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Abstract

This paper will describe a range of techniques for estimating the capacity of offshore foundations which has
always been a main issue in foundation design and remains so today. In so doing the paper will, however,
take a tack that is slightly out of the mainstream - emphasizing methods of plastic limit analysis rather than
more traditional approaches. It begins with a brief history of offshore geotechnical developments describing
how design methods have evolved for shallow foundations and pile foundations and emphasizing the types of
loads, site conditions, and foundation geometries encountered. A number of simple solutions are provided
with detailed example problems. It is the author’s view that plastic limit analysis methods have the potential

to supplement and enhance more traditional methods.

1. Introduction

I am sincerely honoured to be invited to give the in-
augural McClelland Lecture. | am humbled by the
task before me as | sincerely wish to produce some-
thing that Bram McClelland would have appreciated.
At first | leaned toward a subject that more charac-
terised his expertise and interest- engineering geolo-
gy, site investigation, and foundation design. On
further reflection however I concluded that Bram de-
lighted in developing engineers who followed their
own interests, not in his image, but in their own
unique ways. That is the kind of leader he was. This
epiphany led me to select a topic that has long been
a passion of mine - bridging the gap, sometimes
chasm, between theory and practice. | believe this is
what he would have wanted from me.

Estimating foundation capacity has always been a
central issue in foundation analysis and design.
Many different methods are employed in this prac-
tice and many of those involve ad hoc assumptions
and empirical models. While these methods have
served the profession well, advancements have been
made that have not always been fully exploited. In
this paper we will focus on one such advancement,
plastic limit analysis (PLA), a methodology that is
theoretically sound, internally consistent, and sur-
prisingly simple to apply. In my experience | have
found this approach can lend significant advantages
to some of the more traditional methods. The fact
that PLA is underutilized by practicing engineers

stems partly, | think, from a literature that tends to
be heavily mathematical and often arcane. The main
purpose of the paper then is to take a small step to-
wards demystifying the concepts for the mainstream
using a number of detailed examples. The examples
are intentionally simple ones so that detailed results
can be presented without getting too bogged down in
the theory.

Many of the problems encountered in offshore foun-
dation engineering are particularly well suited for
applying PLA methods. We will first provide a gen-
eral overview of foundation types that are used in
the offshore environment. This will be in an histori-
cal context working the way from early offshore be-
ginnings such as piers and jackets to modern issues
of deep water applications. In the illustrations of the
analysis techniques involved we will define a limited
number of idealised foundations along with typical
loading scenarios. We will then demonstrate how
capacity estimates can be made using a range of
available solutions in the framework of PLA. Typi-
cal cases will be analysed including shallow founda-
tions, pile foundations, and systems of these types.
In the process we will put special emphasis on char-
acterising results using multi-axial failure interaction
diagrams. Finally we will discuss the similarities
and differences in PLA methods and more tradition-
al limit equilibrium approaches.



2. A Brief History

Offshore drilling was initially carried out from piers
extending from the shore as early as the late 1800’s
as shown in Figure 1. Over the next 50 years, “off-
shore drilling” was done from a wide variety of plat-
forms including barges, piled platforms, and dredged
islands. These platforms were sited in the shallow
bays, marshes, canals etc in coastal areas such as the
Gulf Coast, California Coast, Lake Maracaibo, and
the Caspian Sea among others.

Figure 1: Drilling and production from piers in late 19" cen-
tury

The first fixed offshore structure out of the sight of
land, shown in Figure 2, was installed 10% miles
from the Louisiana shore in 1947 by Brown and
Root for the Kerr-McGee Corporation. The follow-
ing is a summary of a description in the book, “Off-
shore Pioneers” (Pratt, et al, 1997). The drilling
deck was 38 feet by 58 feet, barely large enough for
the drilling derrick. The platform was tended by a
large supply barge 260 feet long. The mooring sys-
tem for the barge consisted of 19 wooden pilings or
dolphins arranged to buffer the platform from the
barge. The platform was founded on 16, 24-inch
steel pipe piles driven into the seabed 104 feet. The
structure itself was vertically sided and resembled
scaffolding with the piles braced with 9-3/4 inch
pipe to a point two feet above mean low tide. Pre-
sumably the structure had mudmats to provide tem-
porary support prior to pile installation. Whether
there was any account taken of the lateral loads is
unknown but the overturning loads were relatively
small owing to the approximately 18 foot water
depth. It is unlikely that there was any knowledge of

the soil properties and the axial pile capacity was
probably based on pile driving formulae such as the
Engineering News Method (Teng, 1962) which was
common practice at the time. The installation of this
drilling system marked the birth of the modern off-
shore industry.

s Louisiana
September 9, 1947
Ship Shoal Block 32

Figure 2: Kerr McGee installed the first offshore platform out
of the sight of land

The installation of the Kerr-McGee structure was
followed in rapid succession by construction of a
number of other structures. Platform evolution took
two distinct paths: fixed platforms for production
and temporary platforms for exploration drilling.
The jack-up or self-elevating platform, shown in
Figure 3(a), and the floating system, shown in Fig-
ure 3(b) became the favoured concepts for explora-
tion drilling structures but other types such as sub-
mersibles and posted barges, especially for very
shallow water, have also been employed. We will
not discuss these concepts further but concentrate on
the foundations for permanent production platforms.

(b)

Figure 3: Exploration drilling (a) jack-ups operate in water

depths of approximately 100 m or less (b) floating vessels op-
erate in deep water

The prefabricated, pile founded template structure,
termed steel, piled jacket or SPJ, soon emerged as
the structure of choice for permanent production fa-



cilities. These structures have bases larger than the
decks, that is, the sides were sloped or battered to
provide improved resistance to lateral loads and
overturning moments. The concept evolved to ad-
dress various fabrication, installation, and structural
performance issues that were encountered. A sche-
matic of a typical structure is shown in Figure 4(a)
with an actual structure shown in Figure 4(b). Note
the two types of piles. Main piles are inserted in and
welded to the jacket legs and skirt piles are inserted
and grouted into sleeves attached near the base of
the structure. This configuration distributes the
overturning loads relatively evenly and adds some
redundancy to the overall foundation capacity. Be-
cause of the very soft soils that occur where most of
these structures are placed, these jackets also have
shallow foundations called mud mats that are used
for temporary support before and during the pile’s
installation.  This basic structural/foundation con-
cept albeit with significant improvements and site
modifications has remained the primary production
platform for “shallow water” up to the present.

€Y (b)
Figure 4: Fixed bottom structures (a) schematic (b) shallow
water platform

SPJs have been employed in a wide range of water
depths and load environments, such as waves, cur-
rents, ice and earthquakes. The tallest platform of
this type is Shell’s Bullwinkle structure at
526 metres tall (1,725 feet) in a water depth of
412 metres (1,350 feet). Water depths in this range
are considered about the practical limit for SPJ-type
platforms. The fundamental natural period becomes
such that the dynamic response under wave loading
is a limiting condition and it becomes more cost ef-
fective to use floating structures with very long natu-
ral periods.

The major discoveries in the North Sea, starting in
the late 1960s, posed some different challenges to
the offshore industry from those in the Gulf of Mex-
ico. The huge fields, severe winter storms and the

hard, flat bottom conditions were often addressed
with a new structure type, the concrete, gravity base
structure or GBS, as shown in Figure 5. The GBS
was found to have significant advantages over con-
ventional platforms. These structures have large di-
ameter, single piece bases, sometimes 100 metres or
more with shear skirts that penetrate the seabed and
provide lateral resistance to waves of 100 feet or
more. The foundation is essentially a shallow foun-
dation but the complex multi-axial loading environ-
ment and non-homogeneous soil conditions present
a challenge not only for site investigations and inter-
pretations but for foundation capacity analysis as
well.

Figure 5: Concrete gravity structures are widely used in the
central north sea

Major discoveries in very deep water such as the
Gulf of Mexico, the east coast of South America,
and the west coast of Africa have presented still new
challenges for the marine geotechnical engineer. In
these areas floating systems are primarily used to
develop the resources and mooring of these systems
becomes a major focus. There are a number of float-
ing system types and many variations on each type.
The anchors for the mooring systems include a range
of concepts including piles, drag embedment and
vertically loaded anchors, and suction caissons.

The tension leg platform with vertical tethers or ten-
dons is usually anchored with piles to resist tension
or uplift loading as shown in Figure 6(a). A few of
these structures have been anchored with large
gravity bases which typically use ballast to resist
significant parts of the uplift load, for example the
sustained uplift, whereas inverse bearing capacity
and skirt friction may be designed to resist the peak
environmental loads.
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Figure 6: Deep water production systems (a) tension leg plat-
form (b) SPAR system (c) floating production system

Among the other floating structure types are the
SPAR shown in Figure 6(b) and the floating produc-
tion system or FPS shown in Figure 6(c). These
structures have mooring lines that are anchored as
discussed above. In addition to these concepts there
are a range of submerged, bottom founded facilities
deployed in deep water including manifolds, bases
for steel catenary risers, subsea production systems,
pipelines and pipeline end terminals (PLETS) to
name a few. These structures are generally subject-
ed to multi-axial loads and are often supported by
shallow foundations or mud mats although suction
caissons are also used. Another approach to support
such facilities is to augment mud mats with short
relatively rigid, pin piles set in the mat’s corners.
This added resistance can help to reduce the neces-
sary mat dimensions which can save on installation
costs. The number of different applications for mat
and mat-pile foundations seems to be growing rapid-
ly to include foundations on which to temporarily
park various tools and hardware used in develop-
ment.

In this paper we will consider several of the founda-
tion concepts discussed above. We will idealise the
foundation and typical load conditions and demon-

strate methods for estimating ultimate capacities. As
such, a brief mention of the concept of idealisation
seems in order. In his excellent book, Engineering
Plasticity (1969), C.R. Calladine had this to say:

“...how can mathematics, which is so clear and pre-
cise, and in so many ways simple, be applied to the
physical world which, although apparently con-
sistent, is many sided and extremely complex? The
key to the solution of this problem lies in the making
of idealisations of the physical world. Now we are
all familiar with the process of making idealisations,
but we may indeed be so familiar with it that we al-
most lose sight of the fact that we are making ideali-
sations at all.”

It is important to keep in mind the underlying ideali-
sations involved when we carry out our calculations.
Given that we must idealise our problems then, how
do we use the results to predict behaviour or carry
out designs. In this regard | am reminded of a quote
(the source of which has unfortunately been lost)
that my first manager cited early in my career - a
quote that | have always kept in my tool kit.

* the purpose of computing is insight, not numbers”

Although we are probably all guilty of getting
bogged down in the numbers from time to time, it is
insight that we are trying to achieve in our calcula-
tions. How sensitive are our solutions to things we
do not know so well? How likely are we to err in
characterising the input to our models? How well do
our idealisations represent reality? What are the
consequences of performance of our foundations
outside expected bounds?

While our attempt will be to illustrate general ap-
proaches to solving a range of foundation problems,
we will consider shallow foundations and piles as
our primary examples and for these foundation
types, the idealisations implicit in our methods. We
will focus almost exclusively on analysis under un-
drained conditions, partly because it makes the ex-
planations simpler but partly because it is the more
common offshore situation.

We will first consider the analysis and design of
shallow foundations.

3. Shallow Foundations

As discussed above there are a number of different
offshore applications for shallow foundations and
each one brings its own set of issues. In the follow-
ing we will discuss a number of the design issues
and how these can influence the idealisation used in



the analysis and our interpretation of analysis re-
sults.  We will then briefly discuss conventional
analysis methods leading up to more detailed discus-
sions of plasticity analysis methods for situations
that fall outside the realm of classical methods.

3.1 Practical issues for designing offshore shallow
foundations

3.1.1 Strength Characterisation

One of the primary inputs to any capacity calcula-
tion is the soil strength profile. Typical offshore
strength profiles are soft clays although sands and
overconsolidated clays are also encountered. Of
course the strength characterisation must be con-
sistent with the method selected for analysis. The is-
sues that must be addressed include:

o |s the relevant strength characterisation drained or
undrained behaviour? This will of course depend
on the load characteristics and the drainage con-
ditions in the soil and at soil-foundation interfac-
es.

e What is the resolution of the site investigation?
Site investigations for pile founded structures
sometimes have rather coarse sampling intervals
so that associated shallow soil profiles may have
significant uncertainty in the region critical to
shallow foundation performance.

o |s the strength profile best idealised as uniform,
linearly increasing, layered or...? Conventional
bearing capacity formulae are based on uniform
strength profiles. Limited analytical solutions for
non-uniform profiles are also available and of
course numerical solutions such as finite element
methods are capable of analysing very general
profiles.

e What is the interface soil strength? There is al-
most always a thin veneer of very weak soil right
at the mudline such that a flat plate placed on this
layer would have little sliding resistance under
undrained conditions. This often suggests the
need for skirts or at least assessing how much the
interface strength will improve due to consolida-
tion?

e Will the soils be subjected to cyclic loading?
How will the strength profile be modified to ac-
count for this?

e Is scour an issue? Can scour undermine the
foundation or reduce its effective embedment?

3.1.2 Load Characterisation

The load characteristics also have a significant influ-
ence on problem idealisation. The issues that must
be addressed include:

e |s the foundation subjected to multi-axial load-
ing? The primary load of interest is often a verti-
cal load but modifications to analysis methods
can account for lateral and moment loading as
well. Torsional loading is a case that needs spe-
cial treatment.

e How do the loads vary with time? Are the loads
of short duration such as wave or earthquake
loading or are the loads sustained?

e |s part of the foundation subjected to uplift load-
ing? Will the foundation have to be removed af-
ter its use? If so how will the suction be broken?

e Is the foundation to be placed on a slope which
would result in increased lateral loading and
overturning?

e If skirts are employed, is the self weight of the
structure at installation adequate to achieve full
penetration?

3.1.3 Foundation Geometry
The foundation geometry will clearly influence the
methods of analysis. Issues include:

e What is the foundation shape? Analytical solu-
tions are mostly limited to strip footings and cir-
cular footings. Empirical adjustments are re-
quired for rectangular footings. Other shapes
have to be treated as special cases.

e Does the foundation have skirts? When skirts are
included, conduits are required to allow water to
escape from the skirt compartment during place-
ment on bottom.

e Does the foundation have holes in the base to re-
duce consolidation times? Further, holes can
squeeze out some of the soft soil at the interface
and also reduce the time required to relieve suc-
tion forces if foundation removal is required.

¢ |s the foundation a single footing or a system of
footings such as a mudmat system for a platform?
Designing a foundation within a system of foot-
ings requires consideration of the system as a
whole. For example the system performance will
affect the loads that are applied to any individual
footing.

The above are some of the considerations that
should be taken into account when developing a
model for analysing a shallow foundation, carrying
out the calculations, and interpreting the results.

3.2 Conventional Methods

3.2.1 Theory

In this section we will discuss conventional bearing
capacity equations as well as “exact” solutions to
idealised conditions. The development of classical
methods for assessing the bearing capacity of shal-



low foundations is built on Prandtl’s solution (1921)
for a strip footing on the surface of a weightless,
frictional material with cohesion and the extension
by Reissner (1924) which adds the effect of sur-
charge to Prandtl’s solution. Although we are con-
centrating on undrained behaviour, the relevant solu-
tion is a subset of the general frictional models and
hence friction will have to be briefly considered.
Prandtl developed his solution from first principles
for the two dimensional problem of a strip footing.
The two dimensional governing differential equa-
tions of equilibrium provide two equations in three
unknowns: normal stresses o, and a,, and the shear

stress 7, as shown in Figure 7.
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Figure 7: General stress state in a body under load

The required third equation is the yield condition for
the material, in this case the Mohr-Coulomb failure
criterion:
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The solution is normally written in the form:
V/A =cN, + qN, )

where V is the total vertical capacity per unit length,
A is the footing area per unit length, c is the soil co-
hesion, g is the effective surcharge pressure at the
level of the footing-soil interface, and N, and N, are
dimensionless functions of soil friction angle, ¢.
Note that for a material with no cohesion and no
surcharge the theoretical bearing capacity for the
weightless material is zero. The forms of the func-
tions, N, and N, are well documented in the litera-
ture, for example see APl RP2A. For the special
case of ¢ = 0 i.e. undrained loading, we substitute
s, for c to denote undrained shear strength. For this
case the solution is N, =2+m and N, =1

Figure 8 shows one of the possible failure mecha-
nisms corresponding to the characteristic stress solu-
tion (although mechanisms are not necessarily
unique, the calculated capacity is) for the undrained
solution. The solution shown consists of rigid 45°,
right triangular wedges beneath the footing and
along the free surface. The transition zone between
the two is a radial shear fan in which the radial ve-
locity is zero and the angular velocity vy is constant.
As we will see in a subsequent section, elements of
this solution are useful in constructing approximate
solutions to more complex problems.
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Figure 8: Conventional bearing capacity failure mechanism

The Prandtl equations have been modified to include
a semi-empirical term to account for the added
strength of the soil due to self-weight such as pro-
posed by Terzaghi (1943) giving:

V/A = cN, + qN, + 0.5yBN, 3)

where y is the effective unit weight, B is the footing
width, and N, is a dimensionless function of ¢.

Terzaghi also used a value of 5.7 for N, rather than
the theoretical solution, 5.14. The term N, was not
rigorously derived but was based on adhoc assump-
tions regarding the stress conditions within the fail-
ure mechanism resulting from soil self weight.
There are numerous values for the N,, term found in
the literature (Vesic 1972) and because of the sensi-
tivity to friction angle the value of the N, term var-
ies widely. Clearly the self weight term in the equa-
tion becomes relatively more important as the width
of the footing increases. Terzaghi (1943) also modi-
fied the equation to account for embedment and the
shape of the foundation and various other correc-
tions for these effects have also been published, e.g.
Brinch Hansen (1970) and Meyerhof (1953).

A number of modifications to the classical equation
have been made by subsequent workers in the field
to include the effects of lateral loading and overturn-
ing moment.  Using Prandtl’s approach, Green
(1952) derived a rigorous solution to the problem of
inclined loading of a rigid punch (footing) on a pure-
ly cohesive material (undrained strength) as follows:



/= sull+m =20 + cos(2w)] (4)

where:
_ 1 -1<T>
w= 2sm s, )

where 7 is the average shear stress, H/A, where H
is the lateral load. Figure 9(a) shows the failure
mechanism corresponding to this solution and Fig-
ure 9(b) shows the normalized V vs. H interaction
diagram. Figure 9(b) also shows the interaction dia-
gram for a case with increasing soil strength as will
be discussed later.
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Figure 9: Green’s solution (1955) for footing under inclined
load (a)mechanism (b)interaction diagram

Note the similarities to the mechanism for pure ver-
tical load. Meyerhof (1953), Brinch Hansen (1970),
Vesic (1975), and others have proposed load inclina-
tion correction factors that approximate the behav-
iour of this solution. This solution satisfies equilib-
rium within the mechanism but according to
Houlsby and Puzrin (1999) the stress state has never
been extended into the rigid region which is required
to be considered a complete solution. Interestingly it
can be shown to be an upper bound as will be
demonstrated in a subsequent section.

In cases where moments are applied to the footing,
the eccentricity or effective offset of the vertical
load, e, is:

e=M/Q (6)

To account for this effect, Brinch Hansen (1970)
proposed that the footing area be reduced such that
the centroid of the effective area of the reduced foot-
ing is at the point of action of the equivalent offset
vertical load. An example of this modification is
shown in Figure 10. This is a conservative approx-
imation as it satisfies conditions for a lower bound
solution, that is, it satisfies equilibrium and can be
shown to be at or below yield.
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Figure 10: Brinch Hansen’s eccentricity correction

Subsequent to the publication of these solutions a
number of “exact” solutions have been found using
finite difference techniques to integrate the two di-
mensional governing equations. Sokolovskii (1965)
published a book of such solutions including prob-
lems of bearing capacity, retaining walls and slopes
under varying boundary conditions. Cox, et al.
(1961) published solutions for the bearing capacity
of a circular footing on the surface of a weightless,
Mohr-coulomb material. This was extended to in-
clude materials with weight by Cox (1962).

In 1973, Davis and Booker published a finite differ-
ence solution to the problem of undrained bearing
capacity of a strip footing on the surface of a soil
with increasing strength with depth. The solution
was presented in the following form:

kB
Q/A =F [(2 + )5y, +T]
(7)
where s, is the soil strength at the surface (footing
soil interface), k is the rate of increase in undrained
strength with depth, and F is a dimensionless func-
tion of the parameter kB/s,,,. This solution explic-
itly describes the important effect of the strength
gradient on the unit bearing capacity. For example it
shows that a wider footing will have higher unit ca-
pacity since the failure mechanism is forced deeper
into the soil where the strength is greater.



A number of empirical modifications to the above
solutions to account for real world complexities have
been published. For example, various solutions for
layered soils such as a soft layer overlying a hard
layer (Brown and Meyerhof, 1969) or sand over clay
(Hanna and Meyerhof, 1980) are available to revise
designs as required.

3.2.2 Applications

Probably the earliest applications for bearing capaci-
ty theory in the offshore were for designing mud-
mats, the temporary footings used to support a fixed
bottom SPJ prior to placement of the piles. The first
edition of the API recommended practice, RP2A has
a very simple section which provides formulae for
the vertical capacity of a surface footing on clay and
sand. For example the first edition (October 1969)
of RP2A for “mats and spread footings” on clay
states, in its entirety:

“The ultimate vertical bearing capacity, g, of clay
shall be resolved by the equation:

q=7.4c+np, (8)

where c is the undrained shear strength of clay and
Do is the effective overburden pressure.”

There are several things to note regarding this rec-
ommendation.

e The equation was intended for vertical load only
and hence was intended only for support of the
SPJ’s on-bottom weight. It does not take into ac-
count the lateral and overturning loads that are
likely to occur even in a mild environment when
an “operational” storm occurs before the piles can
be installed. There is no reference to sliding sta-
bility under lateral load. SPJ mudmats were gen-
erally flat, steel or timber mats that sat directly on
the unprepared seabed. As such the sliding re-
sistance of the mats was almost negligible. Fig-
ure 11 shows typical mudmat layouts for SPJs.
Probably the reasons there were not more inci-
dents of sliding off station were the lateral re-
sistances of partially penetrated horizontal mem-
bers at the mudline and the extensions of
structure legs, called leg stubs, that typically pen-
etrate into the soil several feet.

78 ft.
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Figure 11: Mudmat layout for steel piled jacket (a) schematic
of shallow water platform mudmats (b) deeper water mudmats

e The factor 7.4 is the product of 5.7 (Terzaghi’s
strip footing factor) and 1.3, Terzaghi’s shape
factor for a square or circular footing, that is, the
provision implicitly assumes the mat shape. This
version is somewhat unconservative as the bear-
ing capacity factor is high and a rectangular vs.
strip footing shape is implicitly assumed.

e The equation is for a uniform strength soil profile
and does not account for the more typical off-
shore case of an increasing strength with depth.
The engineer was faced with picking an appropri-
ate shear strength whereas no guidance is offered
in RP2A.

e The RP prescribes a factor of safety of 2.0. One

issue that immediately arises is the possibility
that the mats will penetrate slightly into the sea-
bed because of the weak soils that are typically
found on the seabed. Oftentimes the strength se-
lected was taken from shallow samples that were
first, not representative of the increasing strength
profile and second, probably disturbed as near
mudline samples tended to be. This combination
of safety factor and very conservative strength as-
sessment sometimes led to excessively large
mudmats and in fact cases occurred where the en-
tire base of an SPJ was one continuous mat.
This problem arises when the recommended safe-
ty factor is taken literally. In this case no penetra-
tion of the mats was allowed since if a mat pene-
trated it was by strict definition at a safety factor
of 1.0. As a practical matter however small pene-
trations are not particularly harmful where the
strength gradient is significant as the increasing
strength profile tends to be a self correcting fea-
ture of the system. In this case it is often possible
to bound the potential penetration and judge
whether that is an acceptable outcome.

e The equation is intended for a single footing only,
not for a system of footings.

RP2A also had a brief section for footings on sand
which has many of the same issues. These two sec-
tions comprised the only guidelines for shallow



foundations and remained unchanged through sever-
al editions. Again no provisions were made for slid-
ing stability. A more comprehensive section for
shallow foundations was finally added to RP2A in
the tenth edition published in March 1979. In this
edition the guidelines published by Vesic (1972) in
the Foundation Engineering Handbook were the
primary source and included most of the classic
bearing capacity concepts discussed above including
independent checks for sliding stability. These addi-
tions were still intended primarily for the design of
SPJ mudmats but their addition was inspired by the
introduction of gravity based structures (GBS) in the
North Sea in the decade of the 1970s.

As discussed earlier the GBS is a large diameter
structure that is especially suited for the hard, flat
sea beds in parts of the central North Sea. For most
of these structures the controlling design loads are
lateral loads such that the critical failure mechanism
is sliding. As such the importance of establishing an
accurate soil strength profile near the seabed became
apparent and one of the key innovations was the ad-
dition of skirts to the base of the structure. These
skirts were usually thin steel sheets that penetrate
vertically into the seabed, typically one to three me-
tres in length, and provide a positive shear connec-
tion with the sea floor. The addition of skirts to the
base of a mat was not without precedent. For exam-
ple, some mat-type jack-up rigs have skirts but these
are usually limited to the periphery of the mat. As
such they add some passive resistance but do not
necessarily force a sliding failure on a plane through
the skirt tips. An example of a skirted mat is shown
in the schematic in Figure 12. The skirts are ar-
ranged in a grid pattern on the base of the structure
with the spacing of the grid small enough to ensure
the critical sliding mechanism is at the tips of the
skirts. This recognition of the need for skirts to de-
velop lateral resistance had a carryover effect for
other shallow foundations such as mudmats that
were to be placed on an unprepared seabed in other
offshore developments and is an important design
element today. A discussion of the importance of
skirts was included in the 10" edition of APl RP2A.
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Figure 12: Schematic of shear skirts

The shallow foundations additions made in the 10"
Edition of RP2A have been maintained with minor
revisions to the present day 21% Edition. However
very recently a separate publication, RP2 GEO has
been published which provides significantly more
detail on foundation design. This document is in-
tended to support various API publications regarding
offshore systems such as RP2A (fixed bottom struc-
tures), RP2SK (Moorings), and RP2T (TLP founda-
tions). An excellent detailed description of RP2
GEO including a detailed background was published
by Jeanjean, et al. (2011).

3.3 Plastic limit analysis — detailed mechanisms

In this section we will discuss methods for analysis
of shallow foundation using plastic limit analysis.
Such techniques are approximate methods which are
less rigorous than the exact characteristics solutions
but much more flexible in their ability to address
more complex problems such as non-homogeneous
soils, multi-axial loading, foundation embedment,
etc.

3.3.1 Theory

Plastic limit analysis for this discussion refers to the
upper and lower bound theories of plasticity. The
upper bound method is much more flexible and easi-
er to apply than the lower bound method and hence
will be the primary topic of discussion. It has the
added advantage of sharing many of the attributes of
the so called limit equilibrium method which is the
geotechnical engineer’s traditional approach to solv-
ing capacity problems. The bound theorems were
elucidated by Drucker, et al. (1952). A version of
the upper bound theorem due to Calladine (1969) is
as follows:

“If an estimate of the plastic collapse load of a body
is made by equating internal rate of dissipation of
energy to the rate at which external forces do work
in any postulated mechanism of deformation of the
body, the estimate will be either high or correct.”



This requires that we (1) construct a possible col-
lapse mechanism that is kinematically admissible
(satisfies the volumetric constraints within the body
i.e. the material does not separate or penetrate other
material and satisfies the velocity boundary condi-
tions); (2) derive a virtual work equation by setting
the work rates of external loads to the internal ener-
gy dissipation rates (EDR) within the body; (3) solve
the equation for the unknown external load or scale
factor for a load envelope; and (4) repeat the process
varying geometric parameters (if any) describing the
mechanism to find the minimum collapse load for
that mechanism.

The validity of the bound theorems is dependent on
the following standard assumptions of plasticity the-

ory.

e The yield surface, f(o;;) = 0, is convex in stress
space.

e Principal stresses and principal strain rates are
aligned in stress space.

e Plastic strain increments, &;;, are normal to the
yield surface such that:
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where A is a positive scalar. This equation is some-

what abstract and | have found students have diffi-

culty visualizing its meaning. Conceptually it means

that the stresses that brought the material to yield are

the ones that control the strain directions. For ex-

ample consider Figure 13 which shows a simple

schematic of a yield surface in two dimensional
stress space.

\ Gy, él
Figure 13: Schematic of yield surface showing normality of
strain increments

As shown, if the stress state is primarily o, the pri-
mary strain direction is in the &; direction and like-
wise for other stress states. Since the material
stress-strain behaviour is non-linear and history de-
pendent it is only possible to determine the strain in-

crement directions independent of the overall
boundary value problem solution. For a given point
on the yield surface it is possible to determine the
relative values of the strain increment components,
for example:

of
£, / do,

& O
0
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since the scalar A cancels in the ratio. There are two
possible modes of deformation in a plastically de-
forming material: tangential slip along a failure sur-
face or slip plane and continuous deformation in the
plastic continuum. The EDR referred to in the upper
bound theorem can be expressed in terms of strain
increments for a given yield condition as demon-
strated, for example, by Drucker and Prager (1952).
They derived the dissipation rates for a generalized
von mises yield condition for a frictional material
with cohesion. Such dissipation equations have
been derived for materials obeying other yield con-
ditions. Of particular interest for the purposes here
is the Tresca or maximum shear stress criterion for a
purely cohesive material. The dissipation equations
for this material for the two failure modes is

Slip on a failure surface: D = s,v, (11)
and
Continuous deformation: D = 25,|¢|max (12)

where v, is the relative slip velocity on the failure
plane, s, is the undrained shear strength, and |€|,,4x
is the absolute value of the numerically largest prin-
cipal strain increment. These equations allow us to
calculate the energy dissipation rate for any admissi-
ble failure mechanism using virtual work principles.

Before discussing applications we should point out
that there are a number of corollaries to the bound
theorems that can be extremely useful as discussed
by Chen (1975). Two of these are particularly im-
portant and warrant a brief mention here as follows,

e The plastic collapse load of a system of perfectly
plastic elements is independent of the elastic be-
haviour of the material as long as any defor-
mation does not significantly change the original
geometry.

e Removing (adding) a constraint from a system of
perfectly plastic elements cannot make the system
stronger (weaker).



One of the requirements of a perfectly plastic system
is that the material remains stable i.e. does not ex-
hibit strain softening.

3.3.2 Applicatons
Perhaps the best way to explain the upper bound
method is to provide an example of an application.

Example 1
Consider the mechanism shown in Figure 14 for a

footing subjected to an inclined load. This is similar
to the mechanism corresponding to Green’s (1952)
solution, shown in Figure 9(a), except that the angle
6 is assumed to be unknown. The solution for V, for
the upper bound formulation, is then minimized by

varying 6.
VOJ/ lv
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Figure 14: Inclined load failure mechanism

We begin by assuming a virtual velocity in the
downward vertical direction. To be admissible the
footing and soil wedge must slide parallel to surface
AB so that the total dissipation along AB is

UO

Dup = Vup * lyp xS, = ——* 5, * Bcos@
AB AB AB u Sln9 u

= v,s,B cotd (13)
where the parameters are as previously defined
and/or shown in Figure 14. At interface BE, the soil
moves uniformly to be compatible with wedge ABE
so that the dissipation along curve BC is

. % T
DBC=,—09*su*(Z+0)Bsin9
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At interface EC, the soil again must move uniformly
so that the dissipation along CD is

. v .
Dcp = # *s,Bsing =v,s,B (15)
The sector BCE is a radial shear fan centred at E.
To be compatible with the other parts of the mecha-
nism the radial velocity must be zero and the tangen-
tial velocity is vg = v, /sin 8, a constant. This is the

only continuously deforming region. The only non-
zero strain rate is

. 1(6vr N 0vg v9> Y,
#0=3\;a0 " ar ~ ¥ )" 2rsineg (16)
The maximum principal strain rate is then
[Elmax = 52
Elmax = 5 ing 17)
and the resulting dissipation rate is
L

Bsin @ N

Dgcy = f f b ag'dr
BCE 0 rsin @
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- UOSuB (Z + 9) (18)

The external work rate is the sum of the rates of both
the vertical force component, V, and the horizontal
component, H. We replace the horizontal force with
the average shear stress, , times the footing width,
B, to give

W="Vv, + Hvo —<V+ 5 )
= VP T ane tang) ° (19)

Setting the work rate equal to the sum of the dissipa-
tion rates, cancelling v,, solving for ¥V and simplify-
ing gives

s T
V=Bsu[§+29+1+cot9<1—s—)] (20)
u

Now minimizing V with respect to 8 gives

aV—B [2 26(1 T)]—O
99 ~ Cou|fT ¢ s 21)
Solving gives the critical value of 6
o= 1 47
—29% s, (22)

Recognizing that 6 = (r/4) — w, Equations 4 and
20 are identical. It is interesting that the solution
developed from equilibrium arguments has not been
proved a lower bound but can be shown to be an up-
per bound. It should also be noted that components
of the mechanism used in this example can often be
used to build mechanisms for other problems. For
example for a footing with a small aspect ratio,
L/B < 2, a three dimensional approximation can be
achieved by assuming a vertical failure plane at each
end of the footing. This requires integrating the
EDR over the resulting slip surfaces and adding to
the total dissipation.



It should be recognized that the mechanism in this
solution results in vertical and horizontal translation
only. Since there is no provision in the mechanism
for rotation, the solution will not be affected by a
moment included in the loads. Since there is no ro-
tation, the moment would do no work and hence this
solution would tell you nothing about the effects of
moment. It is, however, relatively easy to modify
the mechanism to include rotation as will be shown
in the next example. We can also include non-
homogeneous strengths in the solution by expressing
shear strength as a function of depth in the dissipa-
tion terms and integrating over the various slip sur-
faces and the radial shear fan as will be discussed
below.

Example 2
A proposed mechanism to include moment effects is

shown in Figure 15. Moments can arise due to an
elevated horizontal load, an eccentric vertical load,
and/or a moment couple. The solution shown in
Figure 15 was proposed by Brinch Hansen (1970)
and formulated as an upper bound mechanism by
Murff and Miller (1977a). The coordinates, X, and
Yo, Of the centre of rotation of the mechanism are the
optimization parameters and are varied to find the
least upper bound. Note that there are slightly dif-
ferent mechanisms for x, < 0 and x, > 0 which are
continuous at the x, = 0 transition. It is assumed
for x, < 0 that the footing stays attached to the soil
so there is no separation of the footing from the soil
along AE.

B
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Figure 15: Eccentric load failure mechanism

Consider now some details of the mechanism. R; is
the distance OE; R, is the distance Ol; and R; is the
distance OA. The footing rotates about x,, y, at a
virtual angular velocity of f. The failure mecha-
nism in the soil on the left of OE is similar but of
different dimensions than the one to the right of OE.
The sectors EFI and EDA are non-deforming ele-
ments. Sectors FGI and DCA are radial shear fans
but, in this case, the tangential velocity varies with

the radius to be consistent with the velocities along
FI and DA. The wedges GHI and CBA deform and
slip along the boundaries GH and CB. In general,
the loads are taken as a vertical load, V, offset a dis-
tance e from the footing centre and a horizontal load,
H, at a height y, above the footing base. Both V
and H can contribute overturning moments and of
course a moment couple can also be applied.

To carry out the calculations local coordinate sys-
tems are used to simplify the process. In the general
cases, integrations are carried out along slip surfaces
and within deforming regions to get the respective
EDR values. For varying strengths with depth the
shear strength profile has to be expressed in terms of
the local coordinate system used for the calculation.
These calculations are somewhat tedious so exam-
ples for typical components are detailed in Appen-
dix I. The total EDR is determined simply by sum-
ming the components.

The external work rate is then given by the follow-
ing

We=[H*(yh+yo)+V*(xo+§+e>]B (23)

Following the upper bound procedure we then set
the total work rate to the total EDR

H*(yh+yo)B+V*(xo+§+e)B

n
= Z D,
i=1 (24)
Now £ appears linearly in each term of the equation
and is cancelled as the virtual work method dictates.
One can then decide which load, H or V, is of inter-
est, specify the other, and solve for the one of inter-
est. For example say the vertical load V is the
known dead load on the footing and H is the lateral
capacity of interest. The solution for the lateral ca-

pacity estimate is then

iD=V (x, +%+e)
Yo+ Yo (25)

Note that D is now specified without the dot indicat-
ing the virtual velocity, # values, have been can-
celled. H is then minimized with respect to the co-
ordinates x,, y, to find the least upper bound.

This mechanism accounts for effects of V, H, and M
and their interactions and we can plot the full VHM
surface using these equations. More typically we



plot two dimensional interactions such as H vs. V, H
vs. M, or M vs. V however in these cases it must be
kept in mind that these plots are cross sections of the
overall surface and such plots can be significantly
affected by the third load component. The question
that then arises is how good are these solutions, es-
pecially since they are upper bounds and hence they
are on the unconservative side.

For the linearly increasing strength cases
(kB/s,, = 6), Figure 9(b) shows that the vertical
capacity results are quite good. Clearly the horizon-
tal capacity is exact as well and hence it is likely that
the interaction curve is near the exact one as it is for
special case of uniform strength. However for VM
and HM interactions, experience has shown that this
mechanism significantly over predicts some parts of
the yield surface. For example for small vertical
loads, Gourvenec and Randolph (2003) have shown
that the simple scoop mechanism, as shown in Fig-
ure 16 works well. On the other hand, the scoop
over predicts for large vertical loads. Consider the
details of the scoop mechanism.
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Figure 16: Scoop failure mechanism

The distance D, from the assumed centre of rotation
to the soil surface, is the single optimization variable
and the load of primary interest is the total moment
at the footing centroid. This includes any directly
applied moment plus the lateral load, H, times its
height, y;, above the soil surface. The circular seg-
ment AB is rigid and hence the only dissipation is
along arc AB as shown in Figure 16. The EDR is
simply as follows,

1
. (2 B\?|?
Dy = 2P [D2+ - ] s, (y)do
T @) ) (26)

In the general case the depth y for this mechanism is
1

y= [DZ + (g)zr sin@ — D 27)

Numerical integration can be used for strength pro-
files that do not permit analytical integration. The
external work rate is then set equal to the EDR to
give

W = (H * (y, — D) + M.)B (28)

In this case M, accounts for a couple that may be di-
rectly applied to the footing. Either M, or H can be
solved for if the other component is known. For ex-
ample assume the applied moment, M., is known,
then H is as follows

1
n1(22) [DZ + (%)2]2 s,(y)d0" — M,
B

Yn—D (29)
Optimization is then carried out with respect to D.

n
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The foregoing provides two relatively simple models
that provide approximate solutions over a range of
loads. Consider some specific results for the two
mechanisms. The BH mechanism gives good results
for VH interaction for example, it converges to
Green’s solution (1952) for M = 0. Figure 17 and
Figure 18 show results for the two failure mecha-
nisms for MV and MH interactions respectively for
the uniform strength case and for the case of increas-
ing strength with depth (kB/s,, = 6). Also shown
in these figures are the results scaled from the plots
shown in the paper by Gourvenec and Randolph
(2003) referred to here as GR. The GR results are
based on more detailed mechanism studies com-
bined with finite element results and are believed to
be very close to exact solutions.
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Figure 17: Moment — vertical load interaction diagrams



2.5 - :
— = =GR Uniform Strength

— & - BH Uniform Strength

— + = 5coop Uniform
Strength
1.5 5

—=—GR Increasing
Strength

—s— BH Increasing
Strength

M/B2S,

—+— Scoop Increasing

g - — ——
Strength

NPEPOEE 2

0 T . )
0 0.5 1 1.5
H/S,B
Figure 18: Moment — horizontal load interaction diagrams

For vertical load vs. moment interaction (H = 0) the
BH mechanism only captures the moment effects
well for relatively large values of vertical load. On
the contrary, the scoop mechanism does well on the
other end of the vertical load scale- in fact the scoop
results are independent of centric vertical load.
More significant errors are apparent for midrange
vertical load values. The largest errors are for the
increasing strength case and these can be improved
somewhat by simply correcting the vertical capacity
components by the known over prediction of the
pure vertical load case, 7.2% in this case as shown in
Figure 9(b).

For horizontal load vs. moment interaction (V = 0)
the BH mechanism only does well for horizontal
loads near sliding for the uniform strength case but
does somewhat better for the increasing strength
case (kB/s,, = 6) down to near midrange. The
scoop mechanism does surprisingly well over almost
the entire range of horizontal loads. The combina-
tion of the two mechanisms is almost an exact fit to
the GR results. As was pointed out by Bransby and
Randolph (1996) and emphasized by Gourvenec and
Randolph (2003), it is quite interesting that horizon-
tal load in the direction of increasing moment actual-
ly increases the moment resistance up to a value of
H/s,,Bof about 0.6.

The foregoing results underscore the importance of
validating solutions based on assumed mechanisms
but also show that some relatively simple mecha-
nisms can give good results to complex problems.
Hopefully these results provide a bit of insight into
how one might go about developing approximate so-
lutions and sufficient detail regarding the mechanics
of the calculation procedures. In the next section we
will discuss some additional strategies for finding

mechanisms for various shallow foundation prob-
lems.

3.3.3 Additional Strategies

We have seen that mechanisms can be constructed
from components that are found in classical solu-
tions such as slip circles, radial shear fans, and rigid
or deforming wedges. The intention of the following
discussion is to provide further insight into con-
structing mechanisms by providing examples of
strategies that can be used to advantage.

The Squeeze Problem

We have previously shown that the yield condition
for undrained strength (purely cohesive behaviour)
implies that the plastic deformation will be incom-
pressible. Since this constraint is necessary it can
actually aid us in constructing a velocity field for a
particular mechanism.

Figure 19 is a schematic in which a strip footing is
placed on a soft, relatively thin, uniform layer over-

lying a hard stratum.
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Figure 19: Schematic diagram of a proposed squeeze mecha-

nism

At the footing interface we can expect the soil to
move downward and to be squeezed outward. At
the interface between the soft layer and hard stratum
the vertical movement of the soil would presumably
be zero. Since we know that the vertical velocity
must vary from v, at the footing interface to zero at
the hard stratum interface, a simple assumption is
that the variation is linear, that is

v, =v,(1—y/t) (30)

We further assume that 12 is not a function of x.

We can then find a v, that “works” by exploiting the
incompressibility condition as follows,

. . . ov, 0v,
ev=£x+sy=a+ﬁ=0 (31)
This results in the differential equation
v, v,

s (32)

Integrating this equation yields the simple solution
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t +f) (33)

Applying the boundary condition (symmetry),
v, = 0 at x = 0, the function f(y) must be zero and
hence the strain rates are

Uy =

- _ Y and P = ~Yo

& =7 T (34)
The EDR is then

. 2s,v,

Dupcp = T (35)

Since the EDR is a constant throughout the region
ABCD, the total dissipation rate is simply

25,7,

Dapcp-tor = * Volume = s, Bv,

(36)

To complete the solution we must include EDRs at
the footing-soil interface AD (unless we assume the
interface is smooth), the soft-hard stratum interface
BC, the passive resistance of the wedges CE, and the
soil interface CD. Note that the downward velocity
of the soil beneath the footing and the upward veloc-
ity of the outer wedges give rise to increased relative
velocity at interface CD.

Details of these remaining calculations are provided
in Appendix Il. The failure load assuming interfaces
AD and BC are rough is then

|4 ) B 1 p t

Bs, +2t+sint9c050+tarl +B (37)
For a smooth footing, the dissipation at the AD in-
terface is set to zero. Results of the capacity as a
function of soft layer thickness are shown in
Figure 20 for the rough footing case. Since one can
construct an upper bound mechanism for a soft layer
thickness of 0.35B which gives the classical solu-
tion, 2 + m, the squeeze mechanism is 6.61, well
above this value. On the other hand it does provide
a useful solution in that it demonstrates the effect of
thin weak layers in a relative sense. Defining a
“scale” factor of 5.14/6.61 = 0.78 and scaling the
ordinates of the squeeze solution gives the corrected
plot in Figure 20. This at least gives a “feel” for the
effect of thin weak layers.
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Figure 20: Capacity of footing on thin soft layer with varying
thickness

A similar approach can be applied to a circular foot-
ing where a cylindrical coordinate system is used.
The soil is assumed to deform in an axisymmetric
pattern in keeping with the geometry of the problem.
Note that following standard convention, z is used
here in place of y. Again assuming a linear varia-
tion of v,

v =, (1~ %) (38)

and applying the incompressibility constraint we ob-
tain

.+.+._avr+vr+avz_0
A A P N P
This leads to the equation

(39)

dv, 4 v v,
or r ot (40)
As before v, is a function of r only. Solving the

equation, and applying the boundary condition
v, = 0 atr = 0, gives the solution

_ UoT
=00 (41)
The strain increments are then
. _ Vo . _ VYo . _ W
=0t =2 T (4R
and the EDR per unit volume is
L2850,

ot (43)

The total dissipation in the zone below the footing is
then the unit dissipation times the volume of the cyl-
inder defining the deforming region. The remainder
of the EDR components is calculated in a similar
manner to that for plane strain except that the tor-
roidal wedge around the thin zone must deform ow-
ing to its axisymmetric geometry. In this case the



circumferential strain is not zero and the velocity
fields are again constructed using the incompressi-
bility condition. The details of the calculations are
described in the paper by Murff and Miller (1980).

In the foregoing we have attempted to demonstrate
some of the thought processes and procedures that
can be used for constructing failure mechanisms for
upper bound analysis. While the idea of failure
mechanisms is familiar to the geotechnical engineer,
care must be taken to ensure the mechanisms are
kinematically admissible. In a sense this really just
means that they are possible. A more detailed dis-
cussion of this aspect of limit analysis is provided
later.

3.4 Generalised Plastic Limit Analysis — Macro
Mechanisms

The foregoing analyses have demonstrated the con-
struction of detailed failure mechanisms to be used
in conjunction with upper bound plastic limit analy-
sis. In this section we will consider how failure in-
teraction surfaces can themselves be used to derive
the performance of a foundation element. Prager
(1959) showed that a system of forces that character-
ise the stress state in a perfectly plastic structure (in-
cluding a soil-structure system) can be considered
generalized stresses and the corresponding plastic
displacements can be considered generalized strains.
This is true notwithstanding the fact that the general-
ised stresses and strains do not have the actual di-
mensions of stress and strain. For a given set of
generalized stresses, Q, ... Q,, the generalized strain
rates, ¢, ...q, are the work rate conjugates of the
stresses, that is

W = Q1q1 + .+ Qngn (44)

Where the generalized stresses are moments, the
generalized strains are rotations so that work rate
conjugancy is maintained. The interaction surface
then plays the role of the yield condition, that is

fQ1, ., Qn) =0 (45)

If the structure is composed of perfectly plastic ele-
ments, the yield function, f, is convex and other
tenents of plasticity theory apply. As for the plastic
stress vs. strain relationships we can relate the gen-
eralized plastic strain rates to the generalized yield
condition using the associated flow rule, that is

_,9f
=150 (46)

We can then use these elements to apply the bound
theorems to any assemblage of generalized plastic
elements such as a system of footings or piles.

Before considering relevant problems it is useful to
demonstrate the validity of Prager’s assertion. Con-
sider the problem discussed earlier of a footing on
uniform strength soil subjected to inclined load.
Equations 4 and 5 constitute the failure interaction
surface which can be rewritten in terms of normal-
ized vertical load VV and horizontal load H, that is

Hmax
—[14+7m—2w+cosQw)] =0 47
where
o ()
w = =sin
2 Hinax (48)

Now the generalized plastic strain rates correspond-
ing to the generalized stresses IV and H are

_, af 2
v Hopax (49)
and
0 1+H
h= A—f =2 L
0H ) %

HmaJC(1 - H; ) (50)
where H, is the ratio of H to H,,,,. We can then
find the ratio of strain rates,

v (1 - 2)2
h  1+H, (51D

Consider now a specific example where V =
0.9V;,,4x Which equals 4.626Bs,,. Solving for H us-
ing the yield equation, H = 0.4124Bs,, and the ratio
v/h = 0.644, w is then found to equal 12.2°. Re-
ferring to the failure mechanism in Figure 21, the
footing moves downward at an angle of 45°-
12.2°=32.8° to the horizontal giving a ratio of
v/h = tan(32.8°) = 0.644 which checks identical-

ly.
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Figure 21: Inclined load failure mechanism showing velocity
of footing

Figure 22 shows that the strain increment is indeed
normal to the yield surface. Thus for any combina-
tion of VV and H at yield we can determine the ratio
of v/h. Alternatively (and perhaps more important-
ly) we can invert the process and determine V and H
for any ratio of v/h. This may, of course, require
solving a non-linear equation but the idea has partic-
ular advantages when analysing a mechanism in-
volving a system of foundation elements.
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Figure 22: Inclined load interaction surface showing normali-
ty of the velocity field

Consider the system of shallow foundations shown
in Figure 23(a). One approach to solving the capaci-
ty of the system is to construct a mechanism as
shown in Figure 23(a) as proposed by Murff and
Miller (1977b). A simpler approach however is to
represent each footing by its multi-axial interaction
diagram as suggested in Figure 23(b). This can be
easier and more accurate, especially if we have an
accurate interaction surface for a single footing.

(b)
Figure 23: Shallow foundation system (a) detailed mechanism
(b) system represented by interaction surfaces

Assume, for example, a vyield function,
f(V,H,M) = 0, for a single footing. The following
is a step by step approach to determine the system
capacity.

1. Assume a virtual rotation of the system about a
point with coordinates x, and y, which become
the optimization parameters. For a planar geome-
try the mechanism represents all possible mo-
tions- two translations and a rotation.

2. For any values, x, and y,, find the motion v,, h,
for the centres of each footing. Note the rotation
rate 6, for all footings is equal to g.

3. Now form the ratios of virtual translation and ro-
tation components, for example

(52)

4. Since we know the ratios themselves from the as-
sumed mechanism, this gives us three equations
of this type but only two independent ones (any
two) in unknowns V, H, and M

5. The third equation needed for solving for V, H,
and M for any footing is the yield condition. Thus



in principal we can solve for the three unknowns
although, depending on the complexity of the
yield condition, this may be numerically difficult.

6. Given the values of V, H, and M we can calculate
the EDR for any footing as follows
Di S Vi‘l.]i + Hifli + Miéi (53)

7. Equating the virtual work rate of the external
loads to the EDR we can then solve for the un-
known load or scale factor.

8. We then systematically vary x, and y, to find the
minimum load capacity.

In as much as the mechanism is planar and the yield
condition of each footing is correct, minimization
will lead to the exact solution because we have con-
sidered all possible failure mechanisms. In fact
since we have calculated V, H, and M at each foot-
ing and know the external loads we can check to see
whether the solution satisfies equilibrium. We will
discuss how to investigate failure out of the plane of
loading in our discussion of pile systems. As we did
before, we will use an example to demonstrate the
above ideas.

Example 3
Here we will consider a simple example of planar

failure of a two footing system as shown in
Figure 24. For our purposes we will assume that the
footings are pinned to the structure at their centroids
and the interaction surface is as given in Equa-
tions 47 and 48. As noted earlier removing a con-
straint from a plastic system, such as replacing a rig-
id connection with a hinge, will never increase the
capacity and hence will be a conservative assump-
tion as noted by Chen (1972).

Vi X,

(X, Yo) v
Figure 24: Schematic of two-footing system with loads

The system is subjected to its self weight as well as a
lateral load. There are two unknowns associated
with each footing, V; and H;.

For a given value of x, and y, the ratio of virtual ve-
locities at each footing is

".Jfl (xo xfl)ﬁ
hei (0o —vr)B (54)

where x¢; and yy; are the footing coordinates. We
also know from the normality relationships that
1

272
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‘Dfl anl Hmaxfi _ xo — xfi

hei ai]rc - 14 (i Yo = Yfi
Tt Hmaz s, (55)

The right hand side is known for any value of x, and
Yo and hence we can reduce Equation 55 to a quad-
ratic equation of the form

=C

H?4+aH, +8=0 (56)
where
H 2C? c?-1
H = [ — [ —
" Humax cir1 M = )

Solving and taking the positive root (on physical
grounds) gives
—a+./a?—4p

2 (58)
Knowing the Hy;, we can solve for V; directly from

the yield condition, Equations 47 and 48. The total
EDR is then

H, =

Diotar = Z(Hfihfi + Vi)

i=1 (59)
As shown in Figure 25 the mathematical interaction
equation extends beyond the boundaries of the yield
surface.
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Figure 25: Interaction surface for single footing reset end val-
ues




Therefore if Vy; or Hg; are outside the physically
meaningful range we reset them to their boundary
values as shown in Figure 25. This adjustment will
sometimes lead to an indeterminacy in the footing
loads however within the range of acceptable loads,
equilibrium can still be satisfied. The total external
work rate is then

W=H*(yo+yh)B+V*(xo_xv)IB (60)

Now we can set V or H equal to a specified value
such as V = self weight of system, and solve for the
other component, for example

y _ Z?=1[Hfi(yo - Yfi) + Vfi(xa - xfi)]
total o +¥n)
_ V(xo - xv)
o +¥n)

(61)

Figure 26 shows normalized results of moment vs.
horizontal load interaction for a system of footings
with 2B centre to centre spacing for a range of verti-
cal loads. For small vertical loads the interaction di-
agram is rectangular i.e. there is no interaction. The
failure mode is sliding for horizontal loads near the
mudline or simple overturning for loads at signifi-
cantly higher elevations. The interaction diagram
grows as the vertical load is increased but beyond a
certain vertical load it begins to shrink as shown in
the figure. Note that it is relatively straight forward
to add additional footings to the system using Equa-
tions 55 through 58.
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Figure 26: Normalized interaction diagrams for two-footing
system for varying normalised load

The foregoing example utilized an exact solution for
single foundations in analysing a system. One of the
useful features of using macro-mechanisms is that
single footing solutions can also include convention-
al solutions as well as strictly empirical curve fits.
One example of the latter is described by Murff

(1994). This study involved an empirical equation
for the yield function of circular footings of the form

\/(M/D)Z + Ay H?
+A v (1 Vt>V+V =0
v o)V =

(62)

where A; and A, are fitting parameters and 1, and V;
are pure compression and pure tension capacity of
each footing, respectively. As described in the pa-
per, Equation 62 is a mathematically tractable form
so that a spreadsheet can be used to develop system
interaction diagrams using the procedures outlined
above. Details of the analysis are described in the
paper. Another option is to use conventional bearing
capacity equations as yield conditions. Figure 27
shows examples of conventional “inclination” fac-
tors that are used to modify the basic bearing capaci-
ty equations for a strip footing on clay. All three
conventional factors are reasonable matches to
Green’s exact solution and could be used to approx-
imate system behaviour.
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Figure 27: Empirical interaction surfaces compared with
Green’s solution

It is noted however that Vesic’s correction is com-
posed of straight lines and hence has corners where
the lines intersect. The corners do not have unique
normals and will represent a range of different ve-
locity directions as shown in Figure 28. It is thus
clear that almost all load states derived from the ve-
locity directions will be at a corner and only a mini-
mal number of velocity directions will be on the flat
portions of the diagrams. Hence this might not be
the best yield surface representation to use in the up-
per bound method. Let us now consider another sys-
tem example which exploits conventional bearing
capacity equations.



If Vi in this range

- set loads her
If v in this range

A setloads here If V, in this range

set loads
\Y,

Figure 28: Corners on interaction surface result in non-
unique velocity directions

Example 4
In many instances for mudmats of shallow water

platforms, the lateral loads will be taken out in
whole or in part by horizontal braces embedded in
the soil, leg stubs or other protuberances, and/or pas-
sive pressure on peripheral skirts around mudmats.
In this case it may only be necessary for the mud-
mats to resist the vertical loads and overturning
moments imposed on the platform. Using the con-
ventional bearing capacity equation for a strip foot-
ing with eccentricity correction (see Brinch Hansen,
1970) we can express the vertical capacity of a foot-
ing as

V="V, *(1-2e/B) (63)

where V, is the bearing capacity under pure vertical
load, B is the footing width parallel to the load direc-
tion, and e is the load eccentricity, e = M/V. We
can then rearrange Equation 63 and express it as a
yield function as follows

FV,M)=V2—V,V + 2V, (%)=0 64)

For relatively long footings we can simply multiply
the strip capacity by the length, L, to get the total
system capacity however for footings with L/B < 2
a shape factor should be applied. Figure 29 shows a
non-dimensional interaction diagram of moment vs.
vertical load for a single footing.
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Figure 29: Single footing interaction surface with eccentricity
correction

Using Equation 64 as a yield condition we can write
the ratio of generalized plastic strain rates for an in-
dividual footing as

(65)

where the subscript “fi”” refers to footing “i”. We
can then calculate the EDR for any postulated failure
mechanisms for a system of footings where the sys-
tem rotates about a horizontal axis located at x, as
shown in Figure 30.
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Figure 30: Schematic of failure mode for system of footings
including local moment resistance

Assuming a virtual rotation rate of 8, the vertical
displacement and rotation rates of footing “i”” are

vy = (xo—x7)f and Ty =p (66)
where x¢; is the coordinate of the footing centroid.

Combining Equation 65 and 66 for each footing we
can solve for V.

- (ﬂ+ 0 5>V |
fi Bfi . ofi (67)

Equation 67 is continuous and extends out of the
range of possible values, that is for Vy; >V, and
Vs < 0. Hence as we did in the previous example,
we must correct the values when this occurs. For
example, when Vy; > V,¢;, it should be replaced by

Vori and when Vg; < 0, it should be set to 0, assum-

ing zero uplift capacity. Alternatively, a percentage
of compression capacity could be assigned to the up-
lift capacity.

Knowing Vf; we can use the yield condition, Equa-
tion 64, to solve for M;



Bfi

Mpi = (VosiVyi = Vri®)

2V (68)
The total EDR is then
n
Diotar = Z[Vfi(xo —xp;) + M| B
i=1 (69)

Setting the work rate of the external loads equal to
the total EDR we can solve for M

n
M=Z Vri(Xo = X5i) + Mpi| = Viotar (X0 — %)

i:1[f( 1) + M (70)
Figure 31 shows the moment-vertical load interac-
tion diagram for a fixed two-footing system with
spacing of 2B and eccentricity correction. For com-
parison, the interaction diagram for a two-footing
system hinged at the connections, is also shown in
the figure. It is interesting that fixing the connection
against rotation only results in a very nominal im-
provement. The interaction diagram for a system of
hinged footings where the uplift capacity is set equal
to the bearing capacity is identical to the hinged case
with no uplift capacity for 5.14 < V/Bs, < 10.28
but extends linearly upward for V/Bs, < 5.14 to a
value of M/B?s, = 10.28 at V/Bs, = 0.
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Figure 31: Footing system interaction surfaces with and with-
out effects of local moment resistance

3.4.1 Additional Strategies

As noted in the examples above, it is straightforward
to add additional footings to a system assuming they
are of regular shape, aligned with the other footings,
and the loading is perpendicular to one of the footing
axes. For footings of different shapes, such as trian-
gular footings, or for diagonal loading, approxima-
tions may be required. For example, it may be nec-
essary to replace a footing of irregular geometry
with an equivalent rectangular or circular footing of
equal area. Vesic (1972) has also suggested shape
corrections for rectangular footings loaded on a di-
agonal. For a system of footings loaded on a diago-
nal one can begin by projecting the footings on a
vertical plane parallel to the load direction and solv-

ing for the system capacity assuming the footings
are aligned as shown in Figure 32. It is then neces-
sary to check for out-of-plane failure as will be dis-
cussed in more detail in the sections on pile founda-
tions.
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Figure 32: Off-diagonal loading with footings projected on
plane of loading

In the foregoing sections on shallow foundations we
have tried to identify various approaches for deter-
mining load carrying capacity of individual as well
as systems of shallow foundations. We have empha-
sized methods of plastic limit analysis and have tried
to provide some useful examples of how these
methods may be applied. In the following sections
we will take a similar tack for pile foundations.

4. Pile Foundations

In this part of the paper we will follow an approach
similar to the one followed in the Shallow Founda-
tions discussions. We will focus on issues uniquely
related to piles. That is, where issues are the same
or similar to those already discussed, we will either
briefly mention them or omit them where the issue is
obvious. Applications for piles vary widely over
such uses as platform foundations to mooring an-
chors and the issues vary significantly among the
various applications.

4.1 Practical issues for designing offshore pile
foundations

4.1.1 Strength characterisation

Strength is clearly the most important soil parameter
in foundation design and analysis. While many of
the issues discussed for shallow foundations are also
important for piles, a few different aspects bear spe-
cific mention.

e Is soil layering significant? Soil layering is im-
portant for all aspects of pile design but it can be
particularly important in assessing end bearing
capacity.  Such questions as whether punch
through of a hard layer over a soft layer is possi-
ble depend critically on identifying the location,
strength, and thickness of interbedded layers.

¢ s the soil strength affected by loading rate? This
issue is particularly important as it affects the



shaft capacity of piles subjected to rapid loading
such as from waves or earthquakes.

¢ s the soil susceptible to creep? Piles subjected to
sustained loads, particularly in uplift, may have
reduced capacities due to creep. Perhaps more
importantly piles subjected to uplift will tend to
become unstable if they move upward significant-
ly.

¢ Does the load carrying capacity of the pile exhibit
softening behaviour? Very rigid piles can mobi-
lize the peak capacity of the soil whereas piles
that are very flexible may be limited to the resid-
ual capacity.

e How long will it take for full set-up to occur?
This is especially important in the decision pro-
cess regarding when the piles are fit for service.

4.1.2 Load characterisation
The kinds, magnitudes and locations of loads must
be well understood to assess the pile requirements.

o |s the pile subjected to multi-axial loading? It is
important to consider the possible load interac-
tions imposed by moment, lateral and vertical
load and torsion. What are the boundary condi-
tions for the pile analysis? Are the piles free
headed or fixed headed?

e What are the load durations? Is the pile subjected
to short term loads or long term loads or both?

¢ |s the pile subjected to uplift loading where creep
might lead to load shedding and catastrophic fail-
ure?

e Where are the loads applied? Anchor piles, for
example, are less effective in resisting lateral
loads if the loads are applied at the pile head.

4.1.3 Foundation geometry
The details of the pile geometry can have a strong
influence on the capacity of the pile.

¢ Is the pile wall thickness schedule appropriate for
the expected failure modes? Generally a thick-
ened wall is needed to resist lateral loads (bend-
ing) whereas axial loading is not usually limited
by stress in the pile.

o Will jacket piles be inserted in sleeves with leg
stubs? Leg stubs that penetrate into the soil gen-
erally provide substantial benefits in bending re-
sistance near the mudline.

e Are the piles long enough to develop a plastic
hinge failure mode during loading or are they
short enough that failure is likely to be in a fence
post mode, that is kicking out at the pile tip?

e Do the piles behave individually or as a group or
as a system?

The foregoing are important issues to address in de-
ciding the critical design elements and in fact how
the foundation will be analysed.

4.2 Conventional methods

4.2.1 Theory

Unlike the structure and history of shallow founda-
tions, the conventional methods of pile analysis are
not grounded in theory but are basically empirical.
While they are mostly based on conceptual models,
there are always empirical parameters used to carry
out the design methodology. There are two distinct
aspects to pile design- axial capacity and lateral per-
formance.

The axial pile capacity is generally assumed to be
the simple sum of the shaft resistance along the pile
walls and the end bearing resistance at the pile tip.
The basic model for pile shaft capacity in clay soils
(undrained response) is

L

V.=nD | as d
A J; w(V)dy 1)
where D is the pile diameter, L is the pile length, and
« is the ratio of shear resistance mobilized at the
soil-pile interface to local undrained shear strength.
As such « is simply a correlation factor which is a
function of a wide range of variables depending on
the particular design recipe chosen. The guidelines
for evaluating a generally are derived from field
load tests but have also been influenced to some de-
gree by mathematical models of an idealised instal-
lation process. Additional details of the evolution of
a will be discussed in the next section. The end
bearing resistance of a pile in clay is usually taken to
be

Vep = syN A (72)

where s, is the undrained shear strength at the pile
tip and N, is a bearing capacity factor, conceptually
similar to that for shallow foundations but essential-
ly empirical in this application. It should be men-
tioned however that theoretical constructions, such
as cavity expansion theory as described by Bishop,
et al. (1945), can be used to rationalize N, within a
reasonable range.

The soil resistance to lateral movement of the pile is
usually modelled as non-linear distributed springs
and the pile is modelled as an elastic beam-column.
The maximum resistance of the springs per unit pile
length, H, is taken to be

H = s5,N,D (73)



where s, is the local undrained shear strength, N,, is
an empirical bearing capacity factor, and D is the
pile diameter. Rules for selecting appropriate N,
values have largely been derived from experiments
and field tests although theoretical underpinnings for
some cases have been established. Generally N, in-
creases with depth to account for the effect of the
surface proximity until it reaches some maximum
value. Guidelines for modifying the spring charac-
teristics to account for cyclic loading effects have al-
so been established, e.g. see Matlock (1970).

In conventional practice axial capacity is directly in-
tegrated into the foundation design. That is, the pile
must have sufficient capacity to achieve a designated
safety factor when compared to the design axial
loads. For analysis of laterally loaded piles, the pile
head loads are applied to the non-linear beam col-
umn model and the design requirements are based
on limiting the stresses in the pile to allowable val-
ues. The ultimate lateral capacity of a pile is not
usually a consideration. In this presentation howev-
er we will emphasize the pile’s ultimate lateral ca-
pacity and argue that it provides useful insight into
the foundation behaviour.

4.2.2 Applications

A very detailed history of API’s axial pile capacity
recommended practice is presented by Pelletier et al
(1993). Only a brief summary will be provided here.
It is not known exactly how the earliest offshore
piles were designed for axial load although it is like-
ly that dynamic formulae such as the Engineering
News Equation (Teng, 1962), in common use at the
time, were initially employed. However, by 1956,
so-called static methods of analysis, as described in
the “Theory” section above, were being used. These
methods were pioneered for offshore applications by
Bram McClelland and his co-workers and in 1962,
incorporated in the standard McClelland Engineers
company reports (Pelletier et al, 1993).

The first edition of APl RP2A (1969) included the
McClelland procedures for design of axially loaded
piles. In this method the shaft resistance was taken
equal to the undrained shear strength except as fol-
lows:

e For depths less than 100 feet it was limited to
1000 psf

e For depths greater than 100 feet it was limited to
1/3 of the effective overburden pressure.

The unit end bearing was specified as 9s,,.

Over the 18 years following the publication of the
first edition of RP2A there was considerable contro-
versy over this design procedure. The uncertainties
spawned a number of joint industry studies including
several efforts to establish comprehensive pile load
test data bases. Extensive study of these data bases
was carried out by Olsen and Dennis (1982) and
many different design methods were proposed. Fi-
nally a consensus evolved and in 1987 a revised
method was published in the 17" edition of RP2A.
The method specified that the shaft friction was tak-
en as the undrained shear strength for soft clays but
that « decreased in a systematic way as the ratio
s, /0, increased. It was reasoned that as the soil
strength was high relative to the overburden stress,
compared say to a normally consolidated clay, the
soil could reduce or even partially lose its contact
with the pile and hence result in a smaller percentage
of adhesion. The specific method adopted is a modi-
fication of the method proposed by Randolph and
Murphy (1984). The method has remained essential-
ly the same to present day and is incorporated in the
new edition of RP2GEO.

The recommendations for analysis of laterally load-
ed piles included in the first edition of RP2A are
based on a joint industry program as documented by
Matlock (1970). While a number of studies have
been undertaken to generalize and validate this
work, it has remained essentially unchanged to pre-
sent day and is included in RP2GEO with only slight
editorial comments. It is again emphasized that the
proposed method of analysis involves modelling the
pile-soil system as a linearly elastic beam column
with non-linear soil springs resisting the lateral pile
movement. As we will see the maximum resistance
of the soil springs can also be used in an alternative
analysis in which we assess the lateral capacity of
the pile-soil system.

4.3 Plastic limit analysis — detailed mechanisms

The basic theory underlying plastic limit analysis of
pile foundations is the same as that for shallow
foundations. Since this has been described above,
we will only consider applications in this section.

4.3.1 Applications

For the purpose here, we will consider the axial and
lateral capacities independently. The mechanism as-
sociated with axial shaft failure is essentially trivial
and simply involves evaluating the pile-soil bond as
given by Equation 71. Because the pile tip is nor-
mally deeply embedded, disallowing any influence
due to surface proximity, and the undrained soil is
theoretically incompressible there is no simple
mechanism associated with end bearing. Assuming



there is no softening, we simply assume the re-
sistance is described by Equation 72 and the capaci-
ty is the sum of end and shaft capacities as discussed
above. Contrary to the axial case, there are a range
of possible mechanisms that can be used to investi-
gate the various features of laterally loaded piles.
Some typical examples follow below.

Example 5
Of the various mechanisms that can be defined to es-

timate lateral capacity we first investigate one of the
simplest models. Consider a rigid pile idealised as a
flat plate with width B and length L, restrained from
rotation but translating laterally as shown in
Figure 33. This is essentially the mechanism pro-
posed by Reese (1958) using the limit equilibrium
method. A comparison of the two solutions will be
discussed later. The soil failure mechanism pro-
posed is a triangular, rigid wedge of soil being
pushed up in front of the pile. We initially assume
the pile is smooth and there is a gap behind the pile
so that no suction develops. We will discuss the im-
plications of these assumptions in more detail later.
The face of the soil wedge makes an angle 6 with
the horizontal and the soil strength is assumed to be
spatially uniform.

l

Figure 33: Schematic of idealised pile-wedge translating fail-
ure mechanism

As the pile translates to the right the soil wedge
slides up the failure plane. Energy is then dissipated
on the front of the wedge as it slips along the failure
surface as follows

D,p = Area * Velocity  strength

(crs) o

= * *

sin6) cosg (74)
The EDR on the two sides of the soil wedge is then

BLs,v,

sin @ cos 6

(75)

The work rate of the lateral force is simply = Hv,
and the work rate in lifting the soil wedge is

. 1
W, = Volume *y' * v, = —ELZBy'vo (76)
where y' is the effective unit weight and v, is the
vertical velocity of the wedge. The upper bound
equation is then

BLsyv, L?suv,

1
Hv, —=y'L*Bv, =
Vo TV BB = GG cos 6 (77)
Thus the lateral capacity of the translating pile is

then

sin @

BLs, s, 1.

_sin9cost9+sin9+2yLB (78)
The solution is then minimized with respect to 8 to
find the best solution. Note that the work done in
lifting the soil weight is negative since the mecha-
nism is working against gravity. Further the contri-
bution of the soil weight to capacity is, in effect, the
average of the effective overburden pressure over
the pile length times the vertical cross sectional area
of the pile and is independent of 8. Such independ-
ence results because the soil is incompressible and
any net displaced volume in the soil must be dis-
placed upward to the free surface in any admissible
mechanism. Note that for B > L the contribution of
the sides becomes insignificant and the solution ap-
proaches the Rankine solution for passive pressure
on a wall with a critical 8 value of 45°,

An obvious feature of this mechanism is that the av-
erage pressure continues to increase indefinitely as
the pile length increases. Clearly at some depth the
soil will not be displaced upward but will flow
around the pile. At that depth and below, the prox-
imity of the free surface will have no effect on the
resistance. Consider an infinitely thin plate deeply
embedded and loaded normal to its surface so that
soil flow around the plate occurs. A characteristics
solution can be found for this case as shown in Fig-

e
K

H
Figure 34: Characteristic solution of deeply embedded flat
plate under normal load

The net pressure developed on the plate over a unit
length in this case is



B = Nps, = (2 + 3m)s, = 11.42s, (79)
Now we will modify the mechanism shown in Fig-
ure 33 to include two zones. The wedge of the pre-
vious solution is assumed to act above the depth, L,
and flow around occurs below the depth L, as shown
in Figure 35.
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Figure 35: Schematic of idealised pile-wedge failure with
flow-around at depth

We then replace L in Equation 78 with L, and add a
term to account for the dissipation below L, as
shown here

BLs,v,  Li%s,v,
Hv, = — :
sin 6 cos 8 sin @
1
+N,(L — Ly)Bs,v, + Ey'leBvo (80)
The solution can then be written in a non-
dimensional form
2 2 L
HoooL W) (5
BLs, sin6cos@ sin 6
+N,(1-L /L)+1 VB (L (L)
P ! 2\'s, J\1?)\B (81)

In this model both L; and 8 are minimization varia-
bles. It should be noted that this model is no longer
a rigorous upper bound since we have not explicitly
accounted for details of the wedge-flow around tran-
sition. While this solution has reasonable appeal it
is clearly an approximation. N, represents only the
contribution of the soil strength to resistance and
thus to estimate N,, we set the unit weight of the soil
to zero. To find N,, above the flow-around zone we
incrementally increase L and compute the minimum
H for each L value. We find that the optimum value
of both 6 and L, change as the pile length increases.
We make the assumption that the increase in lateral

capacity AH is totally attributed to the load on the
added pile increment AL, that is the load distribution
on the pile above the increment does not change
with the added pile increment so that

AH = N,ALBs, (82)
or
N = AH

P~ ALBs, (83)

Figure 36 shows the results of estimating N,, as a
function of depth using Equation 83. On this plot
we have also included a plot of the right hand side of
Equation 83 for a case with finite unit weight, spe-
cifically the parameter y'B/s,, = 1. For the weight-
less case the flow-around zone begins at a depth of
L/B = 3.94. N, can be approximated by the linear
function 2+ 2.4L/B. For the finite soil weight
case, the soil weight increases the pressure on the
pile and once the combined pressure equals 11.42s,,,
flow-around is initiated. In this case i.e. y'B/s, = 1,
it beginsat L/B = 2.73.
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Figure 36: Plot of inferred N, vs. depth values from wedge
model

Now if it is assumed that there is no gap at the back
of the pile, an active wedge will form which will be
identical to the passive wedge and for any wedge
depth will double the resistance due to dissipation
over that part of the mechanism. Obviously this will
result in reaching the flow around pressure at a shal-
lower depth. However, the negative work done in
lifting the passive soil wedge will be exactly com-
pensated by the positive work done by the active soil
wedge and hence the soil weight will have no net ef-
fect on the solution. Again we have plotted the right
hand side of Equation 83 for this case in Figure 36
showing the flow-around transition occurs at
L/B =147,



In the preceding discussion we considered a pile rig-
idly translating through the soil such as might occur
if the pile head is fixed against rotation. Of course
mechanisms involving pile rotation are also possible
and are discussed in the following example.

Example 6
Figure 37 shows possible mechanisms with pile rota-

tion. Figure 37(a) shows a free headed pile rotating
rigidly in the so-called fence post failure mode; Fig-
ure 37(b) shows a pile yielding (forming a plastic
hinge) at the mudline and rotating below that point;
and Figure 37(c) shows a pile with two plastic hing-
es failing in a shear type mode.

L ﬁ W b .
Plastic Hinges
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Figure 37: Schematics of idealised rotation mechanisms
(a) free-head pile (b) pile with plastic hinge at mudline (c) pile
with two plastic hinges

Pile rotation can be accommodated by the wedge
mechanism discussed previously by allowing the
wedge to deform as well as translate as shown in
Figure 38. In this mechanism the pile is assumed to
rotate rigidly about O, the soil below L, flows
around the pile, and the soil above L; moves in a
wedge that is both shearing and translating. Slight
modifications of this mechanism, say to account for
pile yielding, can be made to model the other mech-
anisms in Figure 37 and will be discussed in a later
section.
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Figure 38: Schematic of soil wedge to accommodate pile rota-
tion

Figure 38 shows a detailed velocity field for the
wedge. The soil in the wedge is assumed to move
parallel to the boundary AB and to conform to the
pile motion along AC. Assuming the virtual veloci-
ty in the horizontal direction at the pile top is v,, the
rotation rate, B, is then equal to v,/L,. Further as-
sume that the resultant velocity varies linearly with
x from the pile interface to the wedge face. At any
point along the pile-wedge interface, the x velocity
is

ve=v(1-7) (84)

To accommodate the pile motion, v, at A and con-
sequently all along AB is then

Ly
we=v(1-7)
o

(85)
It then follows that, within the wedge
vy, = —Uxtan (86)

We can then derive a general velocity field within
the wedge as

y tan#é
Wz”%l_ﬂ_ L, O (87)
and

y tanf

vy=—v0<1—z— - x)tan@ (88)
The relevant strain rates are then
) av, v, tanf
T T (89)
. _0vy vy, tand
YTy T L, (90)
and

. _Lfov, Odvy\ v, 5
Sxy—z(a-i'g)—m(tan 9—1) (91)

After some simplification we find that
170
2L, cos? 6 (92)

which is a constant over the wedge volume. The to-
tal EDR within the wedge is then

Igllmax =

b = sul1*Bv,
ABC 2L, cosBsinf

The EDR on the slip surface is equal to

(93)



Dyp—p = Vresuit * Sy * Area

_ syL1Bv, (1 _E)
L, (94)

~ cosfsind

The EDR on the two sides of the deforming wedge
is found by integrating the relative slip velocity over
the areas which gives

b Syl L2 2L,3
ABC=S Tsing "t 3L,

(95)

Below the wedge it is assumed that the soil’s unit re-
sistance is simply equal to N,s, and the local EDR
is then N, s, Bv, which must be integrated over the

length from L, to L. The total EDR for L; < L, < L
is then

Lo y
Dy, = f v, (1 — L_> N,Bs,dy
y=L1 o

t y
+ f U, (L_ - 1) N,Bs,dy
Y=Ly o

(96)
Note that the velocity changes directions at L, but so
does the resistance, so the expressions change. After
some simplifications the EDR below L, is found to
be

D,,_, = v,NyBs, <LO —-L,—L

L,* + L2>
+—

2L, (97)

Using a similar approach for L, > L the EDR is

. 2-1,°
DLl—L = UONpBSu L - Ll - - -

2L, (98)

The work rate of the external forces is then set equal
to the sum of the EDRs for this mechanism. The ca-
pacity is then minimized with respect to 6, L,, and
L, to find the critical value. Figure 39 shows a plot
of the normalized capacity H/LBs,, for the rotating
pile and the rigidly translating pile demonstrating the
significant difference in the two. For B > L the ro-
tating pile (or wall) solution is exactly one-half of
the Rankine solution as expected.
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Figure 39: Normalized capacities for rotating and translating
piles

4.3.2 Additional Strategies

In the foregoing examples the pile was idealised as a
smooth, rigid, flat plate in a uniform strength clay.
Clearly there are situations where more general de-
scriptions are desired. For example it is straight
forward to include varying degrees of pile roughness
by adding another dissipation term equal, to a times
the soil’s vertical velocity relative to the pile times
vertical cross section area of the pile in contact with
the wedge times s,,. Non-homogeneous soil strength
can also be incorporated in the solution by including
the soil strength as a function of depth in the integra-
tions of EDR over surfaces and volumes. Finally in
offshore applications, pipe piles are normally em-
ployed and thus a circular geometry is more realistic
as will be discussed below.

One solution that has been particularly useful in this
regard is the characteristics solution developed by
Randolph and Houlsby (1984) for a deeply embed-
ded circular pipe translating perpendicular to its ax-
is. Solutions using characteristic nets were derived
in that paper for pile-soil interfaces varying between
smooth and rough. It is interesting that the authors
developed the solution without formal integration of
the characteristic equations but by simply reasoning
based on the problem symmetry, boundary condi-
tions, and well known properties of the characteristic
curves (Randolph Personal Communication). The
force per unit length was found to range from
(6 + m)cd for a smooth pile to (4vV2 + 2m)cd for a
rough pile where c is undrained shear strength and d
is pile diameter. They suggested a linear function of
the adhesion factor, specifically (9 + 3a) as a good
empirical fit to their solutions.

Murff and Hamilton (1993) used the Randolph and
Houlsby solution (1984) for the deeply embedded
part of the pile along with a modified wedge mecha-
nism to accommodate a circular pile for shallow



depths. Their proposed failure mechanism is shown
in Figure 40.

Gap orSuction
Wedge Failure H Cosine Velocity
> Function

Flow-Around
Failure
Wedge Cross Section

Figure 40: Murff-Hamilton failure mechanism for a pipe pile
with circular cross section

They proposed an intuitive mechanism where the
soil wedge has a radial velocity of

Ur =7, (§>“ (1 - ZoZ_/C> cos @ (99)

where R = pile radius; r, z, and 6 are cylindrical
coordinates; z, = wedge depth, (z,/c) = depth to
centre of rotation (similar to L, in the rotating pile
example above) and a = exponent. In this velocity
field vg = 0 so that resultant velocities are strictly in
the r — z planes. The radial velocity is a maximum
at 8 = 0, the very front of the pile, and decays to ze-
ro at & = +£90° owing to the cosine function. Im-
posing the incompressibility condition on the veloci-
ty field gives

. . . av?" vr avZ
ErT+EQ+EZ=W+?+aZ= (100)
which, along with Equation 99 and the boundary
conditions, provides the necessary equations to de-
fine the complete velocity field. This in turn allows
one to calculate the strain rates and hence the EDR
in the wedge mechanism. Below the wedge is con-
sidered to be a flow-around zone which is treated in
a similar manner as the examples above. These cal-
culations are detailed by Murff and Hamilton
(1993). Thus the problem can be set up in a similar
manner to the rotating pile problem described above
and solutions obtained by optimizing the upper
bound solution with respect to «, c, z,, and r,, the
latter being the radial extent of the wedge at 6 = 0.
The solution has been exercised for a range of condi-
tions to determine N,, vs. depth profiles as we have
previously done. For example, such profiles are de-
veloped for a range of interface adhesion values and
typical soil strength profiles.

4.4 Generalized Plastic Limit Analysis- Macro-
Mechanisms

The basic principles of generalized plastic limit
analysis discussed above are applicable to pile prob-

lems of interest and so we again will consider only
applications in this section.

4.4.1 Applications

As discussed previously, the macro-mechanism per-
spective is to look at problems in terms of forces and
displacements rather than specific soil velocity fields
with their accompanying detailed stress and strain
fields. The axial capacity mechanisms alone are
straightforward and need little discussion although
some discussion of how they interact with lateral
mechanisms will be considered below. The lateral
mechanisms require a little more attention.

In the lateral mechanisms we consider a defined soil
resistance distribution along the pile which is a re-
sult of the soil failure mechanism but does not in-
clude it explicitly. This force distribution may come
from empirical methods such as the Matlock (1970)
definition of Py;;imace, NUMerical studies such as fi-
nite element analysis, or be inferred from limit anal-
ysis solutions as was done in the previous section
where N,, was estimated. These ideas can again best

be explained by means of examples.

Example 7
Consider a rigid pile, loaded laterally at the top and

free to rotate as shown in Figure 41. For the purpos-
es of illustration we consider a simple case where
the soil resistance on the pile, R, is constant with
depth. The failure mechanism considered is rotation
of the pile about a horizontal axis at depth L, as
shown in Figure 41.
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Figure 41: Schematic of a rigid pile, loaded at the top and free
to rotate
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The dissipation rate is then
: Lp
D = R d

fo *v(y) *dy (101)

Note that both velocity and resistance change direc-
tions (signs) below L, so that



Lo .
D=f R+ (Lo — y)f * dy
0

L
+j R+ (y—Ly)p *dy
Lo ’ (102)
The external work rate = HL, 8 so setting these ex-
pressions equal and simplifying gives

LZ
H=R|L,+=—-1L
<° 2L, ) (103)

Minimizing H with respect to L, then gives L, =
L/V2. Substituting into Equation 103 gives
H = RL(¥2 —1). While this is a trivial solution,
the approach is the same as for more realistic re-
sistance and pile descriptions as discussed below

The piles for steel piled jackets are effectively fixed
against rotation at the mudline and sufficiently deep
that the pile will not “fence post”. As a result of
these conditions a possible failure mode will consist
of formation of two plastic hinges, one at the mud-
line and the other at some depth below the mudline
resulting in a shear type failure mode as shown in
Figure 37(c) above. Further a linearly increasing
soil resistance, say R, + R,y, is a more realistic
model than a constant resistance. At each plastic
hinge the pile develops a plastic moment resistance
of M. These facts lead to an EDR in the soil of

L

. o y
Dy = R, + Ryy) * (1 - —) v,d

S o ( o 1}7) Lo oY (104)
and an EDR due to the plastic moments of
2M,v,/L,. The external work rate is simply Hv,.
Setting the work rate equal to the sum of the dissipa-
tion rates, cancelling v,, and solving for H gives

H LO(R + R,y) (1 y)d +2Mp
= * _ =

, ety L)Y "L, (105)
Note that we could further generalize this expression
by including any soil resistance function in the inte-
gral. Further a free headed pile that forms a plastic
hinge below the mudline, such as might be em-
ployed as an anchor, can be modelled by changing
2M, to M,,.

Equation 105 can be integrated analytically but it is
a simple matter to set up numerical integration
where the resistance function can be changed easily.
Finding the optimum for the general case can be dif-
ficult but optimization routines such as the Solver
Function® makes the process quite simple even for
numerical integration. Closed form solutions for the

ideal cases, R; = 0 and R, = 0, can be found easily
using the standard approach as follows

Mp
Ry =0:L,=2|=2 = H=2,/M,R,
R, (106)
3 |6M 3[9M,*R
Ry=0:L,= |—2 = H= f”Tl
R, (107)

These solutions provide useful “back of the enve-
lope” equations that can provide quick insight into a
problem.

An additional, related problem of interest is the ca-
pacity of a laterally loaded pile where an anchor line
is attached deeply embedded in the soil so that prox-
imity to the mudline has no influence. Assuming a
uniform soil resistance over the section of pile in
question and a three hinge mechanism as shown in
Figure 42, the problem is set up in a similar manner
to that above.

L ]
Plastic Hinges with H > <«
Moments= M, <
<

Soil Resistance, R

Figure 42: Schematic of a thrgt;hinge failure mechanism for a
deeply embedded anchor line attachment point

The ultimate capacity of the pile anchor is then

MP
Ri=0:L,=2 | = H=4,/M,R,

R, (108)
As mentioned above it is relatively simple to set up

numerical solutions that have considerably more
complexity on a spreadsheet.

Example 8
Having explored the ultimate lateral capacity of sin-

gle piles to some degree, it is of interest to investi-
gate the capacity of pile systems. Consider a simple
4-pile example. As shown in Figure 43(a), the pile
images are projected onto a vertical plane aligned
with the lateral load. The planar capacity is then de-
termined for the projected systems as characterised
in Figure 43(b). The failure mechanism is assumed
to be a virtual rotation, 3, of the system about a hor-
izontal axis through the point x,,y,. The piles are



deeply embedded and fixed to the structure which is
assumed rigid so they will form plastic hinges at the
connection points and at a depth L,, as yet unknown.
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Figure 43: Schematic of a four pile system (a) Pile images
projected on a vertical plane (b) Capacity of the planar system

Figure 44 shows a generic pile in the system. The
velocity at the pile head is resolved into components
parallel and perpendicular to the pile’s axis, v,; and
Uy, respectively. The rotation rate of the upper sec-
tion of the pile about L, is then y,8/L, whereas the
rotation rate of the base of the structure is simply /.
The plastic hinge at the pile head then undergoes a
net rotation with respect to the structure of f(1 —
y,/L,) and the hinge at L, rotates at y,3/L,.

\lw
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Figure 44: Schematic of a generic pile in the four pile system

These values allow the calculation of the EDR of the
plastic moments of

Dy = My (1 - %Z)ﬁ + My (Z_Z)ﬁ (109)

The lateral velocity of the pile above L, is given as

Uxi =}’o<1—&>3

L, (110)
and the axial velocity at the pile head is
Uy = (x; — xo).g (111)

These results provide the necessary input to calcu-
late the EDR. The external work rate is

W =H(y, + yn)B +V(x, — x,)B (112)

where H and V are the horizontal and vertical global
loads on the system. We can then apply the upper
bound method to solve for horizontal capacity

Lo .
1o fo 1_21_1|R(3’i)d3’
= [0
Yo +yh
Thx; — x,)Q + 4M,, (|1 _i’_z n {_Z )
+
Yo +yh
_ Vo —x0)
Yo t Vn (113)

where Q = axial pile capacity. Equation 113 is then
minimized with respect to x,, y,, and L,. It has
been found that L, determined for an individual pile
remains relatively constant for the group and the re-
sults are very insensitive to it so L, can be deter-
mined prior to the system optimization.

A simple example of the four-pile system is de-
scribed in Table 1.

Table 1: Parameters for analysis of four-pile foundation

Parameter Value

V/Q Oand2
M/QB 0.10
RB/Q 0.40
x./B 0.50
z,/B 0.50

An interaction diagram of horizontal load vs. over-
turning moment is shown in Figure 45. There are
three zones of interest. At small moments, say loads
near the mudline, the failure is a shear mechanism
characterised by lateral translation and double hing-
es in the piles. At relatively small horizontal loads



the failure is overturning characterised primarily by
axial failure of the piles. A region between is a zone
of horizontal load-moment interaction where both
bending and axial load in the piles is apparent. Fig-
ure 45 also shows the effects of a vertical load such
as the structure weight which reduces the moment
capacity but not the shear capacity. This of course
presumes that the plastic moments in the piles are
not significantly affected by the axial loads.

1.80 +
1.60 —=—V/Q=0

1.40 A ——V/a=2
1.20
o 1.00 -
T 0.80 -
0.60 -
0.40 -
0.20

0.00 T : .

0.00 1.00 2.00 3.00
M/QB
Figure 45: Interaction diagram of lateral load vs. overturning
moment for a four pile system

In this analysis the failure is assumed to be in the
plane containing the resultant horizontal load. This
overly constrains the system and does not admit the
possibility of an out-of-plane failure. It would be
possible to include the direction of failure as an ad-
ditional parameter in the optimization procedure
however we prefer an alternate strategy which gives
the analyst a little more control over the analysis.
The alternate procedure is shown in Figure 46, an in-
teraction diagram of x and y forces for a fixed load
height of 3B for a rectangular base of Bx2B.
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Figure 46: Interaction diagram of lateral forces in x and y di-
rections with base dimensions B x 2B

The rectangular base accentuates the effect of con-
straining the failure direction. Note the significant
bulge in the interaction diagram. In this region the

foundation can fail in an out-of-plane direction as
demonstrated in Figure 46. As shown in the plot the
load cannot actually reach the constrained failure
surface on this path since a component of the load
will reach the failure at another location first. In this
analysis, each possible load path is tested against all
points on the constrained failure surface to deter-
mine at what point a component of that load will
first reach the surface. Thus the critical magnitude
of the load along the load path is given as

Ferie = Min[

i
cosOp, .. — Hi] (114)

where F,,;; is the critical load value at the load angle
Or,,,, and F; represents all possible load values at the

respective angles 6;. The critical or governing yield
surface is the result of analysing possible load paths
from zero to 90°. The reduced interaction surface in
Figure 46 has been corrected to include the possibil-
ity of out-of-plane failure.

4.4.2Additional Strategies

In the foregoing, the examples were intentionally
simple to demonstrate the concepts without getting
bogged down in too many details. It is important to
point out however that significantly more realism
can be included without the analysis becoming too
onerous. Of course at some level of effort a more
rigorous analysis such as finite elements may be
called for and in fact at least some such is recom-
mended to calibrate the simpler methods. In the fol-
lowing we include a few ideas where added realism
is not too burdensome.

The region of a pile involved with the lateral failure
mechanism is also subjected to axial loads or shear
along the pile. This can result in a reduction in lat-
eral capacity due to the interaction of normal and
shear stresses on the pile face. Aubeny, et al. (2002)
used results from finite element analysis to charac-
terise this interaction and include it as a distributed
yield surface (over the pile surface) in an upper
bound model. This concept has been shown to be
particularly useful in the analysis of large diameter
piles such as suction caissons subjected to inclined
loads.

Additional modifications for the pile system can also
add realism to the analysis. Examples include pile
batter, variable wall thickness, and moment-axial
load interaction. Pile batter can be accommodated
by resolving the velocities parallel and perpendicular
to the pile axes. Pile wall thickness profiles can be
used in the search for the depth of the second plastic
moment. The plastic moment can also be made a



function of the axial load by including the axial
load-plastic moment interaction relationship as a
yield surface in the model so that rotation rate and
axial velocity are generalized strain rates as dis-
cussed by Murff (1987). Of course, it is also
straightforward to include additional piles in the
model.

A recent innovative shallow foundation concept uses
short “pin” piles in the corners of a mud mat to pro-
vide additional support and reduce the mud mat area
for more efficient offshore handling and installation.
The above mentioned pile system model can be
modified easily by replacing the lower plastic mo-
ment mechanism with a rigid pile that kicks out be-
low the pile rotation depth.

The ideas above are just a few of the modifications
that can be incorporated in models previously dis-
cussed to provide better insight into foundation be-
haviour. This emphasizes the significant role that
innovation plays in constructing mechanisms. Plas-
tic limit analysis provides a convenient set of rules
for consistently analysing surprisingly complex
models.

5. Plastic Limit Analysis and the Limit
Equilibrium Method

It is sometimes argued that soils do not obey the as-
sociated flow rule and hence PLA methods do not
reflect real behaviour. Further the upper bound
method gives results that are unconservative in most
applications and hence limit equilibrium methods
that focus on satisfying statics are to be preferred. It
might therefore be useful to put in perspective the
concepts of plastic limit analysis as related to the
limit equilibrium method. First it should be pointed
out that the collapse load estimate is usually not very
sensitive to the assumption of associated flow. As
pointed out by Davis (1968) this is true even for fric-
tional materials where dilation is known to be signif-
icantly over predicted. In a sense we can think of
upper bound solutions as getting as close to equilib-
rium as possible for the proposed failure mechanism.
The early limit equilibrium solutions by Coulomb,
Rankine, and others were conceived well before the
principles of plasticity were deduced. In these mod-
els failure mechanisms were constructed and an at-
tempt made to satisfy equilibrium and the failure
conditions along the hypothesized failure surfaces.
As pointed out by Murff and Miller (1978) the limit
equilibrium methods borrow from both the upper
and lower bound ideas. They resemble upper
bounds in that mechanisms are proposed and they
resemble lower bounds in the attempt to satisfy
global equilibrium and yield. However, they do not

include checks to establish that the mechanisms are
kinematically admissible nor that stress conditions
within the mechanisms are statically possible.

In most classic solutions such as Coulomb’s and
Rankine’s, the solutions are in fact admissible while
the process of imposing global equilibrium and yield
is actually equivalent to formulating the upper bound
equation. These solutions generally do not rigorous-
ly satisfy equilibrium and yield in the small. As
such they are actually valid upper bound solutions as
can be shown by comparing the solutions with an
upper bound formulation. As an example consider
the solution for a laterally loaded pile using the
wedge mechanism as proposed by Reese (1958) and
shown in Figure 47.
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Figure 47: Schematic of limit equilibrium solution using the
wedge mechanism
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The solution proposed was to sum shear and normal
forces acting on the various faces of the wedge in
the vertical and horizontal directions and to solve the
two resulting equations simultaneously. This model
includes the normal force on the wedge face. It is
unnecessary to include this force in the upper bound
solution as it does no work nor dissipates energy in
the deforming mechanism and a single, simpler
equation results from the virtual work formulation.
The upper bound solution as given in Equation 78
above turns out to be identical to Reese’s limit equi-
librium solution. Both solutions require minimiza-
tion with respect to the wedge angle to get the best
solution i.e. the one closest to equilibrium. This best
solution while being a reasonable approximation is
not the true mechanism and clearly does not satisfy
equilibrium and yield. This is most evident by the
fact that the wedge failure surfaces do not intersect
free surfaces at 45°. Thus where the limit equilibri-
um method employs a kinematically admissible
mechanism it produces the same result as the upper
bound solution for that mechanism. The upper
bound method however is simpler in its formulation
as shown here and more adaptable to complex con-
ditions. For example in contrast to the limit equilib-
rium method the upper bound approach easily incor-
porates deforming regions in the mechanism and is



much more adaptable to non-homogeneous strength
profiles.

In some applications the ideas of the limit equilibri-
um method have been extended to non-standard
problems where mechanisms are constructed of lines
simulating “intuitive” failure surfaces, for example
seeking to exploit weak layers. Such mechanisms
may or may not be admissible ones and hence can
lead to rather arbitrary results. To illustrate this
point Figure 48 shows examples of some solutions
that seem reasonable but are not in fact admissible.

Soil must
v penetrate pile

Figure 48: Schematic showing example inadmissible failure
mechanisms

Figure 48(a) attempts to include the effects of mo-
ment loading in a planar mechanism. Again this im-
plies a gap opening on the left side which is inad-
missible. To include moment effects the mechanism
must provide for rotation such that the moment does
work and the soil deformation does not include sepa-
rations.

Figure 48(b) includes rotation of the system about a
horizontal axis below the footing. As such the veloc-
ity of the right corner of the footing, A, is greater
than the points below it, say at B. Thus if the wedge
on the right side is rigid, a gap will form as shown.
The mechanism can be made admissible by allowing
the wedge to deform.

Figure 48(c) shows a failure mechanism at a deeply
embedded pile tip. In this case advancing the pile
tip requires the change in volume to be accommo-
dated in the mechanism. Since the consistent soil
model is incompressible (for clay) or dilatant (for
sand) the volume change cannot be accommodated
unless the mechanism intersects the soil surface.
This will generally give a very poor result. For deep
embeddments, the conventional PLA methods can-
not be used and one must resort to cavity expansion
solutions such as proposed by Bishop, et al. (1945)
in which the collapse pressure is a function of the
elastic stiffness and the soil shear strength.

6. Closing Comments

It has been the intention of this paper to use simple
examples to shine a light on the robust generality of
PLA methods and to hint at their ability to obtain
approximate and useful solutions to complex prob-
lems. It is argued that, properly applied, these
methods achieve the same thing that more traditional
limit equilibrium methods achieve when correctly
formulated. Thus the argument here is by no means
to abandon traditional methods but to use PLA
methods to build on the limit equilibrium techniques
and add to their generality and consistency.

In cases where more rigorous methods such as finite
element methods are to be used, PLA methods can
play an important role. Preliminary studies can be
used effectively to design the finite element studies
and they can be used very effectively to supplement
the finite element studies as they are being carried
out.

PLA methods are thus important tools in the engi-
neer’s arsenal and with a little practice can be ex-
ploited to add surprising insight into even complex
problems- and insight is what computation is all
about.
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9. Appendices

Appendix I. Upper Bound Calculations for Energy
Dissipation Rates for the Brinch Hansen Mechanism

This Appendix provides examples of detailed upper
bound calculations of energy dissipation rates for the
Brinch Hansen failure mechanism shown in
Figure 15 including variable soil strength with
depth. These examples will only describe the right
side of the mechanism for x, < 0. With slight mod-
ifications in the values of R; and R, the calculations
for the other components follow the same pattern. A
general description of the mechanism is provided in
the main text.

The rigid sector EFI slips along the arc EF due to the
virtual rotation rate, 8, about the center of rotation O
at x,, y,. The energy dissipation rate (hereafter
called EDR) for a uniform strength soil is then

DEF = Vpp * Sy * lgp = RlB * Sy * R10,
x, + B .
o (22
yO [an yo Suﬁ (1_1)

Now, to generalize the result for a variable shear
strength with depth we must express s,, as a function




of local coordinates and integrate along EF as fol-
lows,

—1Xo+B
Yo

DEF = f yoﬁ * Su(y) * y0d9

0 (1-2)
For simple strength variations, the integration can be
done analytically but for general variations numeri-
cal integration may be required. Note that for a line-
arly increasing strength profile, common in offshore
applications, s,, is as follows

tan

Sy = Syo + ky = sy, + k[y,(1 — cos )] (I-3)

To calculate the EDR along FG we use a local coor-
dinate system centered at | as shown in Figure 15.
Again the general case requires integration as fol-
lows,

%+tan_1(%)

Dpg = f RiBs,(y) * (R, — Ry)dO

7 (I-4)
where
R, =/ (x, + B)? + ,2 (1-5)

and the depth from the soil surface in local coordi-
nates is

y = (R —Ry)siné (1-6)

The EDR in the sector FGI is calculated using the
same local coordinate system as for FG. In this ra-
dial shear fan however the tangential velocity varies
linearly along the radius, r, as follows

vg = (Ry — 7')3
The only non-zero strain increment term is then

(I-7)

.1 <6vr vy 179) _ —Ryp
&0 =3\;a0 " ar ~ )T 2r (1-8)
The maximum principal strain increment is then
€] = @
Elmax = 7, (1-9)
And the EDR is then
DFGI =
N et () g g

J J;T * 5, (v) * rd@dr

0 'z r (1-10)
where

y =rsinf (I-11)

The velocity along GH is also equal to R,f so the
EDR is integrated along GH. The local coordinate
system for this calculation is a rectangular system
with origin at G and the x’ axis along GH. The EDR
is then

R;—R;
DGH = f R1B * 5, (y) * dx’

0 (1'12)
The depth y in local coordinates is then

_ RZ - R1 - x,
Y V2 (1-13)
The triangular region GHI is deforming to conform
to the varying velocity along GIl. Using the same

coordinate system as for GH, the only non-zero ve-
locity is

vy =Ry +y)B (1-14)

Thus the only non-zero strain increment component
is then

. 1[/0v, 0vy 1.
Exlyl =5 - + = —ﬁ

2\ dy dx 2 (1-15)
Since the strain increment is a constant, we can carry
out the integration in yet a simpler coordinate sys-

tem with origin at G and the x'’ axis parallel to the
soil surface. The EDR is then

Ry—R4
2
DGHI =2 f ' xs,(y) xdy"”
0 (I-16)
where
_ R, — R, "
YT (1-17)

As mentioned above the calculations for the remain-
ing components follow in a similar manner.

Appendix 1l. Upper Bound Calculations for Energy
Dissipation Rates for the Squeeze Mechanism

This Appendix provides examples of detailed upper
bound calculations of energy dissipation rates for the
squeeze failure mechanism shown in Figure 19. The
EDRs are determined within the continuous thin lay-
er ABCD, at the interfaces AD and BC, along the
slope CE and at the thin layer-wedge interface CD.
The mechanism is symmetric so only the right hand
side is detailed below.



In region ABCD it is assumed that the vertical ve-
locity is given as

v = (1- %) (I-1)

Where t = thin layer thickness. Since the defor-
mation field is incompressible we can say that

. . . . vO
s,,=ex+£y=0=>sx=? (11-2)
The EDR within region ABCD is then

. 25,1,

Dppcp = t (11-3)

Since the EDR is constant throughout ABCD the to-
tal EDR is then simply = s,,B.

It can be shown that v, in region ABCD is a func-
tion of x only by integrating Equation 11-2 to get

Uy = V_tox +f) (11-4)

Since v, = 0 at x = 0 the function, f(y), in Equa-
tion 11-4 is zero. Assuming the interface strength at
BC is sy, the dissipation along BC is

B
/2, Sy V,B?

DBC=svj —xdx =
wel, ot 8t

(11-5)

If we assume full adhesion of the soil along AD, the
EDR is equal to that along BC or for no adhesion the
EDR along AD is zero.

From Equation I1-4, the velocity v, along CD is
equal to v,B/2t. The wedge CED then remains rig-
id and the EDR along CE is

v,B t v,Bs,
* [ —
2t cos 6 2sinf cosf (1I-6)
At the interface CD the vertical velocity of the

squeezing zone is downward (Equation I1-1) and the
vertical velocity of the wedge is upward given by

DCE * Sy

sin @

v,Btan @
ST T (11-7)

Because the velocities are in opposite directions the
relative velocity is the relevant value to calculate the
dissipation. This is a function of y and is therefore
integrated along CD to give

Btan@ t)

Deo = vosu (5 +3 (11-8)

The EDR terms determined here are summed, multi-
plied by two (for symmetry) and set equal to the ex-

ternal work rate, Vv,. The resulting vertical load V,
given in Equation 37 in the main text is then mini-
mized with respect to 6 to give the best upper
bound.



