TC209 Offshore Geotechnics

Geotechnics for Offshore Wind

<u>Setting the scene – Phil Watson</u>

A developer's perspective of geotechnics for offshore wind – Elisabeth Palix

An overview of 'new' challenges facing offshore wind – Zack Westgate

<u>Geotechnical research to support offshore wind – Christelle Abadie</u>

Close – Phil Watson

"Site" characterization: a global challenge

Massive areas (>> 100 km²), lots of spatial variability, increasing sense of urgency (2-3 years of SI)

Glacial geology and changing sea levels

- Changing sea level: US East Coast low sea level stand \sim 120m below present-day
- Glacial retreat: glacial outwash, terminal moraines, recessional moraines, lodgment till, etc.

- Deposited at terminal moraines
- Shallow and/or deep deposits
- Generally 1 to 6 m diameter, up to 15 m
- Risks: Pile buckling, cable trenching
- Mitigations: micrositing, removal

Glauconite sand – what is it?

- iron rich potassium mica of illite clay family
- glaucony (morphological) vs glauconite and glauconitic (mineralogical)
- magnetic with high specific gravity (\sim 3)
- authigenic (in situ) vs allogenic (reworked)

Westgate et al. (2023); after Obasi et al. (2011); López-Quirós et al. (2019)

Fernández-Landero and Fernández-Caliani (2021)

University of Massachusetts Amherst

Glauconite sand – how can we identify it?

CPT Identification:

- high q_t
- high F_r
- cavitation u₂
- or high positive u₂
- rod 'smears'

Laboratory Identification:

- authigenic typically higher % glauconite
- magnetic separation
- XRD and XRF
- image analysis
- maturity based on K and Fe content

Glauconite sand – SBT: misleading CPTs?

University of Massachusetts Amherst

Glauconite sand – pile driving effects

NGI-led JIP at test site in New Jersey (UMass Amherst, Rutgers, U Arkansas, UMass Dartmouth

Chalk

- Soft, high porosity chalks of low-medium density
- Highly sensitive paste-like material along shaft (Zone A)
- Fractures, loss of lateral stiffness (Zones B, C)
- Pile runs, long term axial and lateral capacity challenges
- JIPs: Innovate-UK JIP (axial), ALPACA JIP (lateral field), ALPHA (lateral 3DFE)

Free falling piles

- Multiple incidents over past few years
 - Thrice on one project
- Soft, compressible soil?
 - check
- Weak layers?
 - check
- Potential liquefaction?
 - check
- Long, heavy monopiles?
 - check
- Poor site characterization?
 - Depends on who you ask!

University of Massachusetts Amherst

Deep water geohazards: high seismicity

Morro Bay, Diablo Canyon Call Areas:

- San Andreas Fault

Humboldt Call Area:

- Cascadia Subduction Zone

Deep water geohazards: seabed conditions

Morro Bay, Diablo Canyon Call Areas:

- bedrock, unconsolidated sediments

Humboldt Call Area:

- bedrock, unconsolidated sediments

Deep water geohazards: landslide evidence

