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Role of Transportation System
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Source of Problem
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Traditional Density-Based Compaction

Higher
Energy

Dry Density
A

* They did the best they could with what was available to them
~70 years ago to solve a major problem

* Engineering community pragmatically agreed that these tests

improve quality, even though not perfect

T WweiF
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Famous Quotes of Ralph Proctor

* Strength 1s not achieved by density alone.
* Optimum moisture 1s for compaction.

Proctor(1945), Trans 110, ASCE

— “No use 1s made of actual peak dry weight.”
— “Measure of soil compaction used is penetration resistance.”

="\ Proctor Penetrometer

Courtesy of John Siekmeier

5
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In Support of Proctor Quotes

+2% Change in MC = 5% Change in DD but Huge Change in Modulus
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We have come a long way since then in Design!!

s/
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We have come a long way equipment wise!!

1990°s
1980°s




We have come a long way in Pavement Analysis!!
Modulus!! Modulus!! Modulus!!

What index ~ diagnose

to use for structural
How to network health?
T implement level?
atr? not effectively? 2020°s
getting any ,
How touse  younger!! 2000°s

: ’
Deflection? deflection? R 1990 3
Cool!! 1980 S

950°s
S
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Yet the State of Practice in Earthwork!!

« We do not check whether the modulus Long Lasting Pavement
designer assumed is achieved

* We do not check whether the material
selected provides the modulus assumed

by designer > & z

= b e

* We assume Lab Moisture-Density Curve g A G,
° ° < .Q/

represents Field Compaction process 5 3 »
c - Ay
e Z z
e 0 o ﬁ

Not a good position to be S

N
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Eventual Goal [ s
to ensure that pavement g ¢
lasts for a pre-defined life

during construction can
he maximized

One way to reach it:

Transition from QAQC
to * Settle on a design methodology

(e.g., Pavement ME)

* Define Parameters that are directly
important to performance

(e.g., modulus)
[ ]S * Focus on these parameters flfﬁ
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Appropriate Performance Management

Importe_mce
Uniformity  Stiffness of Project

Practicality P’ Analytical
Modeling

Effort

Practical Laboratory

Testing
Balance Effort

Field Testing
Effort

Qs Il




Major Steps for Appropriate Performance Management

1. Selecting Suitable Material SUCCEGSL.
2. Selecting Appropriate Design \;..31
Parameters 1
L

3. Selecting Target Field Values
4. Conducting Field Process Control

S. Establishing Acceptance Process




Selecting Suitable Material

A stift/strong material does not [ R NI
correspond to a durable >
material.

 Parameters, such as hardness of
aggregates, percent fines and

plasticity should be controlled for
durability.

Do not abandon specifications
o on this subject
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Selecting Appropriate Design Parameters

Utilizing results Estimating
from a catalog of modulus based on
. most common soils . calibrated models .
that have been that are functions
tested of index parameters

Set target Values Estimate target
using design . values using test
algorithm strip

115 UJE?
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Selecting Target Field Moduli: Which Equipment?
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Nonlinear Parameter k'2

Depth of Influence for LWD 0 | : :
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Selecting Target Field Moduli
* Input

— Thickness of each layer

— Poisson’s ratio of each layer
— Modulus of each layer

— Target Deflection

utep.edu/engineering/ctis
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Impact of Moisture Content at Compaction
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Field Process Control

Changes in material Process control will
and moisture content ensure a more uniform
have significant impact  and higher quality final
on modulus product.

Need a strategy to Need to ensure a rigid
manage variability process control not less

(@
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Quantifying variability
1s important to achieve
uniformity

Intelligent compaction
can be used for this

purpose

17134




Field Process Control: Manage Variability
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Use statistics to manage variability
UJE?
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Field Process Control: Moisture Content
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Field Process Control: Unsaturated Soil Principles
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Intelligent Compaction for Uniformity
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Field Process Control: Uniformity
_Traditional - Sublot Concept
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Step 5: Acceptance Process

Based on moisture-adjusted deflection

Include in

— %
dadj = Oeas / <Klab-ﬁeld Kinoist) target value

m .
for convenience

Kip.fielg  adjusts for differences in lab and field moduli at same moisture
content and density

K. ..  adjusts for differences in compaction and testing moisture contents.

s 77/34
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Impact of Delay in Testing

K = eN(wC-aT)

moist

n = 0.18 for subgrades
n = 1.19 for unbound aggregates
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Field to lab Relationship over 30 specimens
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Moisture Sensor Moisture Sensor
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Lab vs. Field Moduli
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ervice Life

LWD LWD Backcalculation Simulation
12" Lime Treated 12" Base + 12" Base Tal';di‘f‘ Axle Service Life
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Service Life Reduction
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What is New and Exciting!!

Incorporating Intelligent Compaction in Performance Management

. |
/ E (modulus)
k (stiffness) P,

~

Level 5 ICMV
Mechanistic solutions based on dynamic
methods and artificial intelligence
expressed in density or modulus

Level 4 ICMV

Mechanistic solutions based static method with
impact model expressed in reactional force or
modulus

INTELLIGENT COMPACTION
MEASUREMENT VALUES (ICMV)
ARGAD AP

Level 3 ICMV

Mechanistic solutions based on static or dynamic
methods expressed in stiffness, reactional force, or
modulus

Level 1-2 ICMV

Empirical solution based on frequency ratios
Empirical solution based on energy method and rolling
resistance

S Source: FHWA-HIF-17-046 ‘v IF
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Need for Sophisticated Forward Model!!

Material Types for Layers }

Roller ]
Parameters Layer Properties

Yy

Static vs.
Dynamic

Simulation of Roller Measurements “’
(Forward Model)

Stationary vs
Vibratory

Linear vs.
Nonlinear

)

E

Force

—Subgrade - Sand
—Subgrade - Clay

Deflection

UJE?
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Drum

FE Model

Displacement, mm

10 +

v h
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-1 0 1
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Machine Learning as Forward Modeler

Artificial Neural Networks (ANN)
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Estimation of E or k
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Importance of Local Calibration
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Estimating Modulus using Artificial Intelligence
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Retrieved Modulus vs. LWD Modulus
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Concluding Remarks

* They did the best they could with what was available to
them ~70 years ago to solve a major problem

* Engineering community pragmatically agreed that those
tests improve quality, even though not perfect

Let’s us pragmatically work toward
implementing modulus-based technology
to improve further construction quality
even though not perfect
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M O re i nfO ! ! Research Results Digest 391

MODULUS-BASED CONSTRUCTION SPECIFICATION
FOR COMPACTION OF EARTHWORK AND
UNBOUND AGGREGATE

This digest summarizes key findings of research conducted in NCHRP
Project 10-84, “Modulus-Based Construction Specification for
Compaction of Earthwork and Unbound Aggregate,” by the University
of Texas at El Paso, with the support of the University of Texas at
Arlington and the Louisiana Transportation Research Center, Baton
Rouge. The research was directed by the principal investigator,

Dr. Soheil Nazarian, University of Texas at El Paso. This digest is based
on the project final report authored by Drs. Soheil Nazarian, Mehran

Mazari, and Imad Abdallah of the University of Texas at El Paso,
3 3 3 3 Dr. Anand Puppala of the University of Texas at Arlington, and
DeﬂeCtlon'Based Fleld TeStlng fOl' Q“allty Drs. Louay Mohammad and Murad Abu-Farsakh of the Louisiana
Transportation Research Center. The complete project final report and
M an ﬂgement Of Earthwo rk twelve appendices are available to download from the TRB website

RESEARCH REPORT 933 (http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?Project|D=2908).

Evaluating Mechanical Properties
of Earth Material During
Intelligent Compaction

Technical Report 0-6903-1

Cooperative Research Program

CENTERF
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Thank you!! =k

==
A number of colleagues and students

Cesar Tirado NCHRP =~

* Sergio Rocha
 Mehran Mazari m1
* Aria Fathi DEPARTMENT OF

TRANSPORTATION

U.S. Department of Transportation
( Federal Highway

Administration
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