophysical data. And this
result was compared with the results using OK and
SIS. Using SIS, an equally probable simulation was
performed 100 times to quantify the uncertainty of
estimation. The accuracy of estimation was checked
by split-sample validation.

2 ESTIMATION PROCESS

2.1 Ordinary kriging

1 Construct a variogram from the scatter point set to
be interpolated.

P === 3 [0 =25+ M

where /1 =lag distance; z(x) = value of position x;
and n = number of total data.



2 Define a theoretical variogram. Spherical model
was used in this study.

3 Calculate the weights for each point and estimation
value is the linear combination of weighted known
values.
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where a,fb is the covariance between a and b.

2.2 Indicator kriging

1 Determine thresholds of borehole data and seis-
mic data. Because borehole data is quantitative and
seismic data is qualitative regarding to RMR, both
borehole and seismic data changed into the indica-
tors between 0 and 1. The thresholds were RMR
20, RMR 40, RMR 60, and RMR 80 for bore-
hole data, and 800 km/s, 1500 km/s, 2400 km/s, and
3600 km/s for seismic velocity.

L if V(x)<v,

0, if V(x)>v, )

I(v,,x) —{

where v, = indicator value; V' (x) = data function.
2 Calculate an indicator of unknown nodes with the
same process of ordinary kriging.
3 Convert an indicator into RMR using cumulative
probability distribution function of estimated four
indicators for four thresholds.

2.3 Sequential indicator simulation

1 Determine the thresholds (1st quartile, medium,
and 3rd quartile) and divide the data into indicators.
The indicator function is given by equation (5).

2 Calculate the experimental variogram and deter-
mine the theoretical variogram for each threshold.

3 Select an unsampled node using a random path and
calculate the indicator values at the selected node
by ordinary kriging.

4 Calculate the CDF (Cumulative probability Dis-
tribution Function) using three thresholds and
sampling from the CDFE.

5 Include the calculated value as conditioning points.

6 Go back to random path selection until all unknown
nodes are calculated.

(a) Borehole data
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(b) Seismic velocity data

Figure 1.
area.

Borehole and seismic velocity data in the research

3 EXAMPLES AND RESULTS

3.1 Estimation of three-dimensional RMR

Estimation of three-dimensional RMR distribution
was performed in the highway project from ‘Sosa’ to
‘Noksan’. It was 1700 m in length from STA 3k600 to
STA 5k300, with a depth from —40 to 200 m. The grid
was 86 zones in length (x-direction), 16 zones in width
(y-direction) and 25 zones in height (z-direction). The
dimensions of one element were 20 m in length, 20 m
in width and 10 m in height. RMR estimation was per-
formed by borehole logging data and seismic data.
Borehole location and seismic data were presented in
Figure 1(a) and Figure 1(b), respectively.

The results of ordinary kriging, indicator kriging,
and SIS are shown in Figure 2. Ordinary kriging used
a borehole logging data as input data, and indicator
kriging used both borehole logging data and seismic
survey data. Figure 2(c) shows the first result of 100
SIS results. The RMR distribution around the planned
tunnel is presented in Figure 2(d). Korean tunnel sup-
porting system was composed of six types based on the
RMR. Five grades of RMR are matched with the five
types of support system and sixth support system is for
the portals of a tunnel. Therefore, the most important
issue in the design of tunnel support system can be a
determination of reliable RMR values.

3.2 Reliability analysis of estimated RMR

Split-sample validation was performed to verify the
accuracy of the GA (Genetic Algorithm) simulation.
A subset that was composed of 100 data points from
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(d) RMR distribution around the tunnel using SIS

Figure 2. Estimation results and RMR distribution abound
the tunnel.

the original borehole-logging data was set aside as test
data; the reminder was training data. And the results of
split-sample validation are presented in Figure 3. The
perfectly estimated result is presented as a straight line
inclined at 45°. The result of split-sample validation
shows dots located around the ‘perfect estimate’ line.
The dots in the upper and lower parts of the line are
approximately random, and their numbers are almost
identical.
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(a) Split-sample validation using OK
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(b) Split-sample validation using IK
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(c) Split-sample validation using SIS

Figure 3. The results of split-sample validation.

The coefficient of variation was 0.482 and 0.342
for ordinary and indicator kriging, respectively. These
values are very sensitive to local area. With the same
borehole input data, SIS was performed to 100 equally
probable times. Through these analyses of results,
RMR could be presented in the form of a probability
distribution function, and the uncertainty of estimation
could be successfully quantified.

As shown in Figure 3(a) and Figure 3(b), the orig-
inal input RMR ranged from 15 to 95, whereas the
output RMR ranged from 45 to 80 by both ordinary
and indicator kriging. Distribution features of orig-
inal geological data were disappeared by kriging in
the process of minimizing the error variation, and this
phenomenon is called as ‘smoothing effect’. The coef-
ficient of variation for averaged SIS result was 0.656
as shown in Figure 3(c).
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Figure 4. Box chart and probability distribution function of
RMR distribution in the planned tunnel area using SIS.

Table 1. Variation of RMR in the planned tunnel area.
Station Mean Standard deviation
3k700 44 16.3

3k940 62 18.7

4k210 72 13.4

4k450 76 12.5

4k690 75 6.5

4k960 62 17.6

5k300 52 21.1

In order to investigate the reliability of the estima-
tion, an equally probable simulation was performed
100 times in order to quantify the estimation uncer-
tainty. The RMR distribution around the planned
tunnel is presented in Figure 4. The left dots and distri-
bution curve represent the RMR realizations, and the
right box chart presents their normal distribution. In
the figure, X, the vertical line, the diamond shape box
chart, and the center dot represent the maximum and
minimum values of 1% and 99% respectively, the box
range from 25% and 75% of the CDF, and the mean
value, respectively. The mean and standard deviation
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of the 100 simulations are presented in Table 1. As
the reliability of the estimation increases, the variance
decreases.

4 CONCLUSIONS

The objective of this study was to estimate reliable
RMR values and correctly design a tunnel support
system. The results may be summarized as follows:

1 Kriging and sequential indicator simulation have
its special characteristics and sequential indicator
simulation could estimate RMR effectively.

2 Estimation values could be shown in the form
of a probability using the 100 stochastic simu-
lations that were simulated on the condition of
equi-probability. The estimation uncertainty could
be quantified by a variance of RMR.

3 Reliability analysis was performed by split-sample
validation. The differences between true values and
estimation values could check the precision of the
estimation.
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