

fugro

Offshore Site Investigation and Site Characterization

Antonia Makra, Suleyman B. Parlak

Offshore Projects

- Transportation Projects
 - Railway Projects
 - Highway Projects
- Pipeline Projects
 - Water transmission
 - Oil and Gas Pipelines
- Oil and Gas offshore platform
- Port, Jetty and Break Water Projects
- Offshore Wind Farms

Owner's Goals

- Reduce project related uncertainties;
- Reduce bid contingencies;
- Reduce schedule and cost risks;
- Provide a robust bid basis to contractors;
- Facilitate project financing.

Project Challenges

What are the surface/subsurface conditions What are the primary geohazards

Deep Soft and Liquefiable Soils Present At Site?

Integrated Site Characterization

Work Sequence

- 1. Existing Information/ Desktop Study
- 2. Area-wide Bathy / Geophysical Surveys
- 3. Develop and Execute Project-Specific Geotechnical Exploration Program
- 4. Data Integration and Interpretation
- 5. Project GIS database
- 6. 3D Model of the Subsurface

Bathymetric and Geophysical Surveys

- Bathymetry Multibeam Echosounder (MBES)
- Seabed Features Side Scan Sonar (SSS)
- Buried metallic objects (UXO, cables, etc.) - Magnetometer
- Shallow Stratigraphy Sub-bottomProfiler
- Deeper Stratigraphy Ultra high
 Resolution Seismic (Multichannel Seismic
 Survey)

Multi-channel Seismic

- Multibeam Echo Sounder
- Side Scan Sonar
- Laser Line scanner

UHR Seismic Reflection Geophysical Survey

Different sources: Boomer, Sparker, Airgun, Chirp Different Receivers: single/ multi channel/ digital/ analogue

Ultra High Resolution

Geotechnical Investigations

Geotechnical Survey - Vessels

Semi-Submersible Drilling Vessels

Geotechnical Survey – Seabed vs Downhole

Seacalf: Seabed CPT

- - Continuous data
 - Maximum depths 40m depending on water depth and ground conditions

Wison XP: Downhole CPT/ undisturbed sampling

15.00 m to 46.80 m - Stiff lean CLAY

Geotechnical Survey – Drilling

Drag Bits

Roller Bits

Full Face Bits

Geotechnical Survey – In situ testing

In situ Shear Vane Test

Geotechnical Survey – In situ testing

Seismic CPT – S wave velocity profile

P-S Suspension Logging

Onboard Core Logging and Laboratory Testing

Onboard Soils Testing Laboratory:

- <u>expedites</u> investigation results
- improves <u>quality</u> of test results, and
- provides <u>real time QC</u> of drilling program

Site Characterization

Application of Standard Land-based Techniques
Can Result in
Underprediction of Shear Strengths by on the order of 25 to 50 percent!

Comparison of
Computed Pile
Capacity Standard
"Land" vs "Marine"

Skyway Foundation:

- 28 Footing Locations
- 160 piles

The savings decrease in pile length alone exceeds the additional costs for the offshore SI

Site Investigation Challenges

- Site Conditions
 - Boat Traffic (Bosporus, Çanakkale Straits)
 - Currents
 - Weather
 - Shallow Gas
 - Seabed Conditions (UXO, Cables, Shipwrecks etc)

Challenges of Offshore Geotechnical Engineering Bodrum, Turkey – September 2019

Site Investigation Challenges

- Logistics Multidisciplinary projects,
 work sequence limitations
- Schedule Very tight schedules
 especially for BOT and EPC projects.
- Costs High costs due to mobilization and using most modern techniques and equipment. High returns due to saving time and obtaining good quality data.

Site Characterization

Integrated Site Characterization

Available Information:

- Geology of the Project Area
- Bathymetry (MBES, SSS)
- Geophysics (UHRS, SBP)
- Geotechnical Survey (Downhole Drilling/ Sampling and Testing,
 Seabed CPT, Seismic CPT)
- Borehole Geophysics (P-S Logging)
- Laboratory Tests (Onboard and in external Laboratories, conventional and advanced)

A very large GIS database that allows synthesis, comparison, analyses and output of the data.

Integrated Site Characterization - Stratigraphy

Integrated Site Characterization

Integrated Site Characterization – Engineering Properties

Integrated Site Characterization – Engineering Properties

Geohazards

Geohazard Identification - Faults

Violet = Base of buried channel

Tan = Seafloor Multiple Reflection

DATA EXAMPLE - LINE BM417

Izmit Bay Bridge Crossing Izmit Bay, Turkey

Geohazard Identification – Slope Instabilities

Mega Offshore Projects in Turkey

- Izmit Bay Bridge 3000m long suspension bridge spanning the plate boundary between the Anatolian and the Eurasian plates (4 months for SI, Lab testing and SC)
- Marmaray the deepest immersed tube tunnel in the world: 1600m (3 months for SI, Lab testing and SC)
- Eurasia Tunnel 5400m twin deck bored motorway tunnel
- Turkstream Project Nearshore section of the Southstream pipeline in Turkey (2 months)
- 1915 Çanakkale Bridge the world's longest suspension bridge: main span: 2023 m, total length: 4608 m
- Sinop Nuclear Power Plant Identification of faults and age dating
- Bosporus 3-Storey Tunnel Feasibility Study

Use of specialized marine techniques and equipment developed for the offshore industry

Collection of high-quality data

Execution in very short time-frame

High mobilization cost is overcome by schedule savings and data quality improvement

Thank You! Questions?