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Role  of  Transportation System
Safety    Smoothness     Durability

Layers 
important to 
smoothness 

and 
durability
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Source of Problem
Flexible Pavements Rigid Pavements
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Traditional Density-Based Compaction

• They did the best they could with what was available to them
~70 years ago to solve a major problem 

• Engineering community pragmatically agreed that these tests 
improve quality, even though not perfect
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• Strength is not achieved by density alone.
• Optimum moisture is for compaction.
• Strength is not achieved by density alone.
• Optimum moisture is for compaction.

Proctor(1945), Trans 110, ASCE
– “No use is made of actual peak dry weight.”
– “Measure of soil compaction used is penetration resistance.”

Proctor PenetrometerProctor Penetrometer

Famous Quotes of Ralph ProctorFamous Quotes of Ralph Proctor

Courtesy of John Siekmeier
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In Support of Proctor Quotes
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We have come a long way since then in Design!!

1970’s
1990’s

2000’s
2010’s

7

Modulus!! Modulus!!
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We have come a long way equipment wise!!

1950’s
1970’s

1980’s
1990’s

2000’s
2010’s
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Modulus!! Modulus!! Modulus!!
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We have come a long way in Pavement Analysis!!

1950’s
1970’s

1980’s
1990’s

2000’s
2020’s

9

Deflection?
Cool!!

How to use 
deflection?

I am not 
getting any 
younger!!

How to 
implement 
effectively?

What index 
to use for 
network 
level?

How to 
diagnose 
structural 
health?

Modulus!! Modulus!! Modulus!!
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• We do not check whether the modulus 
designer assumed is achieved

• We do not check whether the material 
selected provides the modulus assumed 
by designer

• We assume Lab Moisture-Density Curve 
represents Field Compaction process 

St
ru

ct
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al
 D

es
ig

n

Long Lasting Pavement

Yet the State of Practice in Earthwork!!

Not a good position to be
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Eventual Goal
to ensure that pavement 
lasts for a pre-defined life 
uniformly

One way to reach it:
• Settle on a design methodology 

(e.g., Pavement ME)
• Define Parameters that are directly 

important to performance 
(e.g., modulus)
• Focus on these parameters
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Transition from QAQC 
to

Performance Management
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Appropriate Performance Management

Practical
Balance

Importance 
of Project

Laboratory 
Testing 
Effort

Field Testing 
Effort

Analytical 
Modeling

Effort

Practicality
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Major Steps for Appropriate Performance Management

1. Selecting Suitable Material
2. Selecting Appropriate Design  

Parameters
3. Selecting Target Field Values
4. Conducting Field Process Control
5. Establishing Acceptance Process
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Selecting Suitable Material
A stiff/strong material does not 
correspond to a durable 
material.
• Parameters, such as hardness of 

aggregates, percent fines and 
plasticity should be controlled for 
durability. 

Do not abandon specifications 
on this subject
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Selecting Appropriate Design  Parameters
Conducting 

laboratory resilient 
modulus tests 

before structural 
design

Utilizing results 
from a catalog of 

most common soils 
that have been 

tested

Estimating 
modulus based on 
calibrated models 
that are functions 

of index parameters 

Using presumptive 
design values based 

on experience

Best Option Worst Option

Set Target Values 
using design 

algorithm

Set target Values 
using design 

algorithm

Estimate target 
values using test 

strip

Use traditional 
density based 

approach

15



Center for Transportation Infrastructure  Systems - utep.edu/engineering/ctis

Selecting Target Field Moduli: Which Equipment?
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Depth of Influence for LWD 
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Can easily be part of  design

Selecting Target Field Moduli
• Input

– Thickness of each layer
– Poisson’s ratio of each layer
– Modulus of each layer

• Output
– Target Deflection

Subgrade

Base

SubbaseSubbase
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Changes in material 
and moisture content 
have significant impact 
on modulus

Process control will 
ensure a more uniform 
and higher quality final 
product.  

Quantifying variability 
is important to achieve 
uniformity

Field Process Control

Need a strategy to 
manage variability 

Need to ensure a rigid 
process control not less  

Intelligent compaction 
can be used for this 
purpose
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Field Process Control: Manage Variability

Use statistics to manage variability 
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Field Process Control: Unsaturated Soil Principles

Sr =  Gs d/( Gs w – d) Gs = specific gravity
d = dry mass density
w = mass density of water
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90 15% 22% 28% 34% 40% 46% 53% 59% 65% 71% 77%

95 17% 24% 31% 38% 45% 52% 59% 66% 72% 79% 86%

99 19% 27% 35% 43% 50% 58% 66% 74% 81% 89% 97%

104 22% 31% 39% 48% 57% 66% 74% 83% 92% 101% 109%

109 25% 35% 45% 55% 65% 75% 85% 95% 105% 115% 125%

115 29% 40% 52% 64% 75% 87% 98% 110% 121% 133% 145%

121 34% 48% 61% 75% 88% 102% 116% 129% 143% 156% 170%

127 41% 57% 74% 90% 106% 123% 139% 155% 172% 188% 204%

133 51% 71% 91% 111% 131% 152% 172% 192% 212% 233% 253%

140 65% 91% 118% 144% 170% 196% 222% 248% 274% 300% 327%

147 90% 127% 163% 199% 235% 271% 308% 344% 380% 416% 452%

154 143% 200% 257% 314% 371% 428% 486% 543% 600% 657% 714%
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Intelligent Compaction for Uniformity
CMV

CCV

MDP

Evib

Kb

VCV
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Traditional

CMV

2 – 33

34 – 44

45 – 74

Mean – 44
STDEV – 12
COV ‐ 27%

CMV
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Mean – 39
STDEV – 10
COV ‐ 26%

CMV

COV of CMV
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COV, %

Sublot Concept
Field Process Control: Uniformity
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Step 5: Acceptance Process
Based on moisture-adjusted deflection

dadj = dmeas / (Klab-field Kmoist )

Klab-field adjusts for differences in lab and field moduli at same    moisture 
content and density

Kmoist adjusts for differences in compaction and testing moisture contents.

Klab-field adjusts for differences in lab and field moduli at same    moisture 
content and density

Kmoist adjusts for differences in compaction and testing moisture contents.

Include in 
target value
for convenience
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Impact of Delay in Testing
Kmoist = eη(C‐T) 

η  = 0.18 for subgrades
η  = 1.19 for unbound aggregates

Subgrades

Unbound Aggregates 
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Field to lab Relationship over 30 specimensover 30 specimens
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Lab vs. Field Moduli
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Service Life

D C B A

234% 84% 180% 44%

168% 87% 57% 75%

52% 34% 94% 26%

55% 44% 49% 33%

65% 29% 48% 62%

38% 31% 64% 57%

52% 20% 50% 44%

Life reduction %

D C B A

250 6 5 4 5

225 6 6 7 6

200 7 5 6 6

175 7 6 4 6

150 16 9 11 7

125 14 10 6 6

100 9 6 7 6

75 8 6 5 6

50 9 5 6 8

25 5 4 5 8

0 6 4 5 8

LWD Modulus (ksi)Chainage 
(ft) D C B A

43 38 51 32

38 35 41 43

27 30 46 26

33 35 39 30

34 31 36 36

36 35 45 34

37 29 39 30

LWD Modulus (ksi)

D C B A

66 82 122 74

57 66 162 151

43 74 151 58

71 107 160 75

68 90 104 87

153 148 240 79

106 98 148 60

LWD Modulus (ksi)

12" Base +
8" LTS

12" Lime Treated 
Subgrade

12" Base

LWD LWD Backcalculation

+

Service Life 
Reduction

Simulation
Tandem Axle

Rutting

7.5” HMA
500 ksi

12” Base
50 ksi

12” LTS 10 ksi
Subgrade

Comparison

Red < 75%Red < 75% of Average Value
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What is New and Exciting!!

32

Incorporating Intelligent Compaction in Performance Management

E (modulus)
k (stiffness)

CMV
CCV
HMV
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Need for Sophisticated Forward Model!!

33

Simulation of Roller Measurements 
(Forward Model)

Roller 
Parameters

Material Types for Layers

Layer Properties

Fo
rc

e

Deflection

Subgrade - Sand

Subgrade - Clay

Clay

Sand

Static vs. 
Dynamic

Stationary vs. 
Vibratory

Linear vs. 
Nonlinear

Practicalities!!
• How to trust model (Calibrate)
• How to speed up (Machine Learning)
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Calibration of Model
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Machine Learning as Forward Modeler
Artificial Neural Networks (ANN)

Instantaneous 
Responses

Material
Properties

Roller
Features

Pavement
Structure
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Subgrade

Base h

k‘1, k’2, k’3

k’2, k’3

d

Inputs Operating
Conditions

Fev
Ddrum
ldrum

⁝
etc.

Estimation of E or k
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Importance of Local Calibration
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Estimating Modulus using Artificial Intelligence
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Retrieved Modulus vs. LWD Modulus
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Concluding Remarks

Let’s us pragmatically work toward 
implementing modulus-based technology 

to improve further construction quality
even though not perfect

• They did the best they could with what was available to 
them ~70 years ago to solve a major problem 

• Engineering community pragmatically agreed that those
tests  improve quality, even though not perfect
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More info!!
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Thank you!!
A number of colleagues and students

• Cesar Tirado
• Sergio Rocha
• Mehran Mazari
• Aria Fathi
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