
International Society for Soil Mechanics and **Geotechnical Engineering**

Société Internationale de Mécanique des Sols et de la Géotechnique

Corporate Associates Presidential Group

Chair:

Sukumar Pathmanandavel S.Pathmanandavel@aurecongroup.com

Chiar elect:

Peter Dav day@jaws.co.za

ARE WE OVERDESIGNING? – A SURVEY OF INTERNATIONAL PRACTICE

A joint initiative by: Corporate Associates Presidential Group (CAPG), Young Members Presidential Group (YMPG, Technical Committee TC205 (Safety and Serviceability), and Technical Committee TC304 (Risk).

1. MOTIVATION

At the XVI Danube European Conference (Skopje Macedonia, June 2018), the question was raised "Are we overdesigning?". Although the question originated from the Asian Region, it is valid internationally where different countries and users of various testing techniques or design codes tend to follow local practice for geotechnical design.

This survey is intended to assess the consistency of calculation models and design methods for a variety of geotechnical structures and, where possible, to compare the results with full-scale tests and reliability analyses.

2. OUTLINE

The survey is based on two soil profiles, one in clay and the other in sand. Soil test results, typical of those one would find in a geotechnical investigation report, are provided for each soil profile. The soil properties for the clay and sand profiles are given in Annexes A and B respectively. Excel spreadsheets are also provided with numerical data.

Ten specimen problems have been proposed, namely concentrically and eccentrically loaded spread footings, axially and laterally loaded piles, slopes and retaining structures (see Annex C). The idea is to keep the problems easy to analyse and representative of every-day geotechnical structures.

Some problems require the prediction of performance of the geotechnical structure (prediction problems) while others call for the design of the structure as it would be The prediction problems are aimed assessing the constructed (design problems). selection of parameters and calculation models. The design problems are aimed at assessing the provisions made for safety and serviceability in geotechnical structures.

You do not need to analyse all ten problems, although it would be appreciated if you did. Please feel free to submit responses for only problems that are typical of the work you do on a day-to-day basis.

ISSMGE Secretariat, City University of London, Northampton Square, London EC1V 0HB UK Tel: +44 20 7040 8154; Fax: +44 20 7040 8832; E-mail: secretariat@issmge.org **ISSMGE Board Members**

President Secretary General Past President

R. Frank

E.M. Kana E.C. Shin G. Alexander

Vice-President Europe Vice-President N America Vice-President S America

M. Manassero T. Newson A. Sfriso

Appointed Member Appointed Member Appointed Member

M. Bouassida K.-K. Phoon P.S. Sêco e Pinto

3. INSTRUCTIONS

- 1. Analyse as many or as few problems as you wish. Partial solutions will also be accepted.
- 2. Summarise the results on the reply sheets provided in Annex C.
- Please use the analysis methods and design codes that would typically be applied in a design office in your country. <u>This is not a competition to see who can get the</u> <u>"right" answer</u>. It is an assessment of the results given by design methods in common use.
- 4. Please complete the "Details of Respondent" sheet and submit it with your reply sheets. Also fill in your country and occupation in the space provided on each reply sheet.
- 5. Submit the result as a scanned .pdf document to <u>overdesign@issmge.org</u>.
- The closing date for submissions is Friday 2nd August 2019. Late submissions will be accepted but may not be included in the initial analysis of results for the Asian Regional Conference in October 2019.

4. PRESENTATION OF RESULTS

The initial results of the survey will be presented at the Asian Regional Conference in Taipei, October 2019. A detailed analysis of the results will be presented at the ISSMGE International Conference in Sydney 2021.

5. <u>QUERIES</u>

Queries regarding this survey may be addressed to <u>overdesign@issmge.org</u>. The data is what it is and no further data is available.

Thank you in advance for your participation. We look forward to receiving your responses.

Peter Day and Sukumar Pathmanandavel ISSMGE CAPG

ANNEX A: CLAY PROFILE

A1 SOIL PROFILE

The clay profile is predominantly alluvial in origin and is overconsolidated.

The profile can be described as follows:

0-5.5m Very stiff clay

5.5 – 6.5m Medium dense sand parting (intermittent)

6.5 - 12.0m Very stiff clay

12.0m + Highly weathered shale.

The water table is at a depth of approximately 6m below ground level.

A2 SOIL PROPERTIES

The results of laboratory and field tests on the clay are summarised in Figures A1 and A2 respectively.

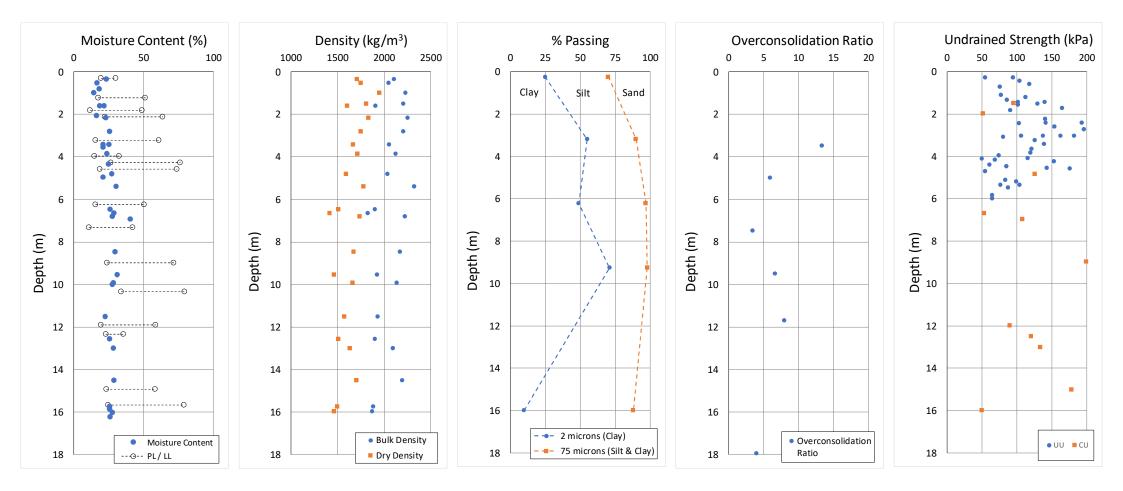


Figure A1: CLAY PROFILE - Summary of Laboratory Test Results

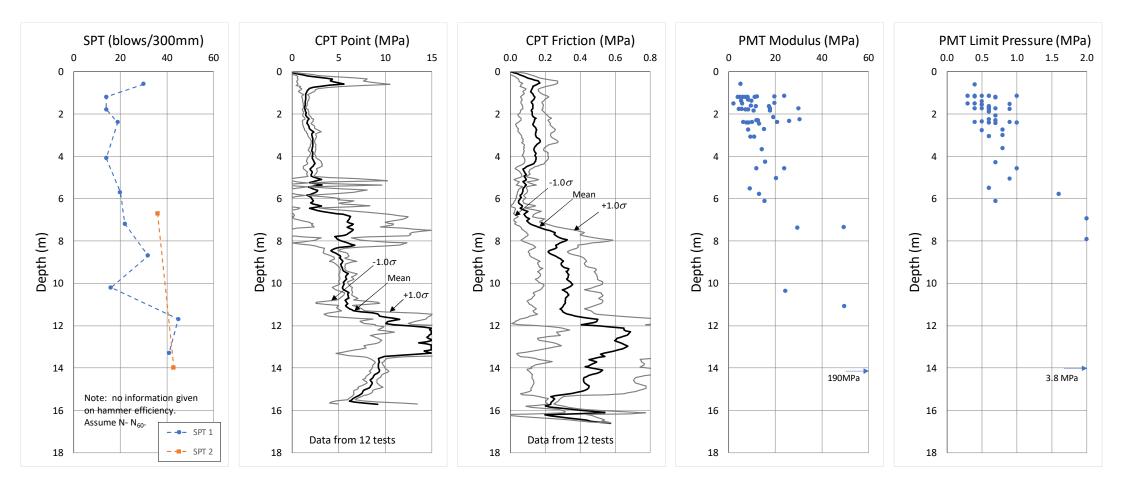


Figure A2: CLAY PROFILE - Summary of Field Test Results

ANNEX B: SAND PROFILE

B1 SOIL PROFILE

The sand profile is also primarily of alluvial origin. The soil profile may be described as follows:

> 0-4.0m Silty sand 4.0-8.0m Clean sand 8.0-12.5m Clayey sand 12.5m + Highly weathered shale.

The water table is at a depth of about 5m below ground level.

B2 SOIL PROPERTIES

The results of field and laboratory tests are given in the following figures:

Figure B1: Grading analyses

Figure B2: SPT test results

Figure B3: Moisture content results

Figure B4: CPTu results

Figure B5: Pressuremeter test results

Figure B6: Dilatometer test results

Figure B7: Cross-hole seismic results

Sieve Grading Analysis

Seive Size		%	Passing	oy weight		
(mm)	0.1m	1.6m	2.5m	3.7m	4.8m	8.9m
9.5				100	100	
2	100	100	100	91	96	100
1.18	99			89	94	
0.85				88	93	
0.425	95	99	99	70	86	99
0.25	78		72			
0.18		61		26	13	92
0.125	27		7			
0.075	8	16	2	22	6	35

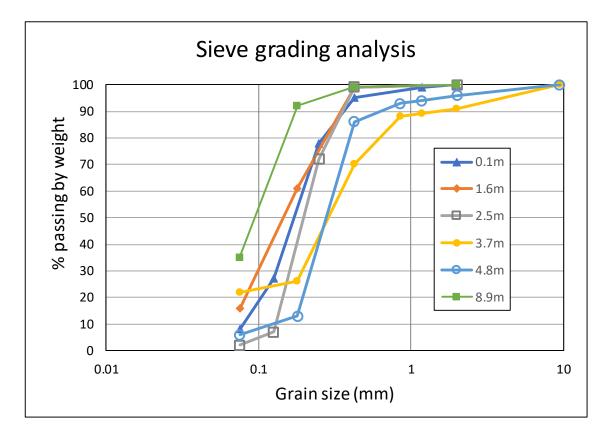


Figure B1: SAND PROFILE – Summary of Grading Analysis

Depth	SPT1	SPT2	SPT3	SPT4	SPT5	SPT6
(m)			blows /	300mm		
0.23	11	12	13	11	12	13
0.98	23	23	18	13	15	19
1.60	30	18	25	18	20	18
2.20	21	18	17	17	19	13
2.80	23	16	18	16	16	14
3.75	28	19	19	15	16	26
4.95		17	26	14	27	23
5.85	34	21	22	17	18	20
7.40	17	14	19	16	16	28
8.90	13	21	10	20	25	8
10.45	54	63	44	60	64	49
11.95	76	40	99	70	38	51
13.50	40	39	46	53	36	53
15.00	53	57	36	60	49	54

NB: Average SPT system efficiency 53% (46% - 60%).

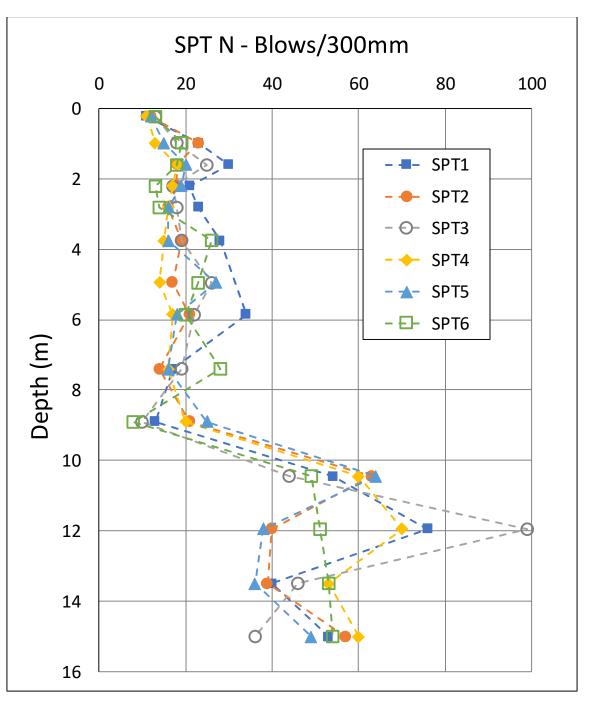


Figure B2: SAND PROFILE - Summary of SPT results

Depth	SPT2	SPT3	SPT4	SPT5	SPT6
(m)		Moist	ure Conte	ent (%)	
0.23	14.3	11.9	16.8	14.4	15.9
0.98	13.0	12.1	11.6	13.0	12.4
1.60	17.2	15.5	11.8	14.0	11.1
2.20	19.2	18.3	14.1	20.5	20.5
2.80	21.8	21.5	19.0	17.6	18.9
3.75	16.3	21.1	20.9	16.6	18.3
4.95	16.6	19.2	20.7	16.6	18.7
5.85	27.7	25.4	25.0	19.4	12.2
7.40	29.2	29.3	33.5	29.7	31.2
8.90	27.4	23.0	20.9	29.6	29.0
10.45	27.0	30.9	32.6	26.7	28.6
11.95	27.5	34.0	36.7	29.3	29.0
13.50	27.2	21.9	28.5	32.1	30.7
15.00	22.1	25.8	21.7	25.1	23.4

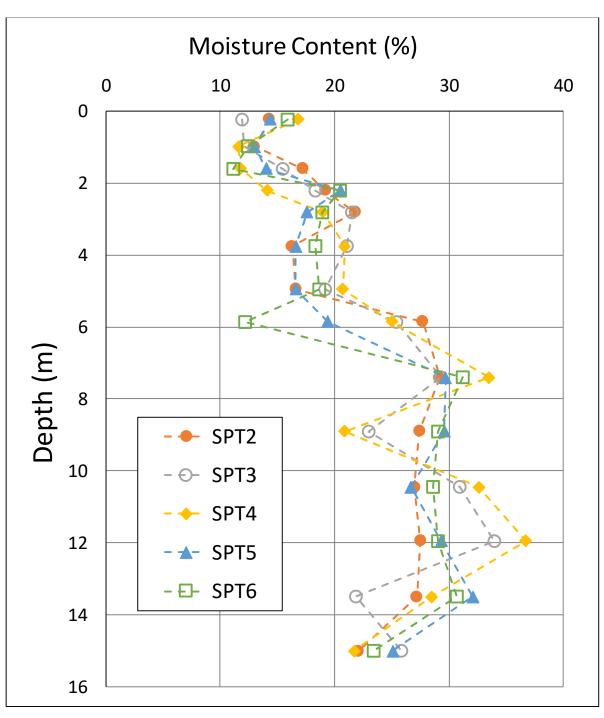


Figure B3: SAND PROFILE - Summary of Moisture Content results

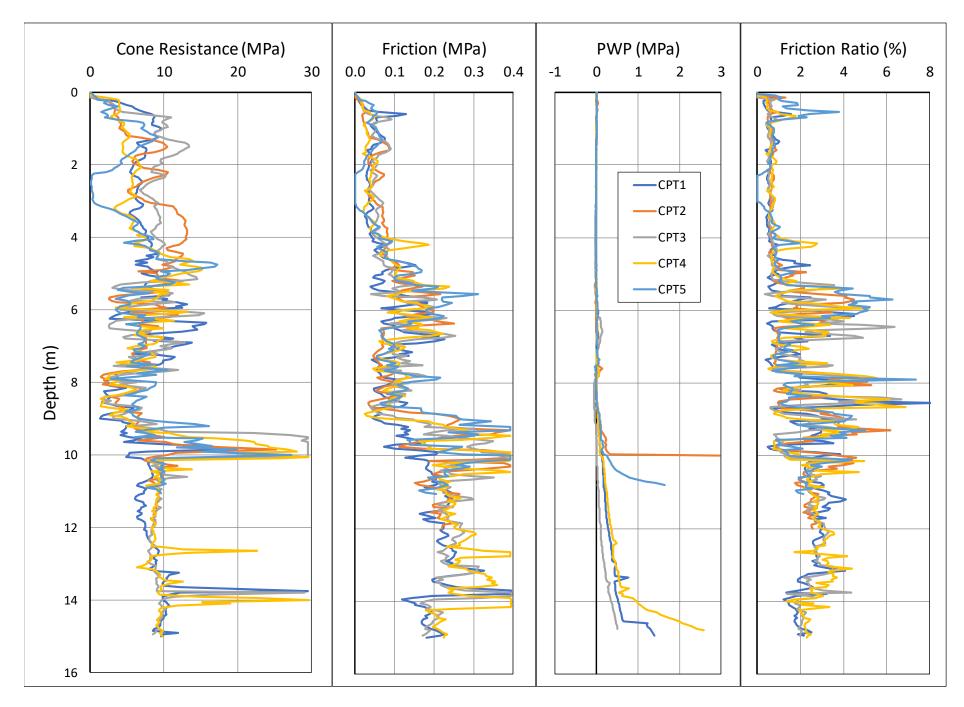
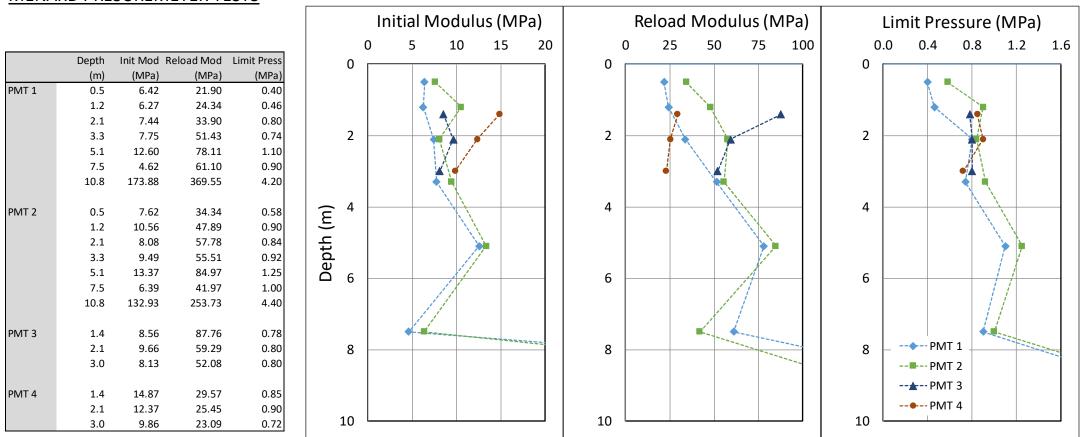



Figure B4: SAND PROFILE - Summary of CPTu results

MENARD PRESUREMETER TESTS

Figure B5: SAND PROFILE - Summary of Pressuremeter results

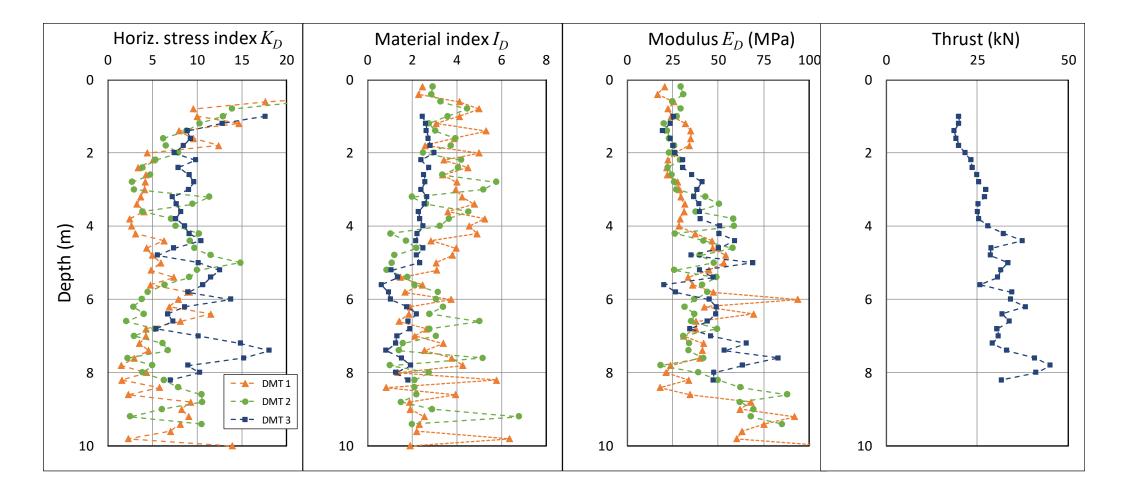


Figure B6: SAND PROFILE - Summary of Dilatometer results

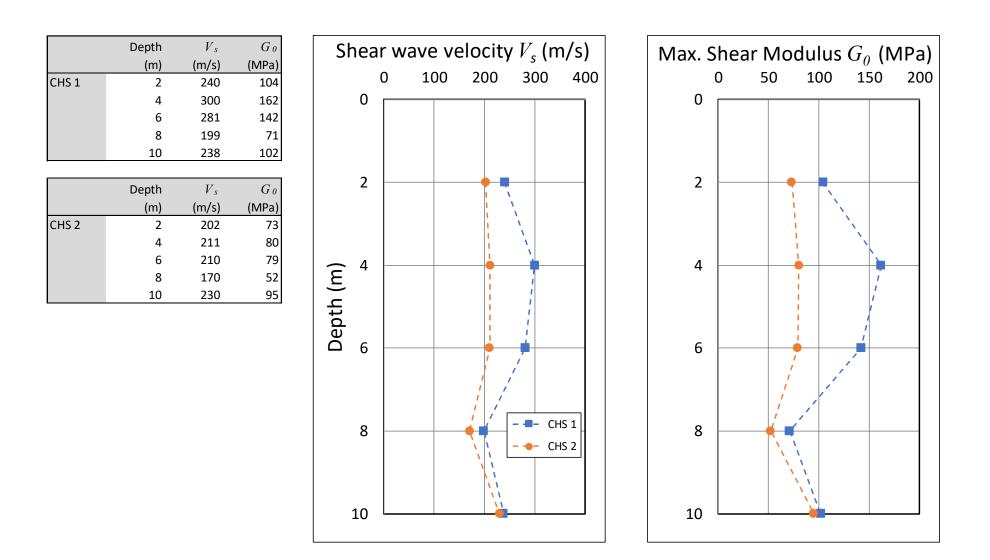
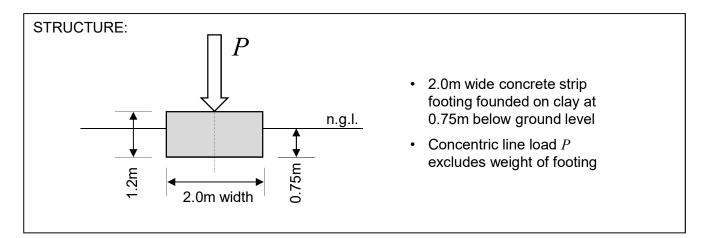


Figure B7: SAND PROFILE – Summary of Cross-hole Seismic test results


ANNEX C: SPECIMEN PROBLEMS

Problem CLAY 1 – Vertically loaded spread footing	(Prediction)
Problem CLAY 2 – Axially loaded pile	(Prediction)
Problem CLAY 3 – Laterally loaded pile	(Prediction)
Problem CLAY 4 – Slope design	(Design)
Problem SAND 1 – Vertically loaded spread footing	(Prediction)
Problem SAND 2 – Axially loaded pile	(Prediction)
Problem SAND 3 – Design of spread footing with horizontal load	(Design)
Problem SAND 4 – Slope design	(Design)
Problem SAND 5 – Embedded retaining wall	(Design)
Problem SAND 6 – Temporary soil nailed wall	(Design)

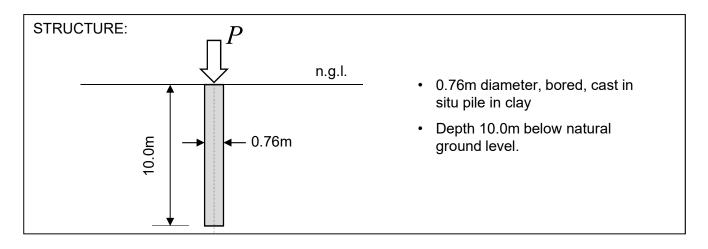
DETAILS OF RESPONDENT – Reply sheet

Name (optiona	I)			
Email (optional)			
Occupation		Student Academic Design consultant Contractor		
		□ Other (please specify)		
Experience		□ 0 – 10 years □ 10 – 20 years □ 20 – 30 years □ 30+ years		
Country				
Design method	ls used in you	r country		
	U WLD:	Working load design with global factor of safety		
	LRFD:	Load and resistance factor design (e.g. AASHTO codes)		
	D PF LSD:	Partial factor limit states design (e.g. Eurocodes)		
	Other (plear)	ase specify:		
		used in your country:		
(please specify standard number and year, e.g. EN1997-1:2004)				
Your favourite ge	eotechnical eng	gineering textbooks (3 max.):		

Problem CLAY 1 – Vertically loaded spread footing

PROBLEM:

This problem requires the prediction of the performance of the footing.

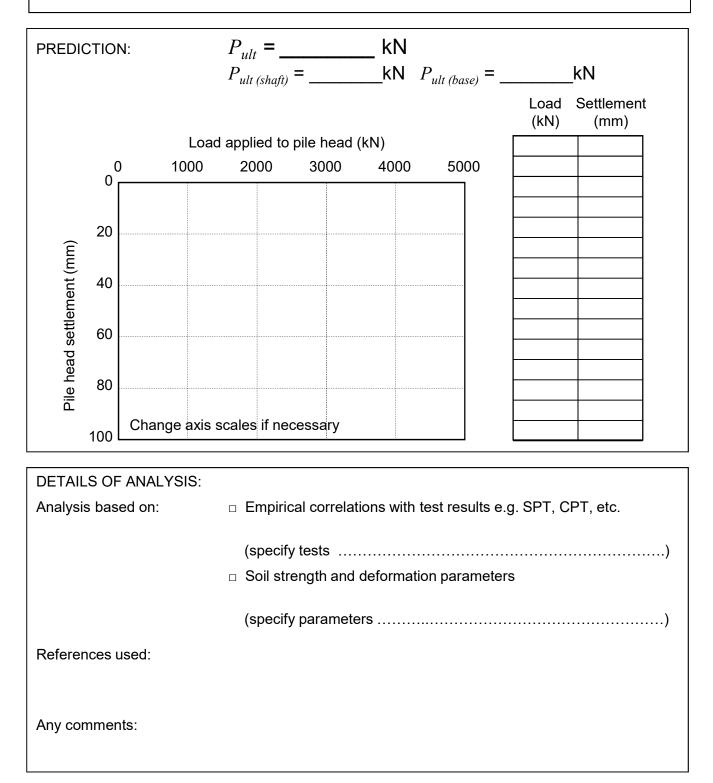

- 1. Predict the applied load that will cause bearing capacity failure of the footing, P_{ult} (kN/m).
- 2. Predict the applied load P_{25mm} (kN/m) that will cause the footing to settle by 25mm in the long term.
- 3. Predict the expected performance of the footing based on the test results, not a conservative assessment as may be used in design calculations.

Problem CLAY 1 – Reply sheet

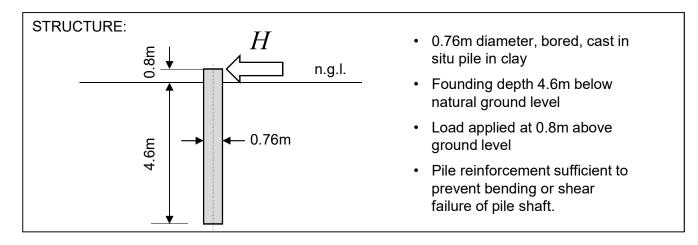
RESPONDE	NT PROFILE:		
Country			
Occupation	□ Student □ Academic □ Design consultant	□ Contractor	Other
Experience	\Box 0 – 10 years \Box 10 – 20 years \Box 20 – 30 years	□ 30+ years	

PREDICTION:					
P_{ult} = kN/m P_{25mm} = kN/m					
DETAILS OF ANALYSIS:					
Method of bearing capacity analysis:					
Type of analysis: □ Total stress (undrained) □ Effective stress (drained) □ Both					
Method of settlement analysis:					
Codes or Standards used (if any):					
Parameter values (if appropriate):					
<i>c_u</i> Undrained shear strengthkPa					
<i>c</i> ' Drained cohesionkPa					
ϕ' Drained friction angledeg					
<i>E</i> ' Drained elastic modulusMPa					
Other parameters / empirical factors used: (please specify)					
If you used a Skempton-type analysis, what value of N_c was used?					
References used:					
Any commenter					
Any comments:					

Problem CLAY 2 – Axially loaded pile


PROBLEM:

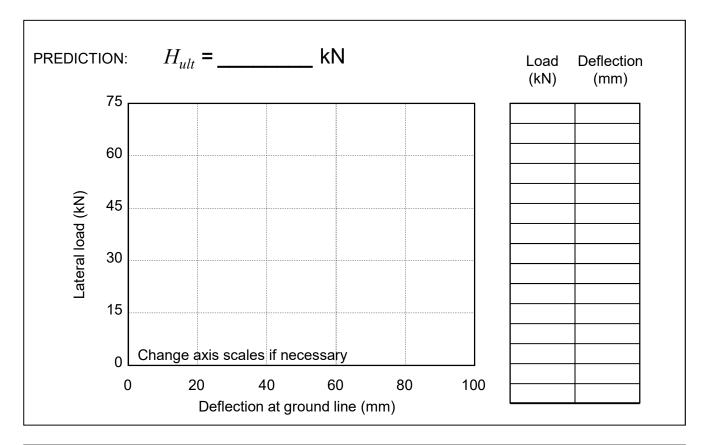
This problem requires the prediction of the performance of the pile.


- 1. Predict the ultimate load capacity of the pile P_{ult} .
- 2. If the method used separates shaft and base resistance, state $P_{ult (shaft)}$ and $P_{ult (base)}$.
- 3. Predict the load-settlement curve to failure.
- 4. Predict the expected performance of the pile based on the test results, not a conservative assessment as may be used in design calculations.

Problem CLAY 2 - Reply sheet

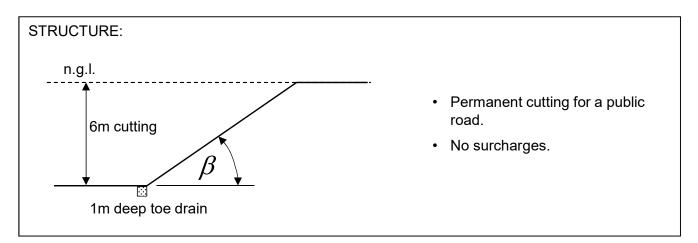
RESPONDE	NT PROFILE:		
Country			
Occupation	□ Student □ Academic □ Design consultant	Contractor	Other
Experience	\Box 0 – 10 years \Box 10 – 20 years \Box 20 – 30 years	□ 30+ years	

Problem CLAY 3 – Laterally loaded pile


PROBLEM:

This problem requires the prediction of the performance of the pile.

- 1. Predict the ultimate load capacity of the pile H_{ult} .
- 2. Predict the long term load-deflection curve to failure.
- 3. Predict the expected performance of the pile based on the test results, not a conservative assessment as may be used in design calculations.

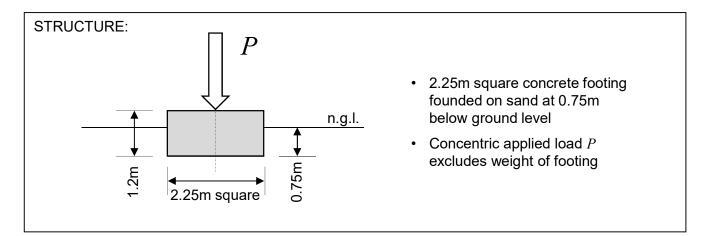

Problem CLAY 3 – Reply sheet

RESPONDE	NT PROFILE:		
Country			
Occupation	□ Student □ Academic □ Design consultant	Contractor	□ Other
Experience	\Box 0 – 10 years \Box 10 – 20 years \Box 20 – 30 years	□ 30+ years	

DETAILS OF ANALYSIS:	
Analysis based on:	 Empirical correlations with test results e.g. SPT, CPT, etc. (specify tests)
	 Soil strength and deformation parameters (specify parameters)
References used:	

Problem CLAY 4 – Slope design

PROBLEM:


This is a design problem requiring the specification of the slope angle for construction.

1. Specify the angle β at which the slope is to be cut.

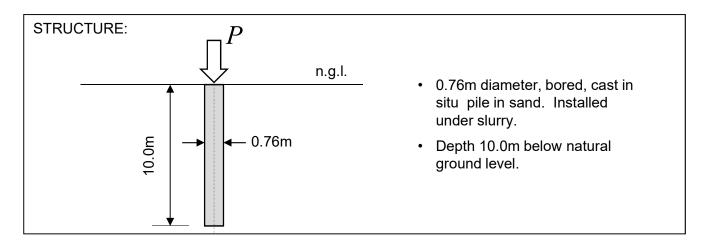
Problem CLAY 4 – Reply sheet

RESPONDENT PROFILE:				
Country				
Occupation	□ Student □ Academic □ Design consultant □ Contractor □ Other			
Experience	□ 0 – 10 years □ 10 – 20 years □ 20 – 30 years □ 30+ years			
DESIGN:				
	β = degrees			
DETAILS OF	ANALYSIS:			
Design Code	used (if any):			
Method of slop	be stability analysis:			
Type of analys	sis: 🛛 Total stress (undrained) 🔅 Effective stress (drained) 🔅 Both			
Parameter val	ues: z<6m z>6m (* delete as required)			
c_u Undraine	ed shear strengthkPa (average* / characteristic*)			
c' Drained	cohesionkPa (average* / characteristic*)			
ϕ' Drained	friction angledeg (average* / characteristic*)			
Other parame	ters / empirical factors used: (please specify)			
Didaaaaa				
	/sis include a tension crack?			
If so, to what o				
Did you assur	ne this crack could fill with water?			
References us	sed.			
Treferences us				
Any comments:				

Problem SAND 1 – Vertically loaded spread footing

PROBLEM:

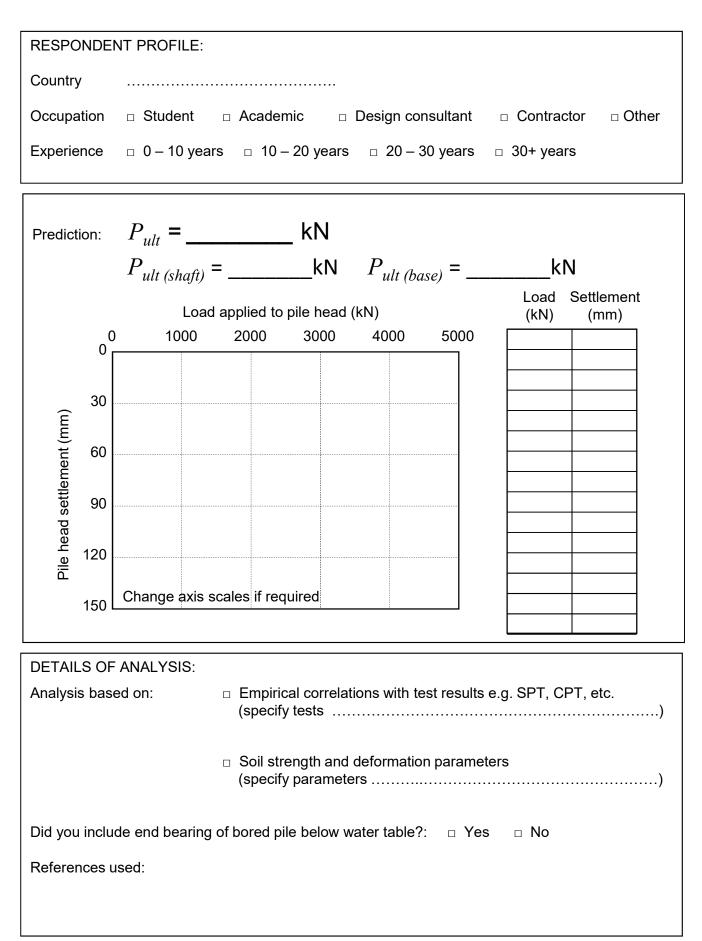
This problem requires the prediction of the performance of the footing.

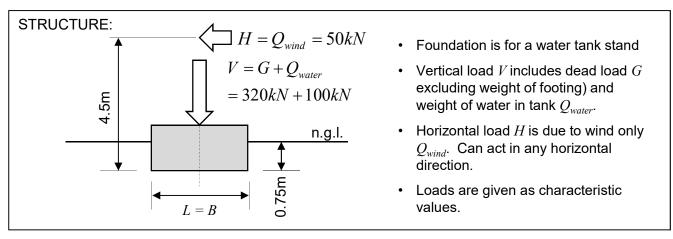

- 1. Predict the ultimate load capacity of the footing P_{ult} .
- 2. Predict the load P_{25mm} that will cause the footing to settle by 25mm in the long term.
- 3. Predict the expected performance of the footing based on the test results, not a conservative assessment as may be used in design calculations.

$\label{eq:problem SAND 1} - \text{Reply sheet}$

RESPONDE	NT PROFILE:		
Country			
Occupation	Student Academic Design consultant	□ Contractor	Other
Experience	\square 0 – 10 years \square 10 – 20 years \square 20 – 30 years	□ 30+ years	

PREDICTION:	
P_{ult} = kN	P_{25mm} = kN
DETAILS OF ANALYSIS:	
Method of bearing capacity analysis:	
Method of settlement analysis:	
Codes or Standards used (if any):	
Parameter values (if appropriate):	
c ' Drained cohesion	kPa
ϕ' Drained friction angle	deg
E' Drained elastic modulus	МРа
Other parameters used: (please supply)	
Did your method of bearing capacity analys	sis include depth correction factors? \Box Yes \Box No
References used:	
Any comments:	


Problem SAND 2 – Axially loaded pile

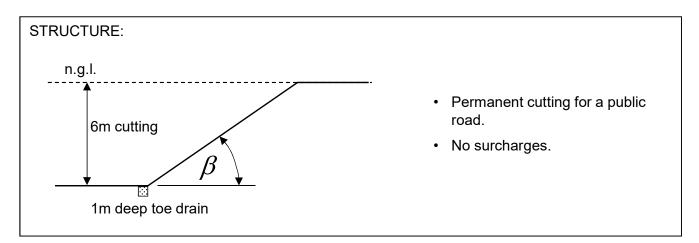

PROBLEM:

This problem requires the prediction of the performance of the pile.

- 1. Predict the ultimate load capacity of the pile P_{ult} .
- 2. If the method used separates shaft and base resistance, state $P_{ult (shaft)}$ and $P_{ult (base)}$.
- 3. Predict the load-settlement curve to failure.
- 4. Predict the expected performance of the pile based on the test results, not a conservative assessment as may be used in design calculations.

Problem SAND 3 – Design of spread footing with horizontal load

PROBLEM:


This is a design problem requiring the specification of the footing size for construction.

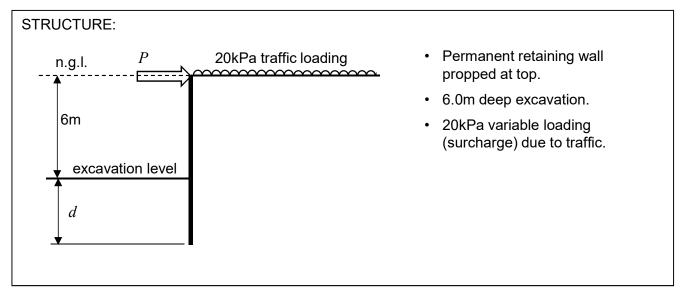
1. Determine the size of footing required (L = B).

Problem SAND 3 – Reply sheet

RESPONDENT PROFILE:					
Country					
Occupation □	Student 🛛 Academic	Design	consultant	Contractor	□ Other
Experience 🛛	□ 0 – 10 years □ 10 – 20	years 🗆 20	– 30 years	□ 30+ years	
DESIGN:	<i>L=B</i> = m				
DETAILS OF AN	NALYSIS:				
Design method ((Limit states, working load,	etc.):			
Code or standar	rd used:				
Method of bearir	ng capacity calculation:				
Parameter value	es (if appropriate):		(* delete as rec	quired)	
c' Drained co	ohesion*	kPa	(average* /	characteristic*)	
ϕ' Drained frie	ction angle*	deg	(average* /	characteristic*)	
γ Bulk densit	ty of sand*	kN/m³	(average* /	characteristic*)	
Other parame	eters used: (please supply)				
Design situation Factors applied	: (load factors, combination fa	□ Tank empt ctors, material f	•		etc.)
	rge eccentricity (if any):				
For EN1997-1 us Design approa Critical ultimat	ach used:	DA1 C	DA2 □ DA STR □ EG		
Any comments:					

Problem SAND 4 – Slope design

PROBLEM:


This is a design problem requiring the specification of the slope angle for construction.

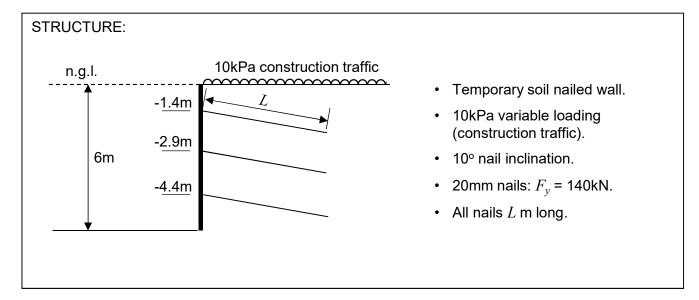
1. Specify the angle β at which the slope is to be cut.

Problem SAND 4 – Reply sheet

RESPONDEN	NT PROFILE:			
Country				
Occupation	□ Student □ /	Academic 🛛 D	esign consultant	□ Contractor □ Other
Experience	□ 0 – 10 years	□ 10 – 20 years	□ 20 – 30 years	□ 30+ years
DESIGN:				
	β=	_ degrees		
DETAILS OF	ANALYSIS:			
Design Code	used:			
Method of slo	pe stability analysis	:		
Type of analys	sis: 🛛 🗆 Total stre	ess (undrained) 🛛 🗆	Effective stress	(drained) 🛛 Both
Parameter val	ues:	z<4m 4m - 8m	z>8m	(* delete as required)
c' Drained	cohesion		kPa	(average* / characteristic*)
ϕ' Drained	friction angle		deg	(average* / characteristic*)
For WLD, spe	cify Factor of Safety	y used:		
Other parame	eters / empirical fact	ors used: (please s	pecify):	
For EN1997-1 Design app	users: roach used:	DA1	□ DA2 □ C	0A3
References us	sed:			
Any comment	S:			

Problem SAND 5 – Propped embedded retaining wall design

PROBLEM:


This is a design problem requiring the specification of the geometry of the wall, the propping force and the strength of the wall in bending.

- 1. Specify the required depth of embedment d (m).
- 2. Specify the propping force P (kN/m).
- 3. Specify the minimum yield moment of wall element M_{vield} (kNm/m).

Design to be based on the stability of the wall without considering serviceability requirements.

$\label{eq:problem SAND 5} - \mbox{Reply sheet}$

RESPONDENT PROFILE:			
Country			
Occupation	Academic 🛛 Design consultant 🗠 Contractor 🗠 Other		
Experience \Box 0 – 10 years \Box 10 – 20 years \Box 20 – 30 years \Box 30+ years			
DESIGN:			
<i>d</i> =	metres		
<i>P</i> =	kN/m (working load* / LSD design value*)		
M _{yield} =	kNm/m (minimum yield moment)		
	(* delete as required)		
DETAILS OF ANALYSIS:			
Design Code used:			
Method of analysis:			
Parameter values:	z<4m 4m - 8m z>8m (* delete as required)		
<i>c</i> ' Drained cohesion			
ϕ' Drained friction angle			
Other parameters / empirical factors used: (please specify)			
For EN1997-1 users:			
Design approach used:	□ DA1 □ DA2 □ DA3		
References used:			
Any comments:			

Problem SAND 6 - Soil nailed retaining wall design

PROBLEM:

This is a design problem requiring the specification of the length of the soil nails and their horizontal spacing.

- 1. Specify the required length of the soil nails (*L*).
- 2. Specify horizontal spacing (S_H) .

Design to be based on the stability of the wall without considering serviceability requirements.

$\label{eq:problem SAND 6} - \mbox{Reply sheet}$

RESPONDE	NT PROFILE:	
Country		
Occupation	Student Academic Design consultant	Contractor Other
Experience	□ 0 – 10 years □ 10 – 20 years □ 20 – 30 years	□ 30+ years
DESIGN:		
<i>L</i> =	m	
$L = S_H =$	m	
DETAILS OF	- ANALYSIS:	
Design Code		
Method of an		
Parameter va	•	(* delete as required)
c' Drained	d cohesion kPa	(average* / characteristic*)
	d friction angle deg	(average* / characteristic*)
	eters / empirical factors used: (please specify)	· · · · · · · · · · · · · · · · · · ·
For EN1997- Design app	∙1 users: proach used: □ DA1 □ DA2 □ Da	A3
References u	used:	
Any commen	nts:	