Embarkment construction by means of a membrane foundation

Oliver Detert, HUESKER Synthetic GmbH
Dimiter Alexiew, Geosynthetics & Geotechnics Consulting
Diethard König, Ruhr-Universität Bochum
Motivation

- Extension of infrastructural facilities in challenging areas
- Foundation for stockpiles, dikes etc.

Introduction
Introduction

Challenges

- Soft soils
 - Low stiffness
 - Low permeability
 - Low shear strength
 - High degree of saturation

Consequences

- Inacceptable deformations and/or horizontal thrust on adjacent constructions
- Insufficient stability
Introduction

Solutions

Construction methodology adopted to soil conditions

Soil improvement

Load transfer

Soil confinement
Soil confinement

Temporary to
- secure stability during earthquake/liquefaction

Permanent to
- Secure stability
- Prevents soil extrusion
- Reduce lateral thrust
- Reduce lateral deformation
- Cut-off depression curve

Poungchompu, 2009

Harata et al., 2009
Self-regulating membrane foundation

System

Tensile stiff membrane
Wall element
Soft soil
Competent layer
Self-regulating membrane foundation

System behavior

- Increase of horizontal pressure in subsoil due to embankment load → outward movement of vertical walls

- Activation of tensile forces in the membrane → restricting outward movement

- Further activation due to settlement depression of embankment
Self-regulating membrane foundation

Investigation

Centrifuge model set-up

Numerical model
Self-regulating membrane foundation

Investigation

In-flight refillable sand hopper

In-flight constructed embankment
Results of physical analysis

- **Total vertical stress over time**
 - $\Delta \sigma_{c1} = 46 \text{ kPa}$
 - $\Delta \sigma_{c2} = 40 \text{ kPa}$
 - $\Delta \sigma_{c3} = 25 \text{ kPa}$

- **Stress reduction over embankment height**
 - Reduction over time
 - $\Delta \sigma_{c1-2} = 4 \text{ kPa}$
 - $\Delta \sigma_{c2-3} = 13 \text{ kPa}$
 - $\Delta \sigma_{c3-end} = 15 \text{ kPa}$
Self-regulating membrane foundation

Results of physical analysis

Wall deformation over time
Self-regulating membrane foundation

Results of numerical analysis

Arching in embankment and rotational failure mechanism in subsoil

Wall deformation before and after consolidation
Self-regulating membrane foundation

Numerical simulation

- Input parameters:
 - Soft soil
 - $E_{s, WS}$
 - φ_{WS}
 - c
 - Embankment
 - $E_{s, Embankment}$
 - $\varphi_{Embankment}$
 - Sheet pile wall
 - E_I
 - Membrane
 - J
 - Geometry
 - $H_{Cantilever}$
 - $H_{Embankment}$

- Tool:
 - Numerical model
 - Metamodel

- Output:
 - $u_{x,Wall}$
 - $u_{y,Symmetry}$
 - $\Delta \sigma_v$
 - M_{max}
 - F_{max}

- Dominating parameters:
 - Soft soil
 - $E_{s, WS}$
 - Sheet pile wall
 - E_I
 - Membrane
 - J
 - Geometry
 - $H_{Cantilever}$
 - $H_{Embankment}$

- Validation
- Creating metamodel
- Generating parameter sets

- Parametric study
- Design approach

Global sensitivity analysis
Self-regulating membrane foundation

Numerical simulation – global sensitivity analysis

A. Casagrande (1936)
Self-regulating membrane foundation

Semi-analytical design approach

- System separation in two coupled sub-systems
Self-regulating membrane foundation

Semi-analytical design approach

- Determination of the system loadings and membrane forces

\[F_i = F_{0.25,i} \cdot A_{geo,i} \cdot A_{Y,i} \cdot A_{E_{oed},i} \cdot A_{J,i} \]

- Loading/force
- Influence of geometry
- Influence of soft soil stiffness
- Influence of bulk density embankment
- Influence of membrane tensile stiffness

Loading of base system
Self-regulating membrane foundation

Semi-analytical design approach
Comparison numerical simulation and design approach
Self-regulating membrane foundation

System properties

- Easy to construct
- Can be loaded directly after construction
- Reduction of lateral thrust
- Cuts the depression curve off
- Reduced footprint, if walls are extending above the ground level
- Can be completely rebuilt
- Control of lateral deformation
Questions