The Unloading Modulus of Soft Soil:
A Field and Laboratory Study

Jenny Persson
Chalmers University of Technology
Göteborg, Sweden
Background

Uncertainty in empirical relationships for estimating the unloading modulus and consolidation time

Scope

Field (and laboratory) testing to determine the unloading stiffness

Objective

Estimate the stress-strain characteristics for clay at unloading for more cost effective design
Instrumentation

Heave gauge

+12
+9
+5.6
+3
+/-0
--3
-11
-35.0
-21
-15.0
-35.0

Piezometers

Glötzl Extensometer

Fill

Clay

Heave [mm]

Hävning [mm]
Field results

- **Heave [mm]**
 - Extensometer 9 m depth (level +3 m)
 - Piling stage I and stage II

- **Pore pressure, ϕ [kPa]**
 - Piezometer 9 m depth (level +3 m)
 - Giötzl, 9 m depth (level +3 m)
 - Evaluated pore pressure
Laboratory tests
Jenny Persson, GeoEngineering

Lab and field results

\[
\frac{M_{ul}}{\sigma_c'} = 35 \exp \left(\frac{3.5}{OCR} \right)
\]
Recommended empirical model

\[M_{ul} = 35 \cdot \exp\left(3.5/\text{OCR}\right) \]

- Normalized unloading modulus, \(M_{ul}/\sigma_c' [-] \)
- Normalized effective stress, \(1/\text{OCR}=\sigma'_v/\sigma'_c [-] \)

Recommended empirical model

\[M_{ul} = 35 \cdot \exp\left(3.5/\text{OCR}\right) \]
Conclusions

Unloading stiffness is large at small strains and decreases rapidly with decreasing stress level

- field measurements indicate stiffness twice as large as laboratory values (Bender Elements)
- stress history important when reconsolidating laboratory specimens
- creep rate affects the unloading stiffness

Long-term pore pressure distribution should be taken into account when predicting heave
Thank you for your attention!

The project was financed by

CHALMERS

formas

CHALMERS

NCC

Vägverket