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Bramlette McClelland (1921-2010)

• A giant of a man – pioneer of 
offshore foundation engineering

• Founder and President of McClelland 
Engineers 

– Headquartered in Houston

– 14 offices around the world

• Awards included
– 9th Terzaghi Lecturer (1972)

– OTC Distinguished Achievement Award (1986)
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What passes for “analytical” ?

• True analytical solution (algebraic expression)

• Computable analytical formulation (design chart)

• Synthesis of numerical parametric study

– Appropriate non-dimensional parameter groups

– Algebraic or chart outcome

“When I am working on a problem, I never think 
about beauty but when I have finished, if the 
solution is not beautiful, I know it is wrong.”
Buckminster Fuller
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Overview

• Piled foundations
– Consolidation after driving

– Axial stiffness and cyclic loading

• Shallow foundations
– Rectangular foundations for subsea systems

• Full-flow penetrometers
– Resistance factors

– Degree of consolidation during penetration

• Subsea pipelines
– Embedment and axial resistance of deep water pipelines
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Piled foundations - consolidation
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• Radial consolidation solution

– Refined through strain path method

• Non-dimensional time: T = cvt/Deq
2

– cv as for piezocone dissipation 

(horizontal flow; soil stiffness partly swelling)

– Deq reflecting outward flow of soil



Soil flow:
Piles: 0:100                        D/ ~ 40
Suction caissons ~ 50:50 D/ > 300
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Development of axial pile resistance 
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T10 ~ T50/20 :  t10 ~ 2 to 5 hours

T50 ~ 0.6 :       t50 ~ 2 to 5 days

T90 ~ 20T50 :   t90 ~ 1 to 3 months

Consolidation index

  75.0
50T/T1

11~CI



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Consolidation around suction caissons
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T10 ~ T50/20 :  t10 ~ 2 to 5 hours

T50 ~ 0.6 :       t50 ~ 2 to 5 days

T90 ~ 20T50 :   t90 ~ 1 to 3 months
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Radial consolidation solution
(cv = 10 m2/yr; Deq = 0.3 m)

Data from suction anchors
(Colliat & Colliard 2011)

Colliat & Colliard (2011):

Diameters: 3.8 m to 8 m

Deq ~ 0.28 to 0.45 m     (extremely thin-walled)

Consolidation index
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Consolidation - commentary
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• Radial consolidation solution

– Adequate fit to sparse data

– Analytical framework: piles to caissons and different soil types

– Consolidation coefficient: relevant cv difficult to estimate

field data (piezocone dissipation) a vital aid

Do we need the black magic of thixotropy for this problem?
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Axial stiffness of piles

Mark Randolph: 2nd McClelland Lecture: Paris, September 2013 9

Pt

wt

Pb

wb

Kb

ka ~ 1.5G 
D

w 

 
 LtanhKS

LtanhSK
S

w
P

K
b

b

t

t
axial 


 S    (for L > 2)

 
 

  ap
p

p

a kEAL
L

EA
S   and   L

EA
k

L 

Pile shaft
compliance

Mobilisation of shaft friction initiated near pile head:

- Consequences for progressive failure and cyclic stability

 
a

p

shaft

slip

k
EA

L
1

L
1~

Q
P




L

(EA)p



The University of Western Australia

Cyclic stability diagram for axial loading of piles
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– Cyclic degradation progresses down 

pile from soil surface

– Pile shaft compliance important

– Model tests (low compliance) not 

directly applicable for design of more 

compliant piles used offshore 
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Shallow mat foundations
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• Widespread use for subsea systems and pipeline terminations

• Generally rectangular: 50 to 200 m2 in plan area

• Complex 6 degree of freedom loading

Pipeline end termination (PLET) Production sled during lay
(photos courtesy Subsea 7)
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Design considerations for small mat foundations
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• Industry design guidelines limited

– Strip or circular geometries only

– Oriented towards bearing capacity, with allowance for H, M

• Operational loads for subsea foundation systems

– Vertical load (V) constant; low proportion of bearing capacity

– Thermally induced variations of horizontal (Hx, Hy), moment (Mx, 

My) and torsion (T) from eccentric pipeline and spool connections

– Critical failure mode: combined sliding and torsion

Holy grail: analytical failure envelope for general 3-D loading
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Numerical analysis: parameterised solutions
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• Identify non-dimensional groups:

B/L, d/B, kB/su0, Hx/Hy, My/Mx, V/Asu0, Hres/Asu0 etc

• Evaluate ‘uniaxial’ ultimate capacities for each loading component

• Adjust ultimate horizontal and moment capacities for V/Vult, T/Tult

• ‘Collapse’ 6-dimensional failure envelope into 2 dimensions!
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Design approach for small mat foundations
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Parameter Value Units Design loads Value Units Ratios
Width, B 8 m Vert. load, V 1200 kN 0.17
Length, L 16 m Load, Hx 200 kN 0.21
Skirt, d 0.6 m Load, Hy 300 kN 0.34
Strength, sum 5 kPa Moment, Mx 1500 kNm 0.07
su gradient, k 2 kPa/m Moment, My -2400 kNm 0.30
Skirt friction 0 Torsion, T 2100 kNm 0.45

Mobilisation

Failure envelopes
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Parameter Value Units Design loads Value Units Ratios
Width, B 8 m Vert. load, V 1200 kN 0.17
Length, L 16 m Load, Hx 200 kN 0.21
Skirt, d 0.6 m Load, Hy 300 kN 0.34
Strength, sum 5 kPa Moment, Mx 1500 kNm 0.07
su gradient, k 2 kPa/m Moment, My -2400 kNm 0.30
Skirt friction 0 Torsion, T 2100 kNm 0.45

Mobilisation
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Full flow penetrometers
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• Penetrometer shapes amenable to analysis
– Resistance independent of soil stiffness or in situ stresses

• Sufficient projected area ratio for minimal 
correction for overburden stress

– Shaft area < 15 % of projected area

• Soil sensitivity measured directly: cyclic testing

• Reduced reliance on ad hoc correlations for 
shear strength from penetration resistance

– Variations in resistance factors arise from differences in 
sensitivity (and brittleness), and strain rate dependence

Motivations for introduction, targeting soft soils

T-bar: 100 cm2

ball: 30 to 50 cm2

Pore water 
pressure filter

Push rod and 
anti-friction 
sleeve

Spherical ball

Pore water 
pressure filter

Push rod and 
anti-friction 
sleeve

Spherical ball
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Theoretical resistance factors – rate dependence & softening
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Typical parameters:
NTbar ~ 10 to 13
Nball ~ 12 to 175
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Consolidation around penetrometers
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• In situ assessment of consolidation coefficient
– Typically 3 to 10 times greater than from laboratory oedometer testing

– Essential for estimating set-up times around piles, caissons etc

– Pipeline-soil interaction (e.g. buckling, walking) sensitive to degree of 
consolidation during movement

• Penetrometer testing in intermediate soils (silt-sized)
– Partial consolidation during penetration – how best to quantify?

– Requires independent measurements – multiple pore pressure sensors?

– Or varying penetration rate

Ideal: continuous sensing during penetration to detect 
both degree of consolidation and cv
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Partial consolidation effects – backbone curves
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Effect on resistance, q, and excess 

pore pressure, u

• Function of relative velocity, vD/cv

• Probe by changing penetration rate

• Ideally need prior knowledge of cv -

but at least measure it

Catch 22: 

• What is effect of partial 

consolidation on subsequent 

dissipation test?
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Partial consolidation effects – experimental study
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One soil type; varying velocity

• Dissipation testing after penetration 

phase at normalised velocity, vD/cv

• Reduced initial excess pore pressure

• Gradual increase in t50 times

Simple analytical assumption

• Reduced excess pore pressure 

corresponds to initial phase of 

dissipation test

• Post-penetration dissipation leads to 

increased T50

• Consequent under estimation of cv 0
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Theoretical approach

• Ignoring partial consolidation effects 

gives cv inversely proportional to t50

• Assuming all dissipation part of same 

theoretical curve gives apparent lower 

limit to t50

Experimental data

• Observed (up to) 3-fold increase in t50

• Experimental data fall between above 

two assumptions

• Need revised theory!
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Pipeline geotechnical engineering
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Deep water pipeline geotechnical design issues
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Infrastructure
• Pipeline: laid directly on seabed, possibly with concrete weight coating

• Pipeline initiation, anchoring and manifold systems

Embedment in seabed
• Pivotal for lateral stability, lateral buckling analysis, axial sliding

• Pipe lay dynamics has major impact on embedment

• Need combination of analytical solutions and empirical adjustments

Lateral stability
• Breakout resistance, post-breakout residual resistance

Axial friction
• Large range depending on drainage conditions, hence velocity and time 

scale of movement
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Pipeline geometry and key parameters
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Pipeline embedment – quick estimate

Mark Randolph: 2nd McClelland Lecture: Paris, September 2013 26

• Linear seabed strength gradient (upper 0.5 m): su = z kPa

– Seabed plastic ‘stiffness’ (V/w): k ~ 4D

– Dynamic lay motions remould soil: need rem = /St

– Allowance for buoyancy effects as pipe embeds in soil (consider '/rem)

w/D ranges from 0.065 to 0.9 

Force concentration
in touchdown zone:
V/W' ~ 1.4 to 2.7 
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Pipeline embedment – refined approach (Westgate et al.)
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• Detailed assessment of lay-induced vertical and horizontal motions

– Estimated lay rate, metocean conditions – hence number of exposure cycles

– Pipeline configuration in touchdown zone (maximum dynamic vertical loads)

– Cyclic soil degradation model from cumulative pipeline motions

Non-deterministic estimates 

consistent with modern 

pipeline design approaches 
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Pipeline axial friction
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• Axial friction controlled by normal effective stress and pipe-soil roughness

– Low effective stress level (< 5 kPa), so enhanced roughness coefficient

– Rapid shearing results in excess pore pressures, reducing normal effective stress

– Consolidation leads to hardening, and local reduction in soil water content
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Critical state framework

• Rapid shearing leads to ‘undrained’ 
friction values

• Sustained sliding results in 
consolidation towards ‘drained’ friction 
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Additional effects during axial sliding
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• High strain rates (v/D) enhance shearing resistance

• Sustained volumetric collapse of soil (‘damage’) – source of further u
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Consolidation properties at shallow depth
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• Near surface measurement of consolidation coefficient
– Piezocone no longer practical (shallow penetration; long dissipation times)

– Introducing the ‘parkable piezoprobe’ (PPP) – offline dissipation data
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LDFE analyses as basis for interpretation
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• Couple Modified Cam clay large deformation FE analyses
– Assessment of excess pore pressure field

– Backbone consolidation curves
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Concluding remarks
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• Analysis underpins day to day design

– Direct application of solutions

– Planning of studies based on physical or numerical modelling 

– Empirical correlations: a challenge to capture analytically

• Simplicity a guiding light

– Dimensional analysis

– Idealisation of analytical models and input

– Synthesis of outcomes – especially from numerical studies

– Field and laboratory data vital: validation and adjustment of models

All is worthless without understanding!
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