
1.  Introduction 
I am sincerely honoured to be invited to give the in-
augural McClelland Lecture.  I am humbled by the 
task before me as I sincerely wish to produce some-
thing that Bram McClelland would have appreciated.  
At first I leaned toward a subject that more charac-
terised his expertise and interest- engineering geolo-
gy, site investigation, and foundation design.  On 
further reflection however I concluded that Bram de-
lighted in developing engineers who followed their 
own interests, not in his image, but in their own 
unique ways. That is the kind of leader he was.  This 
epiphany led me to select a topic that has long been 
a passion of mine - bridging the gap, sometimes 
chasm, between theory and practice.  I believe this is 
what he would have wanted from me. 

Estimating foundation capacity has always been a 
central issue in foundation analysis and design.  
Many different methods are employed in this prac-
tice and many of those involve ad hoc assumptions 
and empirical models.  While these methods have 
served the profession well, advancements have been 
made that have not always been fully exploited.  In 
this paper we will focus on one such advancement, 
plastic limit analysis (PLA), a methodology that is 
theoretically sound, internally consistent, and sur-
prisingly simple to apply.  In my experience I have 
found this approach can lend significant advantages 
to some of the more traditional methods.  The fact 
that PLA is underutilized by practicing engineers 

stems partly, I think, from a literature that tends to 
be heavily mathematical and often arcane.  The main 
purpose of the paper then is to take a small step to-
wards demystifying the concepts for the mainstream 
using a number of detailed examples.  The examples 
are intentionally simple ones so that detailed results 
can be presented without getting too bogged down in 
the theory. 

Many of the problems encountered in offshore foun-
dation engineering are particularly well suited for 
applying PLA methods.  We will first provide a gen-
eral overview of foundation types that are used in 
the offshore environment.  This will be in an histori-
cal context working the way from early offshore be-
ginnings such as piers and jackets to modern issues 
of deep water applications.  In the illustrations of the 
analysis techniques involved we will define a limited 
number of idealised foundations along with typical 
loading scenarios.  We will then demonstrate how 
capacity estimates can be made using a range of 
available solutions in the framework of PLA.  Typi-
cal cases will be analysed including shallow founda-
tions, pile foundations, and systems of these types.  
In the process we will put special emphasis on char-
acterising results using multi-axial failure interaction 
diagrams.  Finally we will discuss the similarities 
and differences in PLA methods and more tradition-
al limit equilibrium approaches. 
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Abstract 
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the analysis and our interpretation of analysis re-
sults.  We will then briefly discuss conventional 
analysis methods leading up to more detailed discus-
sions of plasticity analysis methods for situations 
that fall outside the realm of classical methods. 

3.1 Practical issues for designing offshore shallow 
foundations 
3.1.1 Strength Characterisation 
One of the primary inputs to any capacity calcula-
tion is the soil strength profile.  Typical offshore 
strength profiles are soft clays although sands and 
overconsolidated clays are also encountered.  Of 
course the strength characterisation must be con-
sistent with the method selected for analysis. The is-
sues that must be addressed include: 

 Is the relevant strength characterisation drained or 
undrained behaviour?  This will of course depend 
on the load characteristics and the drainage con-
ditions in the soil and at soil-foundation interfac-
es. 

 What is the resolution of the site investigation?  
Site investigations for pile founded structures 
sometimes have rather coarse sampling intervals 
so that associated shallow soil profiles may have 
significant uncertainty in the region critical to 
shallow foundation performance. 

 Is the strength profile best idealised as uniform, 
linearly increasing, layered or…?  Conventional 
bearing capacity formulae are based on uniform 
strength profiles.  Limited analytical solutions for 
non-uniform profiles are also available and of 
course numerical solutions such as finite element 
methods are capable of analysing very general 
profiles. 

 What is the interface soil strength?  There is al-
most always a thin veneer of very weak soil right 
at the mudline such that a flat plate placed on this 
layer would have little sliding resistance under 
undrained conditions.  This often suggests the 
need for skirts or at least assessing how much the 
interface strength will improve due to consolida-
tion? 

 Will the soils be subjected to cyclic loading?  
How will the strength profile be modified to ac-
count for this? 

 Is scour an issue?  Can scour undermine the 
foundation or reduce its effective embedment? 

3.1.2 Load Characterisation 
The load characteristics also have a significant influ-
ence on problem idealisation.  The issues that must 
be addressed include: 

 Is the foundation subjected to multi-axial load-
ing?  The primary load of interest is often a verti-
cal load but modifications to analysis methods 
can account for lateral and moment loading as 
well.  Torsional loading is a case that needs spe-
cial treatment. 

 How do the loads vary with time?  Are the loads 
of short duration such as wave or earthquake 
loading or are the loads sustained? 

 Is part of the foundation subjected to uplift load-
ing?  Will the foundation have to be removed af-
ter its use?  If so how will the suction be broken? 

 Is the foundation to be placed on a slope which 
would result in increased lateral loading and 
overturning? 

 If skirts are employed, is the self weight of the 
structure at installation adequate to achieve full 
penetration? 

3.1.3 Foundation Geometry 
The foundation geometry will clearly influence the 
methods of analysis.  Issues include: 

 What is the foundation shape?  Analytical solu-
tions are mostly limited to strip footings and cir-
cular footings.  Empirical adjustments are re-
quired for rectangular footings.  Other shapes 
have to be treated as special cases. 

 Does the foundation have skirts?  When skirts are 
included, conduits are required to allow water to 
escape from the skirt compartment during place-
ment on bottom. 

 Does the foundation have holes in the base to re-
duce consolidation times?  Further, holes can 
squeeze out some of the soft soil at the interface 
and also reduce the time required to relieve suc-
tion forces if foundation removal is required. 

 Is the foundation a single footing or a system of 
footings such as a mudmat system for a platform?  
Designing a foundation within a system of foot-
ings requires consideration of the system as a 
whole.  For example the system performance will 
affect the loads that are applied to any individual 
footing. 

The above are some of the considerations that 
should be taken into account when developing a 
model for analysing a shallow foundation, carrying 
out the calculations, and interpreting the results. 

3.2 Conventional Methods 
3.2.1 Theory 
In this section we will discuss conventional bearing 
capacity equations as well as “exact” solutions to 
idealised conditions.  The development of classical 
methods for assessing the bearing capacity of shal-



low foundations is built on Prandtl’s solution (1921) 
for a strip footing on the surface of a weightless, 
frictional material with cohesion and the extension 
by Reissner (1924) which adds the effect of sur-
charge to Prandtl’s solution.  Although we are con-
centrating on undrained behaviour, the relevant solu-
tion is a subset of the general frictional models and 
hence friction will have to be briefly considered.  
Prandtl developed his solution from first principles 
for the two dimensional problem of a strip footing.  
The two dimensional governing differential equa-
tions of equilibrium provide two equations in three 
unknowns: normal stresses ߪ௫ and ߪ௬ and the shear 
stress ߬௫௬ as shown in Figure 7. 

 
Figure 7:  General stress state in a body under load 

The required third equation is the yield condition for 
the material, in this case the Mohr-Coulomb failure 
criterion: 

ቀ
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The solution is normally written in the form: 

ܸ
ൗܣ ൌ ܿ ௖ܰ ൅ ݍ ௤ܰ	 ሺ2ሻ

where ܸ is the total vertical capacity per unit length, 
-is the footing area per unit length, ܿ is the soil co ܣ
hesion, ݍ is the effective surcharge pressure at the 
level of the footing-soil interface, and ௖ܰ and ௤ܰ are 
dimensionless functions of soil friction angle, ߶.  
Note that for a material with no cohesion and no 
surcharge the theoretical bearing capacity for the 
weightless material is zero.  The forms of the func-
tions, ௖ܰ and ௤ܰ, are well documented in the litera-
ture, for example see API RP2A.  For the special 
case of ߶ ൌ 0 i.e. undrained loading, we substitute 
 ௨ for ܿ to denote undrained shear strength.  For thisݏ
case the solution is ௖ܰ ൌ 2 ൅ and ௤ܰ ߨ ൌ 1.  

Figure 8 shows one of the possible failure mecha-
nisms corresponding to the characteristic stress solu-
tion (although mechanisms are not necessarily 
unique, the calculated capacity is) for the undrained 
solution.  The solution shown consists of rigid 45°, 
right triangular wedges beneath the footing and 
along the free surface.  The transition zone between 
the two is a radial shear fan in which the radial ve-
locity is zero and the angular velocity ݒఏ is constant.  
As we will see in a subsequent section, elements of 
this solution are useful in constructing approximate 
solutions to more complex problems. 

 
Figure 8:  Conventional bearing capacity failure mechanism 

The Prandtl equations have been modified to include 
a semi-empirical term to account for the added 
strength of the soil due to self-weight such as pro-
posed by Terzaghi (1943) giving: 

ܸ
ൗܣ ൌ ܿ ௖ܰ ൅ ݍ ௤ܰ ൅ ܤߛ0.5 ఊܰ	 ሺ3ሻ

where ߛ is the effective unit weight, ܤ is the footing 
width, and ఊܰ is a dimensionless function of ߶.  
Terzaghi also used a value of 5.7 for ௖ܰ rather than 
the theoretical solution, 5.14.  The term ఊܰ was not 
rigorously derived but was based on adhoc assump-
tions regarding the stress conditions within the fail-
ure mechanism resulting from soil self weight.  
There are numerous values for the ఊܰ term found in 
the literature (Vesic 1972) and because of the sensi-
tivity to friction angle the value of the ఊܰ term var-
ies widely.  Clearly the self weight term in the equa-
tion becomes relatively more important as the width 
of the footing increases.  Terzaghi (1943) also modi-
fied the equation to account for embedment and the 
shape of the foundation and various other correc-
tions for these effects have also been published, e.g. 
Brinch Hansen (1970) and Meyerhof (1953). 

A number of modifications to the classical equation 
have been made by subsequent workers in the field 
to include the effects of lateral loading and overturn-
ing moment.  Using Prandtl’s approach, Green 
(1952) derived a rigorous solution to the problem of 
inclined loading of a rigid punch (footing) on a pure-
ly cohesive material (undrained strength) as follows: 
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This requires that we (1) construct a possible col-
lapse mechanism that is kinematically admissible 
(satisfies the volumetric constraints within the body 
i.e. the material does not separate or penetrate other 
material and satisfies the velocity boundary condi-
tions); (2) derive a virtual work equation by setting 
the work rates of external loads to the internal ener-
gy dissipation rates (EDR) within the body; (3) solve 
the equation for the unknown external load or scale 
factor for a load envelope; and (4) repeat the process 
varying geometric parameters (if any) describing the 
mechanism to find the minimum collapse load for 
that mechanism. 

The validity of the bound theorems is dependent on 
the following standard assumptions of plasticity the-
ory. 

 The yield surface, ݂൫ߪ௜௝൯ ൌ 0, is convex in stress 
space. 

 Principal stresses and principal strain rates are 
aligned in stress space. 

 Plastic strain increments, ߝሶ௜௝, are normal to the 
yield surface such that: 

ሶ௜௝ߝ ൌ ߣ
߲݂
௜௝ߪ߲

	
ሺ9ሻ

where ߣ is a positive scalar.  This equation is some-
what abstract and I have found students have diffi-
culty visualizing its meaning.  Conceptually it means 
that the stresses that brought the material to yield are 
the ones that control the strain directions.  For ex-
ample consider Figure 13 which shows a simple 
schematic of a yield surface in two dimensional 
stress space. 

 
Figure 13:  Schematic of yield surface showing normality of 

strain increments 

As shown, if the stress state is primarily ߪଵ the pri-
mary strain direction is in the ߝሶଵ direction and like-
wise for other stress states.  Since the material 
stress-strain behaviour is non-linear and history de-
pendent it is only possible to determine the strain in-

crement directions independent of the overall 
boundary value problem solution. For a given point 
on the yield surface it is possible to determine the 
relative values of the strain increment components, 
for example: 

௫ሶߝ
௬ሶߝ
ൌ

߲݂
௫ߪ߲
ൗ

߲݂
௬ߪ߲
൘

ሺ10ሻ

since the scalar ߣ cancels in the ratio.  There are two 
possible modes of deformation in a plastically de-
forming material:  tangential slip along a failure sur-
face or slip plane and continuous deformation in the 
plastic continuum.  The EDR referred to in the upper 
bound theorem can be expressed in terms of strain 
increments for a given yield condition as demon-
strated, for example, by Drucker and Prager (1952).  
They derived the dissipation rates for a generalized 
von mises yield condition for a frictional material 
with cohesion.  Such dissipation equations have 
been derived for materials obeying other yield con-
ditions.  Of particular interest for the purposes here 
is the Tresca or maximum shear stress criterion for a 
purely cohesive material.  The dissipation equations 
for this material for the two failure modes is 

Slip	on	a	failure	surface: 	 ሶܦ ൌ 	௥ݒ௨ݏ ሺ11ሻ

and 

Continuous	deformation:			ܦሶ ൌ ሶ|௠௔௫ߝ|௨ݏ2 ሺ12ሻ

where 	ݒ௥ is the relative slip velocity on the failure 
plane, ݏ௨ is the undrained shear strength, and |ߝሶ|௠௔௫ 
is the absolute value of the numerically largest prin-
cipal strain increment.  These equations allow us to 
calculate the energy dissipation rate for any admissi-
ble failure mechanism using virtual work principles. 

Before discussing applications we should point out 
that there are a number of corollaries to the bound 
theorems that can be extremely useful as discussed 
by Chen (1975).  Two of these are particularly im-
portant and warrant a brief mention here as follows, 

 The plastic collapse load of a system of perfectly 
plastic elements is independent of the elastic be-
haviour of the material as long as any defor-
mation does not significantly change the original 
geometry. 

 Removing (adding) a constraint from a system of 
perfectly plastic elements cannot make the system 
stronger (weaker). 


. 

.


.


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One of the requirements of a perfectly plastic system 
is that the material remains stable i.e. does not ex-
hibit strain softening. 

3.3.2 Applicatons 
Perhaps the best way to explain the upper bound 
method is to provide an example of an application. 

Example 1 
Consider the mechanism shown in Figure 14 for a 
footing subjected to an inclined load.  This is similar 
to the mechanism corresponding to Green’s (1952) 
solution, shown in Figure 9(a), except that the angle 
 is assumed to be unknown.  The solution for ܸ, for ߠ
the upper bound formulation, is then minimized by 
varying ߠ

 
Figure 14:  Inclined load failure mechanism 

We begin by assuming a virtual velocity in the 
downward vertical direction.  To be admissible the 
footing and soil wedge must slide parallel to surface 
AB so that the total dissipation along AB is 

ሶ஺஻ܦ ൌ ஺஻ݒ ∗ ݈஺஻ ∗ s୳ ൌ
௢ݒ
sin ߠ

∗ ௨ݏ ∗ ܤ cos ߠ

ൌ ܤ௨ݏ௢ݒ cot 	ߠ ሺ13ሻ

where the parameters are as previously defined 
and/or shown in Figure 14.  At interface BE, the soil 
moves uniformly to be compatible with wedge ABE 
so that the dissipation along curve BC is 

ሶ஻஼ܦ ൌ
௢ݒ
sin ߠ

∗ ௨ݏ ∗ ቀ
ߨ
4
൅ ܤቁߠ sin 	ߠ

ൌ ܤ௨ݏ௢ݒ ቀ
ߨ
4
൅ ቁ ሺ14ሻߠ

At interface EC, the soil again must move uniformly 
so that the dissipation along CD is 

ሶ஼஽ܦ ൌ
௢ݒ
sin ߠ

∗ ܤ௨ݏ sin ߠ ൌ 	ܤ௨ݏ௢ݒ ሺ15ሻ

The sector BCE is a radial shear fan centred at E.  
To be compatible with the other parts of the mecha-
nism the radial velocity must be zero and the tangen-
tial velocity is ݒఏ ൌ ௢ݒ sin ⁄ߠ , a constant.  This is the 

only continuously deforming region.  The only non-
zero strain rate is 

ሶ௥ఏߝ ൌ
1
2
൬
௥ݒ߲
ߠ߲ݎ

൅
ðݒఏ
ݎ߲

െ
ఏݒ
ݎ
൰ ൌ

െݒ௢
ݎ2 sin ߠ

	 ሺ16ሻ

The maximum principal strain rate is then 

ሶ|௠௔௫ߝ| ൌ
௢ݒ

ݎ2 sin ߠ ሺ17ሻ

and the resulting dissipation rate is 

ሶ஻஼ாܦ ൌ න න
௢ݒ௨ݏ
ݎ sin ߠ

ݎᇱ݀ߠ݀ݎ

గ
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ൌ ܤ௨ݏ௢ݒ ቀ
ߨ
4
൅ ቁ ሺ18ሻߠ

The external work rate is the sum of the rates of both 
the vertical force component, ܸ, and the horizontal 
component, ܪ.  We replace the horizontal force with 
the average shear stress, ߬, times the footing width, 
 to give ,ܤ

ሶܹ ൌ ௢ݒܸ ൅
௢ݒܪ
tanߠ

ൌ ൬ܸ ൅
ܤ߬
tanߠ

൰ 	௢ݒ ሺ19ሻ

Setting the work rate equal to the sum of the dissipa-
tion rates, cancelling ݒ௢, solving for ܸ and simplify-
ing gives 

ܸ ൌ ௨ݏܤ ൤
ߨ
2
൅ ߠ2 ൅ 1 ൅ cot ߠ ൬1 െ

߬
௨ݏ
൰൨

ሺ20ሻ

Now minimizing ܸ with respect to ߠ gives 

߲ܸ
ߠ߲

ൌ ௨ݏܤ ൤2 െ cscଶ ߠ ൬1 െ
߬
௨ݏ
൰൨ ൌ 0	

ሺ21ሻ

Solving gives the critical value of ߠ

ߠ ൌ
1
2
cosିଵ

߬
௨ݏ ሺ22ሻ

Recognizing that ߠ ൌ ሺߨ 4⁄ ሻ െ ߱, Equations 4 and 
20 are identical.  It is interesting that the solution 
developed from equilibrium arguments has not been 
proved a lower bound but can be shown to be an up-
per bound.  It should also be noted that components 
of the mechanism used in this example can often be 
used to build mechanisms for other problems.  For 
example for a footing with a small aspect ratio, 
ܮ ⁄ܤ ൏ 2, a three dimensional approximation can be 
achieved by assuming a vertical failure plane at each 
end of the footing.  This requires integrating the 
EDR over the resulting slip surfaces and adding to 
the total dissipation. 
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It should be recognized that the mechanism in this 
solution results in vertical and horizontal translation 
only.  Since there is no provision in the mechanism 
for rotation, the solution will not be affected by a 
moment included in the loads.  Since there is no ro-
tation, the moment would do no work and hence this 
solution would tell you nothing about the effects of 
moment.  It is, however, relatively easy to modify 
the mechanism to include rotation as will be shown 
in the next example.  We can also include non-
homogeneous strengths in the solution by expressing 
shear strength as a function of depth in the dissipa-
tion terms and integrating over the various slip sur-
faces and the radial shear fan as will be discussed 
below. 

Example 2 
A proposed mechanism to include moment effects is 
shown in Figure 15.  Moments can arise due to an 
elevated horizontal load, an eccentric vertical load, 
and/or a moment couple.  The solution shown in 
Figure 15 was proposed by Brinch Hansen (1970) 
and formulated as an upper bound mechanism by 
Murff and Miller (1977a).  The coordinates, xo and 
yo, of the centre of rotation of the mechanism are the 
optimization parameters and are varied to find the 
least upper bound.  Note that there are slightly dif-
ferent mechanisms for ݔ௢ ൏ 0 and ݔ௢ ൐ 0 which are 
continuous at the ݔ௢ ൌ 0 transition.  It is assumed 
for ݔ௢ ൏ 0 that the footing stays attached to the soil 
so there is no separation of the footing from the soil 
along AE. 

 
Figure 15:  Eccentric load failure mechanism 

Consider now some details of the mechanism.  ܴଵ is 
the distance OE; ܴଶ is the distance OI; and ܴଷ is the 
distance OA.  The footing rotates about ݔ௢, ݕ௢ at a 
virtual angular velocity of ߚሶ .  The failure mecha-
nism in the soil on the left of OE is similar but of 
different dimensions than the one to the right of OE.  
The sectors EFI and EDA are non-deforming ele-
ments.  Sectors FGI and DCA are radial shear fans 
but, in this case, the tangential velocity varies with 

the radius to be consistent with the velocities along 
FI and DA.  The wedges GHI and CBA deform and 
slip along the boundaries GH and CB.  In general, 
the loads are taken as a vertical load, ܸ, offset a dis-
tance e from the footing centre and a horizontal load, 
 ܸ ௛ above the footing base.  Bothݕ at a height ,ܪ
and ܪ can contribute overturning moments and of 
course a moment couple can also be applied. 

To carry out the calculations local coordinate sys-
tems are used to simplify the process.  In the general 
cases, integrations are carried out along slip surfaces 
and within deforming regions to get the respective 
EDR values.  For varying strengths with depth the 
shear strength profile has to be expressed in terms of 
the local coordinate system used for the calculation.  
These calculations are somewhat tedious so exam-
ples for typical components are detailed in Appen-
dix I.  The total EDR is determined simply by sum-
ming the components.  

The external work rate is then given by the follow-
ing 

௘ܹሶ ൌ ൤ܪ ∗ ሺݕ௛ ൅ ௢ሻݕ ൅ ܸ ∗ ൬ݔ௢ ൅
ܤ
2
൅ ݁൰൨ ሶߚ ሺ23ሻ

Following the upper bound procedure we then set 
the total work rate to the total EDR 

ܪ ∗ ሺݕ௛ ൅ ሶߚ௢ሻݕ ൅ ܸ ∗ ൬ݔ௢ ൅
ܤ
2
൅ ݁൰ߚሶ 	

ൌ ෍ܦపሶ
௡

௜ୀଵ

 
ሺ24ሻ

Now ߚሶ  appears linearly in each term of the equation 
and is cancelled as the virtual work method dictates.  
One can then decide which load, ܪ or ܸ, is of inter-
est, specify the other, and solve for the one of inter-
est.  For example say the vertical load ܸ is the 
known dead load on the footing and H is the lateral 
capacity of interest.  The solution for the lateral ca-
pacity estimate is then 

ܪ ൌ
∑ ௜ܦ
௡
௜ୀଵ െ ܸ ቀݔ௢ ൅

ܤ
2 ൅ ݁ቁ

௛ݕ ൅ ௢ݕ
	

ሺ25ሻ

Note that ܦ is now specified without the dot indicat-
ing the virtual velocity, ߚሶ  values, have been can-
celled.  ܪ is then minimized with respect to the co-
ordinates ݔ௢, ݕ௢ to find the least upper bound. 

This mechanism accounts for effects of ܸ, ܪ, and ܯ 
and their interactions and we can plot the full ܸܯܪ 
surface using these equations.  More typically we 
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circumferential strain is not zero and the velocity 
fields are again constructed using the incompressi-
bility condition.  The details of the calculations are 
described in the paper by Murff and Miller (1980). 

In the foregoing we have attempted to demonstrate 
some of the thought processes and procedures that 
can be used for constructing failure mechanisms for 
upper bound analysis.  While the idea of failure 
mechanisms is familiar to the geotechnical engineer, 
care must be taken to ensure the mechanisms are 
kinematically admissible.  In a sense this really just 
means that they are possible.  A more detailed dis-
cussion of this aspect of limit analysis is provided 
later. 

3.4 Generalised Plastic Limit Analysis – Macro 
Mechanisms 
The foregoing analyses have demonstrated the con-
struction of detailed failure mechanisms to be used 
in conjunction with upper bound plastic limit analy-
sis.  In this section we will consider how failure in-
teraction surfaces can themselves be used to derive 
the performance of a foundation element.  Prager 
(1959) showed that a system of forces that character-
ise the stress state in a perfectly plastic structure (in-
cluding a soil-structure system) can be considered 
generalized stresses and the corresponding plastic 
displacements can be considered generalized strains.  
This is true notwithstanding the fact that the general-
ised stresses and strains do not have the actual di-
mensions of stress and strain.  For a given set of 
generalized stresses, ܳଵ …ܳ௡, the generalized strain 
rates, ݍሶଵ …  ሶ௡ are the work rate conjugates of theݍ
stresses, that is 

ሶܹ ൌ ܳଵݍሶଵ ൅	…൅ ܳ௡ݍሶ௡	 ሺ44ሻ

Where the generalized stresses are moments, the 
generalized strains are rotations so that work rate 
conjugancy is maintained.  The interaction surface 
then plays the role of the yield condition, that is 

݂ሺܳଵ, … , ܳ௡ሻ ൌ 0	 ሺ45ሻ

If the structure is composed of perfectly plastic ele-
ments, the yield function, ݂, is convex and other 
tenents of plasticity theory apply.  As for the plastic 
stress vs. strain relationships we can relate the gen-
eralized plastic strain rates to the generalized yield 
condition using the associated flow rule, that is 

ሶ௜ݍ ൌ ߣ
߲݂
߲ܳ௜

	
ሺ46ሻ

We can then use these elements to apply the bound 
theorems to any assemblage of generalized plastic 
elements such as a system of footings or piles. 

Before considering relevant problems it is useful to 
demonstrate the validity of Prager’s assertion.  Con-
sider the problem discussed earlier of a footing on 
uniform strength soil subjected to inclined load.  
Equations 4 and 5 constitute the failure interaction 
surface which can be rewritten in terms of normal-
ized vertical load ܸ and horizontal load ܪ, that is 

݂ሺܸ, ሻܪ ൌ
ܸ

௠௔௫ܪ

െሾ1 ൅ ߨ െ 2߱ ൅ cosሺ2߱ሻሿ ൌ 0 ሺ47ሻ

where 

߱ ൌ
1
2
sinିଵ ൬

ܪ
௠௔௫ܪ

൰
ሺ48ሻ

Now the generalized plastic strain rates correspond-
ing to the generalized stresses ܸ and ܪ are 

ሶݒ ൌ ߣ
߲݂
߲ܸ

ൌ
ߣ

௠௔௫ܪ ሺ49ሻ

and 

ሶ݄ ൌ ߣ
߲݂
ܪ߲

ൌ λ ቎
1 ൅ ௥ܪ

௠௔௫൫1ܪ െ ௥ܪ
ଶ൯

ଵ
ଶ

቏	

ሺ50ሻ

where ܪ௥ is the ratio of ܪ to ܪ௠௔௫.  We can then 
find the ratio of strain rates, 

ሶݒ
ሶ݄ ൌ

൫1 െ ௥ܪ
ଶ൯

ଵ
ଶ

1 ൅ ௥ܪ ሺ51ሻ

Consider now a specific example where ܸ ൌ
0.9 ௠ܸ௔௫ which equals 4. -us ܪ ௨.  Solving forݏܤ626
ing the yield equation, ܪ ൌ  ௨ and the ratioݏܤ0.4124
ሶݒ ሶ݄⁄ ൌ 0.644, ߱ is then found to equal 12.2°.  Re-
ferring to the failure mechanism in Figure 21, the 
footing moves downward at an angle of 45°-
12.2°=32.8° to the horizontal giving a ratio of 
ሶݒ ሶ݄ ൌ tanሺ32.8°ሻ ൌ 0.644⁄  which checks identical-
ly. 



 
Figure 21:  Inclined load failure mechanism showing velocity 

of footing 

Figure 22 shows that the strain increment is indeed 
normal to the yield surface.  Thus for any combina-
tion of ܸ and ܪ at yield we can determine the ratio 
of ݒሶ ሶ݄⁄ .  Alternatively (and perhaps more important-
ly) we can invert the process and determine V and H 
for any ratio of ݒሶ ሶ݄⁄ .  This may, of course, require 
solving a non-linear equation but the idea has partic-
ular advantages when analysing a mechanism in-
volving a system of foundation elements. 

 
Figure 22:  Inclined load interaction surface showing normali-

ty of the velocity field 

Consider the system of shallow foundations shown 
in Figure 23(a). One approach to solving the capaci-
ty of the system is to construct a mechanism as 
shown in Figure 23(a) as proposed by Murff and 
Miller (1977b).  A simpler approach however is to 
represent each footing by its multi-axial interaction 
diagram as suggested in Figure 23(b).  This can be 
easier and more accurate, especially if we have an 
accurate interaction surface for a single footing. 

 
(a) 

 
(b) 

Figure 23:  Shallow foundation system (a) detailed mechanism 
(b) system represented by interaction surfaces 

Assume, for example, a yield function, 
݂ሺܸ, ሻܯ,ܪ ൌ 0, for a single footing.  The following 
is a step by step approach to determine the system 
capacity. 

1. Assume a virtual rotation of the system about a 
point with coordinates ݔ଴ and ݕ଴ which become 
the optimization parameters.  For a planar geome-
try the mechanism represents all possible mo-
tions- two translations and a rotation. 

2. For any values, ݔ଴ and ݕ଴, find the motion ݒపሶ , ݄పሶ  
for the centres of each footing.  Note the rotation 
rate ߠపሶ  for all footings is equal to ߚሶ . 

3. Now form the ratios of virtual translation and ro-
tation components, for example 

ሶ௜ݒ
ሶ݄
௜
ൌ

߲݂
߲ܸൗ

߲݂
ൗܪ߲

ሺ52ሻ

4. Since we know the ratios themselves from the as-
sumed mechanism, this gives us three equations 
of this type but only two independent ones (any 
two) in unknowns ܸ, ܪ, and ܯ 

5. The third equation needed for solving for ܸ, ܪ, 
and ܯ for any footing is the yield condition. Thus 
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in principal we can solve for the three unknowns 
although, depending on the complexity of the 
yield condition, this may be numerically difficult. 

6. Given the values of ܸ, ܪ, and ܯ we can calculate 
the EDR for any footing as follows 

ሶܦ ௜ ൌ ௜ܸݒሶ௜ ൅ ௜ܪ ሶ݄ ௜ ൅ 	ሶ௜ߠ௜ܯ ሺ53ሻ

7. Equating the virtual work rate of the external 
loads to the EDR we can then solve for the un-
known load or scale factor. 

8. We then systematically vary ݔ଴ and ݕ଴ to find the 
minimum load capacity. 

In as much as the mechanism is planar and the yield 
condition of each footing is correct, minimization 
will lead to the exact solution because we have con-
sidered all possible failure mechanisms.  In fact 
since we have calculated ܸ, ܪ, and ܯ at each foot-
ing and know the external loads we can check to see 
whether the solution satisfies equilibrium.  We will 
discuss how to investigate failure out of the plane of 
loading in our discussion of pile systems.  As we did 
before, we will use an example to demonstrate the 
above ideas. 

Example 3 
Here we will consider a simple example of planar 
failure of a two footing system as shown in 
Figure 24.  For our purposes we will assume that the 
footings are pinned to the structure at their centroids 
and the interaction surface is as given in Equa-
tions 47 and 48.  As noted earlier removing a con-
straint from a plastic system, such as replacing a rig-
id connection with a hinge, will never increase the 
capacity and hence will be a conservative assump-
tion as noted by Chen (1972). 

 
Figure 24:  Schematic of two-footing system with loads 

The system is subjected to its self weight as well as a 
lateral load.  There are two unknowns associated 
with each footing, ௜ܸ and ܪ௜. 

For a given value of ݔ଴ and ݕ଴ the ratio of virtual ve-
locities at each footing is 

ሶ௙௜ݒ
ሶ݄
௙௜
ൌ
൫ݔ௢ െ ሶߚ௙௜൯ݔ

൫ݕ௢ െ ሶߚ௙௜൯ݕ
ൌ ܥ

ሺ54ሻ

where ݔ௙௜ and ݕ௙௜ are the footing coordinates.  We 
also know from the normality relationships that 

ሶ௙௜ݒ
ሶ݄௙௜
ൌ
ߣ
߲݂
߲ ௙ܸ௜

ߣ
߲݂
௙௜ܪ߲

ൌ

൥1 െ ቆ
௙௜ܪ

௠௔௫௙௜ܪ
ቇ
ଶ

൩

ଵ
ଶ

1 ൅ ቆ
௙௜ܪ

௠௔௫௙௜ܪ
ቇ

ൌ
௢ݔ െ ௙௜ݔ
௢ݕ െ ௙௜ݕ

	

ሺ55ሻ

The right hand side is known for any value of ݔ଴ and 
-଴ and hence we can reduce Equation 55 to a quadݕ
ratic equation of the form 

௥ܪ
ଶ ൅ ௥ܪߙ ൅ ߚ ൌ 0 ሺ56ሻ

where 

௥ܪ ൌ
ܪ

௠௔௫ܪ
ߙ ൌ

ଶܥ2

ଶܥ ൅ 1
and	 ߚ ൌ

ଶܥ െ 1
ଶܥ ൅ 1 ሺ57ሻ

Solving and taking the positive root (on physical 
grounds) gives 

௥ܪ ൌ
െߙ ൅ ඥߙଶ െ ߚ4

2 ሺ58ሻ

Knowing the ܪ௙௜, we can solve for ௙ܸ௜ directly from 
the yield condition, Equations 47 and 48.  The total 
EDR is then 

ሶܦ ௧௢௧௔௟ ൌ෍൫ܪ௙௜ ሶ݄௙௜ ൅ ௙ܸ௜ݒሶ௙௜൯

ଶ

௜ୀଵ

	
ሺ59ሻ

As shown in Figure 25 the mathematical interaction 
equation extends beyond the boundaries of the yield 
surface. 

 
Figure 25:  Interaction surface for single footing reset end val-

ues 
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shaft capacity of piles subjected to rapid loading 
such as from waves or earthquakes. 

 Is the soil susceptible to creep?  Piles subjected to 
sustained loads, particularly in uplift, may have 
reduced capacities due to creep.  Perhaps more 
importantly piles subjected to uplift will tend to 
become unstable if they move upward significant-
ly. 

 Does the load carrying capacity of the pile exhibit 
softening behaviour?  Very rigid piles can mobi-
lize the peak capacity of the soil whereas piles 
that are very flexible may be limited to the resid-
ual capacity. 

 How long will it take for full set-up to occur?  
This is especially important in the decision pro-
cess regarding when the piles are fit for service. 

4.1.2 Load characterisation 
The kinds, magnitudes and locations of loads must 
be well understood to assess the pile requirements. 

 Is the pile subjected to multi-axial loading?  It is 
important to consider the possible load interac-
tions imposed by moment, lateral and vertical 
load and torsion.  What are the boundary condi-
tions for the pile analysis?  Are the piles free 
headed or fixed headed? 

 What are the load durations?  Is the pile subjected 
to short term loads or long term loads or both? 

 Is the pile subjected to uplift loading where creep 
might lead to load shedding and catastrophic fail-
ure? 

 Where are the loads applied?  Anchor piles, for 
example, are less effective in resisting lateral 
loads if the loads are applied at the pile head. 

4.1.3 Foundation geometry 
The details of the pile geometry can have a strong 
influence on the capacity of the pile. 

 Is the pile wall thickness schedule appropriate for 
the expected failure modes?  Generally a thick-
ened wall is needed to resist lateral loads (bend-
ing) whereas axial loading is not usually limited 
by stress in the pile. 

 Will jacket piles be inserted in sleeves with leg 
stubs?  Leg stubs that penetrate into the soil gen-
erally provide substantial benefits in bending re-
sistance near the mudline. 

 Are the piles long enough to develop a plastic 
hinge failure mode during loading or are they 
short enough that failure is likely to be in a fence 
post mode, that is kicking out at the pile tip? 

 Do the piles behave individually or as a group or 
as a system? 

The foregoing are important issues to address in de-
ciding the critical design elements and in fact how 
the foundation will be analysed. 

4.2 Conventional methods 
4.2.1 Theory 
Unlike the structure and history of shallow founda-
tions, the conventional methods of pile analysis are 
not grounded in theory but are basically empirical.  
While they are mostly based on conceptual models, 
there are always empirical parameters used to carry 
out the design methodology.  There are two distinct 
aspects to pile design- axial capacity and lateral per-
formance. 

The axial pile capacity is generally assumed to be 
the simple sum of the shaft resistance along the pile 
walls and the end bearing resistance at the pile tip.  
The basic model for pile shaft capacity in clay soils 
(undrained response) is 

௦ܸ ൌ නܦߨ ݕሻ݀ݕ௨ሺݏߙ
௅

଴ ሺ71ሻ

where ܦ is the pile diameter, ܮ is the pile length, and 
 is the ratio of shear resistance mobilized at the ߙ
soil-pile interface to local undrained shear strength.  
As such ߙ is simply a correlation factor which is a 
function of a wide range of variables depending on 
the particular design recipe chosen.  The guidelines 
for evaluating ߙ generally are derived from field 
load tests but have also been influenced to some de-
gree by mathematical models of an idealised instal-
lation process.  Additional details of the evolution of 
 will be discussed in the next section.  The end ߙ
bearing resistance of a pile in clay is usually taken to 
be 

௘ܸ௕ ൌ ௨ݏ ௖ܰܣ ሺ72ሻ

where ݏ௨ is the undrained shear strength at the pile 
tip and ௖ܰ is a bearing capacity factor, conceptually 
similar to that for shallow foundations but essential-
ly empirical in this application.  It should be men-
tioned however that theoretical constructions, such 
as cavity expansion theory as described by Bishop, 
et al. (1945), can be used to rationalize ௖ܰ within a 
reasonable range. 

The soil resistance to lateral movement of the pile is 
usually modelled as non-linear distributed springs 
and the pile is modelled as an elastic beam-column.  
The maximum resistance of the springs per unit pile 
length, H, is taken to be 

ܪ ൌ ௨ݏ ௣ܰܦ ሺ73ሻ



where ݏ௨ is the local undrained shear strength, ௣ܰ is 
an empirical bearing capacity factor, and ܦ is the 
pile diameter.  Rules for selecting appropriate ௣ܰ 
values have largely been derived from experiments 
and field tests although theoretical underpinnings for 
some cases have been established.  Generally ௣ܰ in-
creases with depth to account for the effect of the 
surface proximity until it reaches some maximum 
value.  Guidelines for modifying the spring charac-
teristics to account for cyclic loading effects have al-
so been established, e.g. see Matlock (1970). 

In conventional practice axial capacity is directly in-
tegrated into the foundation design.  That is, the pile 
must have sufficient capacity to achieve a designated 
safety factor when compared to the design axial 
loads.  For analysis of laterally loaded piles, the pile 
head loads are applied to the non-linear beam col-
umn model and the design requirements are based 
on limiting the stresses in the pile to allowable val-
ues.  The ultimate lateral capacity of a pile is not 
usually a consideration.  In this presentation howev-
er we will emphasize the pile’s ultimate lateral ca-
pacity and argue that it provides useful insight into 
the foundation behaviour. 

4.2.2 Applications 
A very detailed history of API’s axial pile capacity 
recommended practice is presented by Pelletier et al 
(1993).  Only a brief summary will be provided here.  
It is not known exactly how the earliest offshore 
piles were designed for axial load although it is like-
ly that dynamic formulae such as the Engineering 
News Equation (Teng, 1962), in common use at the 
time, were initially employed.  However, by 1956, 
so-called static methods of analysis, as described in 
the “Theory” section above, were being used.  These 
methods were pioneered for offshore applications by 
Bram McClelland and his co-workers and in 1962, 
incorporated in the standard McClelland Engineers 
company reports (Pelletier et al, 1993). 

The first edition of API RP2A (1969) included the 
McClelland procedures for design of axially loaded 
piles.  In this method the shaft resistance was taken 
equal to the undrained shear strength except as fol-
lows: 

 For depths less than 100 feet it was limited to 
1000 psf 

 For depths greater than 100 feet it was limited to 
1/3 of the effective overburden pressure. 

The unit end bearing was specified as 9ݏ௨. 

Over the 18 years following the publication of the 
first edition of RP2A there was considerable contro-
versy over this design procedure.  The uncertainties 
spawned a number of joint industry studies including 
several efforts to establish comprehensive pile load 
test data bases.  Extensive study of these data bases 
was carried out by Olsen and Dennis (1982) and 
many different design methods were proposed.  Fi-
nally a consensus evolved and in 1987 a revised 
method was published in the 17th edition of RP2A.  
The method specified that the shaft friction was tak-
en as the undrained shear strength for soft clays but 
that  decreased in a systematic way as the ratio 
 ௩ increased.  It was reasoned that as the soilߪ/௨ݏ
strength was high relative to the overburden stress, 
compared say to a normally consolidated clay, the 
soil could reduce or even partially lose its contact 
with the pile and hence result in a smaller percentage 
of adhesion.  The specific method adopted is a modi-
fication of the method proposed by Randolph and 
Murphy (1984). The method has remained essential-
ly the same to present day and is incorporated in the 
new edition of RP2GEO. 

The recommendations for analysis of laterally load-
ed piles included in the first edition of RP2A are 
based on a joint industry program as documented by 
Matlock (1970).  While a number of studies have 
been undertaken to generalize and validate this 
work, it has remained essentially unchanged to pre-
sent day and is included in RP2GEO with only slight 
editorial comments.  It is again emphasized that the 
proposed method of analysis involves modelling the 
pile-soil system as a linearly elastic beam column 
with non-linear soil springs resisting the lateral pile 
movement.  As we will see the maximum resistance 
of the soil springs can also be used in an alternative 
analysis in which we assess the lateral capacity of 
the pile-soil system. 

4.3 Plastic limit analysis – detailed mechanisms 
The basic theory underlying plastic limit analysis of 
pile foundations is the same as that for shallow 
foundations.  Since this has been described above, 
we will only consider applications in this section. 

4.3.1 Applications 
For the purpose here, we will consider the axial and 
lateral capacities independently.  The mechanism as-
sociated with axial shaft failure is essentially trivial 
and simply involves evaluating the pile-soil bond as 
given by Equation 71.  Because the  pile tip is nor-
mally deeply embedded, disallowing any influence 
due to surface proximity, and the undrained soil is 
theoretically incompressible there is no simple 
mechanism associated with end bearing.  Assuming 



there is no softening, we simply assume the re-
sistance is described by Equation 72 and the capaci-
ty is the sum of end and shaft capacities as discussed 
above.  Contrary to the axial case, there are a range 
of possible mechanisms that can be used to investi-
gate the various features of laterally loaded piles.  
Some typical examples follow below. 

Example 5 
Of the various mechanisms that can be defined to es-
timate lateral capacity we first investigate one of the 
simplest models.  Consider a rigid pile idealised as a 
flat plate with width ܤ and length ܮ, restrained from 
rotation but translating laterally as shown in 
Figure 33.  This is essentially the mechanism pro-
posed by Reese (1958) using the limit equilibrium 
method.  A comparison of the two solutions will be 
discussed later.  The soil failure mechanism pro-
posed is a triangular, rigid wedge of soil being 
pushed up in front of the pile.  We initially assume 
the pile is smooth and there is a gap behind the pile 
so that no suction develops. We will discuss the im-
plications of these assumptions in more detail later. 
The face of the soil wedge makes an angle ߠ with 
the horizontal and the soil strength is assumed to be 
spatially uniform. 

 
Figure 33:  Schematic of idealised pile-wedge translating fail-

ure mechanism 

As the pile translates to the right the soil wedge 
slides up the failure plane.  Energy is then dissipated 
on the front of the wedge as it slips along the failure 
surface as follows 

ሶ஺஻ܦ ൌ ܽ݁ݎܣ ∗ ݕݐ݅ܿ݋݈ܸ݁ ∗ 	݄ݐ݃݊݁ݎݐݏ

ൌ ܤ ൬
ܮ

sin ߠ
൰ ∗

௢ݒ
cos ߠ

∗ ௨ݏ ൌ
௢ݒ௨ݏܮܤ

sin ߠ cos ߠ
	 ሺ74ሻ

The EDR on the two sides of the soil wedge is then 

ሶ஺஻஼ିௌܦ ൌ
଴ݒ௨ݏଶܮ
sin ߠ

	 ሺ75ሻ

The work rate of the lateral force is simply ൌ  ௢ݒܪ
and the work rate in lifting the soil wedge is 

ሶܹ ఊ ൌ ݁݉ݑ݈݋ܸ ∗ ᇱߛ ∗ ௩ݒ ൌ െ
1
2
௢ݒ′ߛܤଶܮ ሺ76ሻ

where ߛ′ is the effective unit weight and ݒ௩ is the 
vertical velocity of the wedge.  The upper bound 
equation is then 

௢ݒܪ െ
1
2
௢ݒܤଶܮᇱߛ ൌ

௢ݒ௨ݏܮܤ
sin ߠ cos ߠ

൅
௢ݒ௨ݏଶܮ
sin ߠ ሺ77ሻ

Thus the lateral capacity of the translating pile is 
then 

ܪ ൌ
௨ݏܮܤ

sin ߠ cos ߠ
൅
௨ݏଶܮ
sin ߠ

൅
1
2
	ܤଶܮᇱߛ ሺ78ሻ

The solution is then minimized with respect to ߠ to 
find the best solution.  Note that the work done in 
lifting the soil weight is negative since the mecha-
nism is working against gravity.  Further the contri-
bution of the soil weight to capacity is, in effect, the 
average of the effective overburden pressure over 
the pile length times the vertical cross sectional area 
of the pile and is independent of ߠ.  Such independ-
ence results because the soil is incompressible and 
any net displaced volume in the soil must be dis-
placed upward to the free surface in any admissible 
mechanism.  Note that for ܤ ≫  the contribution of ܮ
the sides becomes insignificant and the solution ap-
proaches the Rankine solution for passive pressure 
on a wall with a critical ߠ value of 45°. 

An obvious feature of this mechanism is that the av-
erage pressure continues to increase indefinitely as 
the pile length increases.  Clearly at some depth the 
soil will not be displaced upward but will flow 
around the pile.  At that depth and below, the prox-
imity of the free surface will have no effect on the 
resistance.  Consider an infinitely thin plate deeply 
embedded and loaded normal to its surface so that 
soil flow around the plate occurs.  A characteristics 
solution can be found for this case as shown in Fig-
ure 34. 

 
Figure 34:  Characteristic solution of deeply embedded flat 

plate under normal load 

The net pressure developed on the plate over a unit 
length in this case is 
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In the preceding discussion we considered a pile rig-
idly translating through the soil such as might occur 
if the pile head is fixed against rotation.  Of course 
mechanisms involving pile rotation are also possible 
and are discussed in the following example. 

Example 6 
Figure 37 shows possible mechanisms with pile rota-
tion.  Figure 37(a) shows a free headed pile rotating 
rigidly in the so-called fence post failure mode; Fig-
ure 37(b) shows a pile yielding (forming a plastic 
hinge) at the mudline and rotating below that point; 
and Figure 37(c) shows a pile with two plastic hing-
es failing in a shear type mode. 

 
(a) (b) (c) 

Figure 37:  Schematics of idealised rotation mechanisms 
(a) free-head pile (b) pile with plastic hinge at mudline (c) pile 

with two plastic hinges 

Pile rotation can be accommodated by the wedge 
mechanism discussed previously by allowing the 
wedge to deform as well as translate as shown in 
Figure 38.  In this mechanism the pile is assumed to 
rotate rigidly about O, the soil below ܮଵ flows 
around the pile, and the soil above ܮଵ moves in a 
wedge that is both shearing and translating.  Slight 
modifications of this mechanism, say to account for 
pile yielding, can be made to model the other mech-
anisms in Figure 37 and will be discussed in a later 
section. 

 
Figure 38:  Schematic of soil wedge to accommodate pile rota-

tion 

Figure 38 shows a detailed velocity field for the 
wedge.  The soil in the wedge is assumed to move 
parallel to the boundary AB and to conform to the 
pile motion along AC.  Assuming the virtual veloci-
ty in the horizontal direction at the pile top is ݒ௢, the 
rotation rate, ߚሶ , is then equal to ݒ௢ ⁄௢ܮ .  Further as-
sume that the resultant velocity varies linearly with 
 from the pile interface to the wedge face.  At any ݔ
point along the pile-wedge interface, the ݔ velocity 
is 

௫ݒ ൌ ௢ݒ ൬1 െ
ݕ
௢ܮ
൰

ሺ84ሻ

To accommodate the pile motion, ݒ௫ at A and con-
sequently all along AB is then 

௫ݒ ൌ ௢ݒ ൬1 െ
ଵܮ
௢ܮ
൰

ሺ85ሻ

It then follows that, within the wedge 

௬ݒ ൌ െݒ௫ tan ߠ ሺ86ሻ

We can then derive a general velocity field within 
the wedge as 

௫ݒ ൌ ௢ݒ ൬1 െ
ݕ
௢ܮ
െ
tan ߠ
௢ܮ

	൰ݔ
ሺ87ሻ

and 

௬ݒ ൌ െݒ௢ ൬1 െ
ݕ
௢ܮ
െ
tan ߠ
௢ܮ

൰ݔ tan 	ߠ
ሺ88ሻ

The relevant strain rates are then 

ሶ௫ߝ ൌ
௫ݒ߲
ݔ߲

ൌ െ
௢ݒ tanߠ
௢ܮ ሺ89ሻ

ሶ௬ߝ ൌ
௬ݒ߲
ݕ߲

ൌ
௢ݒ tanߠ
௢ܮ ሺ90ሻ

and 

ሶ௫௬ߝ ൌ
1
2
ቆ
௫ݒ߲
ݕ߲

൅
௬ݒ߲
ݔ߲

ቇ ൌ
௢ݒ
௢ܮ2

ሺtanଶ ߠ െ 1ሻ
ሺ91ሻ

After some simplification we find that 

ଵ|௠௔௫ߝ| ൌ
௢ݒ

௢ܮ2 cosଶ ߠ ሺ92ሻ

which is a constant over the wedge volume.  The to-
tal EDR within the wedge is then 

ሶ஺஻஼ܦ ൌ
ଵܮ௨ݏ

ଶݒܤ௢
௢ܮ2 cos ߠ sin ߠ ሺ93ሻ

The EDR on the slip surface is equal to 
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depths.  Their proposed failure mechanism is shown 
in Figure 40. 

 
Figure 40:  Murff-Hamilton failure mechanism for a pipe pile 

with circular cross section 

They proposed an intuitive mechanism where the 
soil wedge has a radial velocity of 

௥ݒ ൌ ௢ݒ ൬
ܴ
ݎ
൰
ఈ

ቆ1 െ
ݖ

௢ൗܿݖ
ቇ cos 	ߠ

ሺ99ሻ

where ܴ ൌ pile radius; ݖ ,ݎ, and ߠ are cylindrical 
coordinates; ݖ௢ ൌ wedge depth, ሺݖ௢/ܿሻ ൌ depth to 
centre of rotation (similar to ܮ௢  in the rotating pile 
example above) and ߙ ൌ exponent.  In this velocity 
field ݒఏ ൌ 0 so that resultant velocities are strictly in 
the ݎ െ  planes.  The radial velocity is a maximum ݖ
at ߠ ൌ 0, the very front of the pile, and decays to ze-
ro at ߠ ൌ േ90° owing to the cosine function.  Im-
posing the incompressibility condition on the veloci-
ty field gives 

ሶ௥௥ߝ ൅ ሶఏߝ ൅ ሶ௭ߝ ൌ
௥ݒ߲
ݎ߲

൅
௥ݒ
ݎ
൅
௭ݒ߲
ݖ߲

ൌ 0	 ሺ100ሻ

which, along with Equation 99 and the boundary 
conditions, provides the necessary equations to de-
fine the complete velocity field.  This in turn allows 
one to calculate the strain rates and hence the EDR 
in the wedge mechanism.  Below the wedge is con-
sidered to be a flow-around zone which is treated in 
a similar manner as the examples above.  These cal-
culations are detailed by Murff and Hamilton 
(1993).  Thus the problem can be set up in a similar 
manner to the rotating pile problem described above 
and solutions obtained by optimizing the upper 
bound solution with respect to ݖ ,ܿ ,ߙ௢, and ݎ௢, the 
latter being the radial extent of the wedge at ߠ ൌ 0.  
The solution has been exercised for a range of condi-
tions to determine ௣ܰ vs. depth profiles as we have 
previously done.  For example, such profiles are de-
veloped for a range of interface adhesion values and 
typical soil strength profiles. 

4.4 Generalized Plastic Limit Analysis- Macro-
Mechanisms 
The basic principles of generalized plastic limit 
analysis discussed above are applicable to pile prob-

lems of interest and so we again will consider only 
applications in this section. 

4.4.1 Applications 
As discussed previously, the macro-mechanism per-
spective is to look at problems in terms of forces and 
displacements rather than specific soil velocity fields 
with their accompanying detailed stress and strain 
fields.  The axial capacity mechanisms alone are 
straightforward and need little discussion although 
some discussion of how they interact with lateral 
mechanisms will be considered below.  The lateral 
mechanisms require a little more attention. 

In the lateral mechanisms we consider a defined soil 
resistance distribution along the pile which is a re-
sult of the soil failure mechanism but does not in-
clude it explicitly.  This force distribution may come 
from empirical methods such as the Matlock (1970) 
definition of ௨ܲ௟௧௜௠௔௧௘, numerical studies such as fi-
nite element analysis, or be inferred from limit anal-
ysis solutions as was done in the previous section 
where ௣ܰ was estimated.  These ideas can again best 
be explained by means of examples. 

Example 7 
Consider a rigid pile, loaded laterally at the top and 
free to rotate as shown in Figure 41.  For the purpos-
es of illustration we consider a simple case where 
the soil resistance on the pile, ܴ, is constant with 
depth.  The failure mechanism considered is rotation 
of the pile about a horizontal axis at depth ܮ௢ as 
shown in Figure 41. 

 
Figure 41:  Schematic of a rigid pile, loaded at the top and free 

to rotate 

The dissipation rate is then 

ሶܦ ൌ න ܴ ∗ ሻݕሺݒ ∗ ݕ݀
௅೛

଴ ሺ101ሻ

Note that both velocity and resistance change direc-
tions (signs) below ܮ௢ so that 
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ሶܦ ൌ න ܴ ∗ ሺܮ௢ െ ሶߚሻݕ ∗ ݕ݀
௅೚

଴
	

൅න ܴ ∗ ሺݕ െ ሶߚ௢ሻܮ ∗ ݕ݀
௅

௅೚

	
ሺ102ሻ

The external work rate ൌ ሶߚ௢ܮܪ  so setting these ex-
pressions equal and simplifying gives 

ܪ ൌ ܴ ቆܮ௢ ൅
ଶܮ

௢ܮ2
െ 	ቇܮ

ሺ103ሻ

Minimizing ܪ with respect to ܮ௢ then gives ܮ௢ ൌ
ܮ √2⁄ .  Substituting into Equation 103 gives 
ܪ ൌ ൫√2ܮܴ െ 1൯.  While this is a trivial solution, 
the approach is the same as for more realistic re-
sistance and pile descriptions as discussed below 

The piles for steel piled jackets are effectively fixed 
against rotation at the mudline and sufficiently deep 
that the pile will not “fence post”.  As a result of 
these conditions a possible failure mode will consist 
of formation of two plastic hinges, one at the mud-
line and the other at some depth below the mudline 
resulting in a shear type failure mode as shown in 
Figure 37(c) above.  Further a linearly increasing 
soil resistance, say ܴ௢ ൅ ܴଵݕ, is a more realistic 
model than a constant resistance.  At each plastic 
hinge the pile develops a plastic moment resistance 
of M.  These facts lead to an EDR in the soil of 

ሶܦ ௦ ൌ න ሺܴ௢ ൅ ܴଵݕሻ ∗ ൬1 െ
ݕ
௢ܮ
൰ ݕ௢݀ݒ

௅೚

଴
	

ሺ104ሻ

and an EDR due to the plastic moments of 
௢ݒ௣ܯ2 ⁄௢ܮ .  The external work rate is simply ݒܪ௢.  
Setting the work rate equal to the sum of the dissipa-
tion rates, cancelling ݒ௢, and solving for ܪ gives 

ܪ ൌ න ሺܴ௢ ൅ ܴଵݕሻ ∗ ൬1 െ
ݕ
௢ܮ
൰ ݕ݀

௅೚

଴
൅
௣ܯ2

௢ܮ ሺ105ሻ

Note that we could further generalize this expression 
by including any soil resistance function in the inte-
gral.  Further a free headed pile that forms a plastic 
hinge below the mudline, such as might be em-
ployed as an anchor, can be modelled by changing 
 .௣ܯ ௣ toܯ2

Equation 105 can be integrated analytically but it is 
a simple matter to set up numerical integration 
where the resistance function can be changed easily.  
Finding the optimum for the general case can be dif-
ficult but optimization routines such as the Solver 
Function© makes the process quite simple even for 
numerical integration.  Closed form solutions for the 

ideal cases, ܴଵ ൌ 0 and ܴ௢ ൌ 0, can be found easily 
using the standard approach as follows 

ܴଵ ൌ 0: ௢ܮ ൌ 2ඨ
௣ܯ

ܴ௢
⇒ ܪ		 ൌ 2ඥܯ௣ܴ௢

ሺ106ሻ

ܴ௢ ൌ 0: ௢ܮ ൌ ඨ
௣ܯ6

ܴଵ

య
⇒ ܪ		 ൌ ඨ9ܯ௣

ଶܴଵ
2

య

ሺ107ሻ

These solutions provide useful “back of the enve-
lope” equations that can provide quick insight into a 
problem. 

An additional, related problem of interest is the ca-
pacity of a laterally loaded pile where an anchor line 
is attached deeply embedded in the soil so that prox-
imity to the mudline has no influence.  Assuming a 
uniform soil resistance over the section of pile in 
question and a three hinge mechanism as shown in 
Figure 42, the problem is set up in a similar manner 
to that above. 

 
Figure 42:  Schematic of a three-hinge failure mechanism for a 

deeply embedded anchor line attachment point 

The ultimate capacity of the pile anchor is then 

ܴଵ ൌ 0: ௢ܮ ൌ 2ඨ
௣ܯ

ܴ௢
⇒ ܪ		 ൌ 4ඥܯ௣ܴ௢

ሺ108ሻ

As mentioned above it is relatively simple to set up 
numerical solutions that have considerably more 
complexity on a spreadsheet. 

Example 8 
Having explored the ultimate lateral capacity of sin-
gle piles to some degree, it is of interest to investi-
gate the capacity of pile systems.  Consider a simple 
4-pile example.  As shown in Figure 43(a), the pile 
images are projected onto a vertical plane aligned 
with the lateral load.  The planar capacity is then de-
termined for the projected systems as characterised 
in Figure 43(b).  The failure mechanism is assumed 
to be a virtual rotation, ߚሶ , of the system about a hor-
izontal axis through the point ݔ௢,  ௢.  The piles areݕ
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function of the axial load by including the axial 
load-plastic moment interaction relationship as a 
yield surface in the model so that rotation rate and 
axial velocity are generalized strain rates as dis-
cussed by Murff (1987).  Of course, it is also 
straightforward to include additional piles in the 
model. 

A recent innovative shallow foundation concept uses 
short “pin” piles in the corners of a mud mat to pro-
vide additional support and reduce the mud mat area 
for more efficient offshore handling and installation.  
The above mentioned pile system model can be 
modified easily by replacing the lower plastic mo-
ment mechanism with a rigid pile that kicks out be-
low the pile rotation depth. 

The ideas above are just a few of the modifications 
that can be incorporated in models previously dis-
cussed to provide better insight into foundation be-
haviour.  This emphasizes the significant role that 
innovation plays in constructing mechanisms.  Plas-
tic limit analysis provides a convenient set of rules 
for consistently analysing surprisingly complex 
models. 

5. Plastic Limit Analysis and the Limit 
Equilibrium Method 
It is sometimes argued that soils do not obey the as-
sociated flow rule and hence PLA methods do not 
reflect real behaviour.  Further the upper bound 
method gives results that are unconservative in most 
applications and hence limit equilibrium methods 
that focus on satisfying statics are to be preferred.  It 
might therefore be useful to put in perspective the 
concepts of plastic limit analysis as related to the 
limit equilibrium method.  First it should be pointed 
out that the collapse load estimate is usually not very 
sensitive to the assumption of associated flow.  As 
pointed out by Davis (1968) this is true even for fric-
tional materials where dilation is known to be signif-
icantly over predicted.  In a sense we can think of 
upper bound solutions as getting as close to equilib-
rium as possible for the proposed failure mechanism.  
The early limit equilibrium solutions by Coulomb, 
Rankine, and others were conceived well before the 
principles of plasticity were deduced.  In these mod-
els failure mechanisms were constructed and an at-
tempt made to satisfy equilibrium and the failure 
conditions along the hypothesized failure surfaces.  
As pointed out by Murff and Miller (1978) the limit 
equilibrium methods borrow from both the upper 
and lower bound ideas.  They resemble upper 
bounds in that mechanisms are proposed and they 
resemble lower bounds in the attempt to satisfy 
global equilibrium and yield.  However, they do not 

include checks to establish that the mechanisms are 
kinematically admissible nor that stress conditions 
within the mechanisms are statically possible. 

In most classic solutions such as Coulomb’s and 
Rankine’s, the solutions are in fact admissible while 
the process of imposing global equilibrium and yield 
is actually equivalent to formulating the upper bound 
equation.  These solutions generally do not rigorous-
ly satisfy equilibrium and yield in the small.  As 
such they are actually valid upper bound solutions as 
can be shown by comparing the solutions with an 
upper bound formulation.  As an example consider 
the solution for a laterally loaded pile using the 
wedge mechanism as proposed by Reese (1958) and 
shown in Figure 47.   

 
Figure 47:  Schematic of limit equilibrium solution using the 

wedge mechanism 

The solution proposed was to sum shear and normal 
forces acting on the various faces of the wedge in 
the vertical and horizontal directions and to solve the 
two resulting equations simultaneously.  This model 
includes the normal force on the wedge face.  It is 
unnecessary to include this force in the upper bound 
solution as it does no work nor dissipates energy in 
the deforming mechanism and a single, simpler 
equation results from the virtual work formulation.  
The upper bound solution as given in Equation 78 
above turns out to be identical to Reese’s limit equi-
librium solution.  Both solutions require minimiza-
tion with respect to the wedge angle to get the best 
solution i.e. the one closest to equilibrium.  This best 
solution while being a reasonable approximation is 
not the true mechanism and clearly does not satisfy 
equilibrium and yield.  This is most evident by the 
fact that the wedge failure surfaces do not intersect 
free surfaces at 45°.  Thus where the limit equilibri-
um method employs a kinematically admissible 
mechanism it produces the same result as the upper 
bound solution for that mechanism.  The upper 
bound method however is simpler in its formulation 
as shown here and more adaptable to complex con-
ditions.  For example in contrast to the limit equilib-
rium method the upper bound approach easily incor-
porates deforming regions in the mechanism and is 
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much more adaptable to non-homogeneous strength 
profiles. 

In some applications the ideas of the limit equilibri-
um method have been extended to non-standard 
problems where mechanisms are constructed of lines 
simulating “intuitive” failure surfaces, for example 
seeking to exploit weak layers.  Such mechanisms 
may or may not be admissible ones and hence can 
lead to rather arbitrary results.  To illustrate this 
point Figure 48 shows examples of some solutions 
that seem reasonable but are not in fact admissible. 

 
Figure 48:  Schematic showing example inadmissible failure 

mechanisms 

Figure 48(a) attempts to include the effects of mo-
ment loading in a planar mechanism.  Again this im-
plies a gap opening on the left side which is inad-
missible.  To include moment effects the mechanism 
must provide for rotation such that the moment does 
work and the soil deformation does not include sepa-
rations. 

Figure 48(b) includes rotation of the system about a 
horizontal axis below the footing. As such the veloc-
ity of the right corner of the footing, A, is greater 
than the points below it, say at B.  Thus if the wedge 
on the right side is rigid, a gap will form as shown.   
The mechanism can be made admissible by allowing 
the wedge to deform. 

Figure 48(c) shows a failure mechanism at a deeply 
embedded pile tip.  In this case advancing the pile 
tip requires the change in volume to be accommo-
dated in the mechanism.  Since the consistent soil 
model is incompressible (for clay) or dilatant (for 
sand) the volume change cannot be accommodated 
unless the mechanism intersects the soil surface.  
This will generally give a very poor result.  For deep 
embeddments, the conventional PLA methods can-
not be used and  one must resort to cavity expansion 
solutions such as proposed by Bishop, et al. (1945) 
in which the collapse pressure is a function of the 
elastic stiffness and the soil shear strength. 

6. Closing Comments 
It has been the intention of this paper to use simple 
examples to shine a light on the robust generality of 
PLA methods and to hint at their ability to obtain 
approximate and useful solutions to complex prob-
lems.  It is argued that, properly applied, these 
methods achieve the same thing that more traditional 
limit equilibrium methods achieve when correctly 
formulated.  Thus the argument here is by no means 
to abandon traditional methods but to use PLA 
methods to build on the limit equilibrium techniques 
and add to their generality and consistency. 

In cases where more rigorous methods such as finite 
element methods are to be used, PLA methods can 
play an important role.  Preliminary studies can be 
used effectively to design the finite element studies 
and they can be used very effectively to supplement 
the finite element studies as they are being carried 
out. 

PLA methods are thus important tools in the engi-
neer’s arsenal and with a little practice can be ex-
ploited to add surprising insight into even complex 
problems- and insight is what computation is all 
about. 
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9. Appendices 
 

Appendix I.  Upper Bound Calculations for Energy 
Dissipation Rates for the Brinch Hansen Mechanism 

 
This Appendix provides examples of detailed upper 
bound calculations of energy dissipation rates for the 
Brinch Hansen failure mechanism shown in 
Figure 15 including variable soil strength with 
depth.  These examples will only describe the right 
side of the mechanism for ݔ௢ ൏ 0.  With slight mod-
ifications in the values of ܴଵ and ܴଶ the calculations 
for the other components follow the same pattern.  A 
general description of the mechanism is provided in 
the main text. 

The rigid sector EFI slips along the arc EF due to the 
virtual rotation rate, ߚሶ , about the center of rotation O 
at ݔ௢, ݕ௢.  The energy dissipation rate (hereafter 
called EDR) for a uniform strength soil is then 

ሶாிܦ ൌ ாிݒ ∗ ௨ݏ ∗ ݈ாி ൌ ܴଵߚሶ ∗ ௨ݏ ∗ ܴଵߠଶ

ൌ ௢ଶݕ ൤tanିଵ ൬
௢ݔ ൅ ܤ
௢ݕ

൰൨ ሶߚ௨ݏ 	 ሺI‐1ሻ

Now, to generalize the result for a variable shear 
strength with depth we must express ݏ௨ as a function 



of local coordinates and integrate along EF as fol-
lows, 

ሶாிܦ ൌ න ሶߚ௢ݕ ∗ ሻݕ௨ሺݏ ∗ ߠ௢݀ݕ

୲ୟ୬షభ
௫೚ା஻
௬೚

଴

	
ሺI‐2ሻ

For simple strength variations, the integration can be 
done analytically but for general variations numeri-
cal integration may be required. Note that for a line-
arly increasing strength profile, common in offshore 
applications, ݏ௨ is as follows 

௨ݏ ൌ ௨௢ݏ ൅ ݕ݇ ൌ ௨௢ݏ ൅ ݇ሾݕ௢ሺ1 െ cos 	ሻሿߠ ሺI‐3ሻ

To calculate the EDR along FG we use a local coor-
dinate system centered at I as shown in Figure 15. 
Again the general case requires integration as fol-
lows, 

ሶிீܦ ൌ න ܴଵߚሶݏ௨ሺݕሻ ∗ ሺܴଶ െ ܴଵሻ݀ߠ
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ଶା୲ୟ୬

షభቀ
௫೚ା஻
௬೚

ቁ

గ
ସ

	

ሺI‐4ሻ

where 

ܴଶ ൌ ඥሺݔ௢ ൅ ሻଶܤ ൅ 	௢ଶݕ ሺI‐5ሻ

and the depth from the soil surface in local coordi-
nates is 

ݕ ൌ ሺܴଶ െ ܴଵሻ sin 	ߠ ሺI‐6ሻ

The EDR in the sector FGI is calculated using the 
same local coordinate system as for FG.  In this ra-
dial shear fan however the tangential velocity varies 
linearly along the radius, ݎ, as follows 

ఏݒ ൌ ሺܴଶ െ ሶߚሻݎ 	 ሺI‐7ሻ

The only non-zero strain increment term is then 

ሶ௥ఏߝ ൌ
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௥ݒ߲
ߠ߲ݎ

൅
ఏݒ߲
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െ
ఏݒ
ݎ
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െܴଶߚሶ

ݎ2
	 ሺI‐8ሻ

The maximum principal strain increment is then 

ሶ|௠௔௫ߝ| ൌ
ܴଶߚሶ

ݎ2
	 ሺI‐9ሻ

And the EDR is then 

ሶிீூܦ ൌ	

න න
ܴଶߚሶ

ݎ
∗ ሻݕ௨ሺݏ ∗ ݎ݀ߠ݀ݎ
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ሺI‐10ሻ

where 

ݕ ൌ ݎ sin ߠ ሺI‐11ሻ

The velocity along GH is also equal to ܴଵߚሶ  so the 
EDR is integrated along GH.  The local coordinate 
system for this calculation is a rectangular system 
with origin at G and the ݔ′ axis along GH.  The EDR 
is then 

ሶீுܦ ൌ න ܴଵߚሶ ∗ ሻݕ௨ሺݏ ∗ ᇱݔ݀
ோమିோభ

଴

	
ሺI‐12ሻ

The depth y in local coordinates is then 

ݕ ൌ
ܴଶ െ ܴଵ െ ᇱݔ

√2 ሺI‐13ሻ

The triangular region GHI is deforming to conform 
to the varying velocity along GI.  Using the same 
coordinate system as for GH, the only non-zero ve-
locity is 

௫ᇲݒ ൌ ሺܴଵ ൅ ሶߚᇱሻݕ ሺI‐14ሻ

Thus the only non-zero strain increment component 
is then 
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ሺI‐15ሻ

Since the strain increment is a constant, we can carry 
out the integration in yet a simpler coordinate sys-
tem with origin at G and the ݔ′′ axis parallel to the 
soil surface.  The EDR is then 

ሶீுூܦ ൌ 2 න ᇱᇱݕ

ோమିோభ
√ଶ

଴

∗ ሻݕ௨ሺݏ ∗ 	ᇱᇱݕ݀
ሺI‐16ሻ

where 

ݕ ൌ
ܴଶ െ ܴଵ
√2

െ ᇱᇱݕ
ሺI‐17ሻ

As mentioned above the calculations for the remain-
ing components follow in a similar manner. 

Appendix II.  Upper Bound Calculations for Energy 
Dissipation Rates for the Squeeze Mechanism 

 
This Appendix provides examples of detailed upper 
bound calculations of energy dissipation rates for the 
squeeze failure mechanism shown in Figure 19.  The 
EDRs are determined within the continuous thin lay-
er ABCD, at the interfaces AD and BC, along the 
slope CE and at the thin layer-wedge interface CD. 
The mechanism is symmetric so only the right hand 
side is detailed below. 



In region ABCD it is assumed that the vertical ve-
locity is given as  

௬ݒ ൌ ௢ݒ ቀ1 െ
ݕ
ݐ
ቁ	 ሺII‐1ሻ

Where ݐ ൌ  thin layer thickness.  Since the defor-
mation field is incompressible we can say that 

ሶ௩ߝ ൌ ሶ௫ߝ ൅ ሶ௬ߝ ൌ 0	 ⇒ 	 ሶ௫ߝ ൌ
௢ݒ
ݐ
	 ሺII‐2ሻ

The EDR within region ABCD is then 

ሶ஺஻஼஽ܦ ൌ
௢ݒ௨ݏ2
ݐ

	 ሺII‐3ሻ

Since the EDR is constant throughout ABCD the to-
tal EDR is then simply ൌ  .ܤ௨ݏ

It can be shown that ݒ௫ in region ABCD is a func-
tion of ݔ only by integrating Equation II-2 to get 

௫ݒ ൌ
௢ݒ
ݐ
ݔ ൅ ݂ሺݕሻ	 ሺII‐4ሻ

Since ݒ௫ ൌ 0 at ݔ ൌ 0 the function, ݂ሺݕሻ, in Equa-
tion II-4 is zero.  Assuming the interface strength at 
BC is ݏ௨, the dissipation along BC is 

ሶ஻஼ܦ ൌ ௢ݒ௨ݏ න
௢ݒ
ݐ
ݔ݀ݔ
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ଶൗ

଴
ൌ
ଶܤ௢ݒ௨ݏ
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ሺII‐5ሻ

If we assume full adhesion of the soil along AD, the 
EDR is equal to that along BC or for no adhesion the 
EDR along AD is zero. 

From Equation II-4, the velocity ݒ௫ along CD is 
equal to ݒ௢ܤ ⁄ݐ2 .  The wedge CED then remains rig-
id and the EDR along CE is 

ሶ஼ாܦ ൌ
ܤ௢ݒ

ݐ2 cos ߠ
∗

ݐ
sin ߠ

∗ ௨ݏ ൌ
௨ݏܤ௢ݒ

2 sin ߠ cos ߠ ሺII‐6ሻ

At the interface CD the vertical velocity of the 
squeezing zone is downward (Equation II-1) and the 
vertical velocity of the wedge is upward given by 

௬ݒ ൌ െ
ܤ௢ݒ tanߠ

ݐ2
	 ሺII‐7ሻ

Because the velocities are in opposite directions the 
relative velocity is the relevant value to calculate the 
dissipation.  This is a function of y and is therefore 
integrated along CD to give 

ሶ஼஽ܦ ൌ ௨ݏ௢ݒ ൬
ܤ tan ߠ
2

൅
ݐ
2
൰	 ሺII‐8ሻ

The EDR terms determined here are summed, multi-
plied by two (for symmetry) and set equal to the ex-

ternal work rate, ܸݒ௢.  The resulting vertical load ܸ, 
given in Equation 37 in the main text is then mini-
mized with respect to ߠ to give the best upper 
bound. 


