Comparison of Performance of CFA Piles in Weak Rock with Eurocode Design Predictions

Dáire Cummins, AGL Consulting Ireland.
Topics of Discussion

- Outline project description with details of ground conditions
- Review of pile design to EN 1997-1:2004 Eurocode Design Standards (EC7) and Irish National Annex
 - Demonstrate benefit of carrying out pile load testing
- Example of model pile design calculations used in piling specification
- Present interpreted results of instrumented pile load tests
- Compare performance of instrumented CFA test piles with predicted capacity based on preliminary pile designs to EC7
- Discuss how load tests were used to adapt pile design to account for construction difficulties associated with CFA piling
Project Description

- Windfarm consists of 18 No. 1.5 Mega Watt Turbines located on reclaimed tidal mudflats, in the south east of Ireland
 - Hub Height of 70 m and Rotor Diameter of 72 m

- Supported on 12 No. 600 mm diameter reinforced concrete continuous flight auger (CFA) piles
 - Outer Pile Characteristic Load
 - compression 1248 kN
 - uplift load of 568 kN
 - Inner Pile Load
 - Compression 568 kN
Ground Conditions – Overburden

- Overburden: Complex Stratigraphy
 - Recent estuarine deposits
 - very soft & soft silts,
 - loose to medium dense sands & gravels
 - N_{spt} : 5 – 7 from 0 – 5 mBGL
 - \omega_n 21 - 90\%, mean 47%

 - Underlain by firm, stiff & v. stiff boulder clay and dense gravel
 - N_{spt} : 8 – 50 (ref)
 - \omega_n 7.2 – 52\%, mean 22%
Ground Conditions – Bedrock Geology

- Windfarm located on fault line between major geological groups
 - Pale grey limestones of the Wexford Formation
 - Conglomerates of silt and sandstone of the Kilag Formation

- Turbine locations could be divided into two groups based on the depth to rock in coreholes:
 - Group 1: Depth to rock was between 16 m - 22 m
 - Group 2: No competent rock was recorded in the rotary coreholes to depths of 31m to 45m
 - Poor quality rock, very little recovered core
 - Described as fragments of conglomerate or fault breccia
Ground Investigation - The Problem

- Limitations in the ground investigation left an unknown zone in the soil stratigraphy at 16 No. turbine locations
 - From 9.7 – 18.7 mBGL, 1 – 11.5 m in thickness
 - Highly weathered and highly fractured fault breccia / conglomerate rock? Or very dense gravel/stiff to hard boulder clay with boulders?

- Difficulty in classification & assignment of material properties to soil in unknown zone
 - Would it behave as a granular soil or as a very weak rock?
 - Would CFA piles be capable of penetrating the deposit to the required design depth?
Review of Pile Design to Eurocode 7 (EC7)

- Piling specification required pile design to be carried out in accordance with Eurocode 7 EN-1997:2004
 - Model calculations included with specification

- Limit State Design Philosophy
 - Combinations of partial factors applied to actions, soil parameters & resistances

- EC7 proposes 3 Design Approaches (DA)
 - DA specify combination of partial factors applied
 - RFA vs MFA
 - Required DA for design specified in National Annex (NA)

- Overall margin of safety determined from
 - Ratio of variable to permanent action
 - Method used to determine characteristic value of shaft friction and base resistance
Characteristics Pile Resistance

- Under EC7 values of characteristic resistance ($R_{c;k}$) derived from:
 - **Insitu testing:**
 - Static / dynamic pile load tests
 - Insitu tests (CPT or Nspt profiles)
 - $R_{c;k} = \min\{(R_c)_{\text{mean}} / \xi_1, (R_c)_{\text{min}} / \xi_2\}$
 - ξ is a correlation factor, value varies according to number of tests
 - Or by calculation alone:
 - $R_{c;k} = A_b q_{b;k} + \sum A_{s;i} \times q_{s;i;k}$

- Design resistances (and actions) derived by applying partial factors to characteristic resistances and actions

- Values of correlation factors, and partial factors depend upon pile type & design approach adopted
 - Vary for a country’s National Annex
Irish NA permits any of the 3 Design Approaches to be adopted:
- Unique
- Design Approach at the discretion of designer / client

- Pile design from static and dynamic pile load tests
 - Adopts recommended correlation factor (ξ)
 - Adopts recommended partial factors

- Pile design from Nspt or CPT profiles
 - Recommended correlation factors increased by a factor of 1.5
 - Adopts recommended partial factors

- Piles designed by calculation alone
 - Partial factors increased by a factor of 1.75
Comparison of F.O.S. under Irish National Annex

- Adopting Design Approach 1 for CFA piles, with load considered entirely as a variable load:
 - Characteristic Pile resistance verified by 2 pile load tests
 - Equivalent F.O.S. in compression = 2.4, in tension = 2.7

- Characteristic pile resistance from 10 profiles from CPT or N_{spt}
 - Equivalent F.O.S. in compression = 3.4

- Characteristic pile resistance from calculation alone
 - Equivalent F.O.S. in compression = 3.2

- Under EC7 carrying out a small No. of pile load test allows the adoption of significantly more favourable correlation and partial factors
Calculation of Pile Resistance for Preliminary Pile Designs

- **Fine grained soils:**
 - Shaft resistance: \(R_s = \alpha \cdot c_u \) kPa
 - \(\alpha \) = adhesion factor
 - End bearing: \(= 9 \times c_u \)

- **Granular soils:**
 - Shaft resistance: \(R_s = K_0 \cdot \sigma_v' \cdot \tan \delta \)
 - \(K_0 = 1 - \sin \phi_k' \)
 - \(\sigma_v' = \) vertical effective stress
 - \(\delta = \) angle of shearing resistance between pile and the granular material. (\(\delta = \phi_k' \) used in design)
 - End bearing resistance on granular soils conservatively limited to bearing resistance of weak rock UCS = 1000 kN/m²

- **Rock:**
 - Shaft resistance: \(R_s = \alpha_R \cdot \sigma_C \)
 - \(\alpha_R = 0.1 \) to \(0.15 \) for highly fractured to weak rock
 - \(\sigma_C = \) unconfined compressive strength of rock
 - Ultimate End bearing in rock taken as \(9 \left(\sigma_C / 2 \right) \) kPa for competent rock
Piling Contractor Proposed Design

- 2 preliminary model pile designs submitted with specification
 - T9: Full soil stratigraphy known, pile length = 22.5 m
 - T17: Zone of unknown material, pile length = 20.1 m to 23.0 m
 - No information on ground conditions from 11.0 – 18 m

- Piling contractor opted to adopt an equivalent factor of safety in design

- Proposed shorter pile lengths
 - Based on previous experience used higher values
 - Skin friction in granular soils
 - Adhesion in cohesive soils
 - End bearing

- Contractor design assumption to be verified by preliminary load tests at T9 and T17
Test Pile Details – Strain Gauges

- Test piles fitted with vibrating wire strain gauges
 - Strain gauges attached to reinforcing cage and centralised bar
 - 3 strain gauges at 6 No intervals, welded to cage and bar
 - Gauges positioned at 120 Degrees
 - Determine the distribution of axial load with depth & at the pile tip
Instrumented Test Pile Results

- **T9 Compression Test**
 - Loaded to 3,770 kN
 - 2,792 kN in shaft resistance
 - 578 kN tip resistance
 - Load profile untypical of expected results
 - Strain gauge malfunction

- **T17 Compression Test**
 - Loaded to 3,770 kN
 - 2,985 kN in shaft resistance
 - 385 kN tip resistance
 - Profile consistent with anticipated results
Comparison with Calculated Preliminary Pile Resistances

- T9 measured shaft resistance in overburden unrealistic
 - Strain gauge malfunction
 - Disregard results

- T17 preliminary design assumptions significantly underestimated shaft resistance
 - Mobilised shaft resistance
 - 0 – 4 m 30 kPa
 - 4 – 10 m 56 kPa
 - 10 – 18 m 160 kPa

- Mobilised shaft resistance most closely estimated in cohesive soils

- Least accurately estimated in sand & gravel
 - $K_o = 1.7$ reasonable approx. of mobilised resistance

- Assigning properties of very weak rock to unknown zone appropriate
Construction Difficulties

- CFA rig had difficulty in penetrating the fault breccia / dense gravel
 - Installed piles up to 4.5m shallower than design lengths
 - In shorter piles uplift was satisfied by verified increased adhesion factors
 - Necessary to justify increased end bearing resistance in granular soils
 - Originally conservatively limited to bearing resistance of weak rock with UCS = 1000 kN/m²
 - \(R_{bcal} = A_b \sigma'_v N_q' \)
 - Published values of \(N_q' \) ranging from 123.5 - 325

- Where uplift or compression was not satisfied in individual piles in some cases sufficient capacity could be justified through pile group behaviour

- Where the installed lengths could not be justified necessary to carry out additional pile tests
Conclusions

- Design to EN 1997-1:2004 Eurocode 7 (EC7) adopts limit state design philosophy in which overall factor of safety determined by
 - Ratio of variable to permanent action
 - Method used to calculate pile characteristic pile resistance

- Assuming $K_s = K_0$ significantly underestimated the shaft resistance of the pile in the granular soils
 - A value of $K_s = 1.7$ gives close approximation

- Published values of α give reasonable estimates of pile resistance

- Material property most appropriate to soil in unknown zone was that of a highly weathered weak rock

- The resulting practical benefits to carrying out pile load testing which the Irish National Annex allow have been demonstrated
 - Lower correlation & partial factors
Summary

- Outlined geotechnical issues relating to the Richfield Windfarm
 - Difficult ground conditions
 - Limited ground investigations
- Reviewed pile design to EN 1997-1:2004 Eurocode Design Standards (EC7)
 - Irish National Annex
 - Demonstrate benefit of carrying out pile load testing
- Provided example of model pile design calculations used in piling specification
- Presented interpreted results of instrumented pile load tests
- Compared performance of instrumented CFA test piles with predicted capacity based on preliminary pile designs
 - Discussed the accuracy of methods of calculating pile resistances in granular & cohesive soils
- Discussed how load tests were used to adapt pile design to account for construction difficulties associated with CFA piling