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ABSTRACT: As the Third Pole of the Earth, Tibet Plateau (TP) is sensitive to climate change which induces complex geo-
environmental changes and hydrological patterns. In recent years, with increasing environmental temperatures, there have been
growing numbers of geological hazards that produced significant threats and damage to the settlements, hydropower stations, and 
transportation infrastructures in this tectonically active region. However, the mechanism causing such chains of geological hazards 
is not well understood. Therefore, studies on glacial-related geohazards induced by climate change in the Tibetan Plateau region 
have become an emerging hot issue. In this paper, we introduce five common types of cascading hazards induced by climate change
and their possible mechanisms. Some representative cases are discussed. We provide a brief review of studies related to the impact 
of climate change on chains of geohazards on the TP and its margins, and highlight future research directions. 

RÉSUMÉ : En tant que troisième pôle de la Terre, le plateau du Tibet (PT) est sensible au changement climatique qui induit des 
changements géo-environnementaux et formes hydrologiques complexes. Au cours des dernières années, avec l’augmentation des 

températures environnementales, il y a eu un nombre croissant de risques géologiques qui ont produit des menaces et des dommages 
importants pour la population, les centrales hydroélectriques et les infrastructures de transport dans cette région tectoniquement active. 
Cependant, le mécanisme à l’origine de telles chaînes de risques géologiques n’est pas bien compris. Par conséquent, les études sur les 

géorisques liés aux glaciers et donc induits par le changement climatique dans la région du plateau tibétain sont devenues très 
importantes. Dans cet article, nous présentons cinq types de dangers en cascade induits par le changement climatique et leurs mécanismes 
possibles. Certains cas représentatifs sont discutés. Nous fournissons un bref examen des études liées à l’impact du changement 
climatique sur les chaînes de géorisques sur le PT et le long de ses frontières, et mettons en évidence les orientations futures de la 
recherche.
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1 INTRODUCTION

Tibetan Plateau (TP), as the Third Pole of earth and the Water 
Tower of Asia, acted as the driver and amplifier of climate 
change (Yang et al. 2014). The average warming rate of the TP 

-1) is approximately 1.5 times of the global 
-1) (Zhang et al. 2020). It 

means the changing of temperature in the TP is more sensitive to 
climate change. The TP has been experiencing significant 
environmental changes in the past few decades. The major 
changes on TP are driven by glacier retreat, glacial lake outburst 
floods (GLOFs), landslides and debris flows caused by warming-
induced changes, etc., with severe repercussions on the socio-
economic condition in the region. 

Accompanied by climate change, earthquakes, and 
rainstorms, there are increasing numbers of geological hazards
on the Tibetan Plateau and its margins. The Yigong landslide in 
2000 was one of the most catastrophic landslides worldwide, 
resulting in enormous casualties and property losses in China and 
India. 300 Mm3 of debris blocked the Yigong River for about 62 
days, resulting in reservoir volume increasing to about 2.015 
Gm3. The corresponding catastrophic breaching caused a 
massive outburst of flood in the Yarlung Zangpo (in Tibet) and 
the Dihang (in India) rivers (Delaney and Evans 2015; Kang et 
al. 2017; Zhou et al. 2016). Adjacent to the Yigong landslide, 
Tianmo Valley did not suffer from debris flows for 
approximately 100 years before 2007. However, approximately 
1.34 Mm3 sediment was transported from the channel in 2007, 
causing eight persons missing. Subsequently, two debris flow 
events occurred in 2010, generating a dam lake with a volume of 
90 Mm3, inundating the highway G318 (Deng et al. 2017; Wei et 
al. 2018). Sedongpu ice-rock avalanche-debris flows, located on 
the left bank of Yarlung Zangbo River, have temporarily blocked 
the river many times since 2012. Interestingly, according to 

satellite images, it nearly slumbered between the 1960s and 2012. 
However, it has been activated since 2012, especially after the 
2017 Ms 6.9 Milin earthquake. Many studies in the Sedongpu 
region proposed that frequent geohazard events have a close 
connection to climate change (Chen et al. 2020; Jia et al. 2019; 
Li et al. 2021).

In addition, TP is a region with intensive tectonic deformation 
and high-level earthquake activity (Huang and Fan 2013; Wang 
et al. 2011). Strong earthquakes, caused by the continental 
collision, weakened and fractured the steep mountain slopes, 
increasing the probability of geological disasters (Fan et al. 
2019a; Jiang et al. 2021). The influence of the Wenchuan 
earthquake on geological hazards has been well documented, 
especially on the spatio-temporal evolution of landslides and 
debris flows (Fan et al. 2018; Fan et al. 2019b), the formation of 
landslide dams and dammed lakes (Fan et al. 2021b; Fan et al.
2020), the enhancing sedimentary transportation (Dai et al. 2021; 
Fan et al. 2019a; Fan et al. 2021a), the vegetation recovering 
(Yunus et al. 2020), etc. In the TP region, the freeze-thaw process 
caused by climate change can further cause strength degradation 
of the rock mass in high mountain regions and enhance the 
possibility of slope instability (Krautblatter et al. 2013). 
Furthermore, post-seismic debris flows induced by extreme 
rainfall events are of significant concern in the seismically 
affected zones (Jiang et al. 2021). Under the effects of climate 
change, along with strong seismic activities, geological hazards 
could be prone to present a considerable threat to society.

TP experienced a significant increase in air temperature 
especially in the past 50 years, the increasing rate of air 
temperature has been twice the global average, reaching 0.3-0.4 

every ten years (Yao et al. 2019). With such a rapid rate of 
climate change in the past decades, there has been an accelerated 
rate of glacier mass loss 1) since the 
mid-1990s (Bolch et al. 2012; Brun et al. 2017). The retreat of 
glaciers and excessive rains gradually expanded glacial lakes at 
the low-lying lands and formed a potential source of flooding 
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(Clague and Evans 2000; Mool et al. 2001; Song et al. 2016; 
Wang et al. 2020). Climate change has increased the natural 
disasters in the region at an alarming rate. These rapid changes 
on TP and their effects on the downstream area, although studied 
extensively, lack a clear understanding of the cascading effects.

This paper introduces five types of geohazard chains induced 
by climate change and the mechanisms associated with them on
the Tibetan Plateau and its margins. We briefly reviewed recent 
studies related, presented a few representative cases of chains of 
geological hazards, and highlighted future research directions. 

2 TYPES OF CLIMATE CHANGE INDUCED CHAINS OF 
GEOLOGICAL HAZARS ON TIBETAN PLATEAU
REGIONS

2.1 Climatically induced cascading hazards after strong 
earthquakes

Strong earthquakes are typical of TP region, resulted by 
continent-continent collision. International Seismological Center 
(ISC) database reports over 7200 earthquakes between 1975 and 
2015 on the Tibetan Plateau margin. Well known examples 
include 2008 Wenchuan (Mw 7.9), and 2015 Nepal (Mw 7.5) 
cases, both of them caused numerous landslides in the mountain 
slopes, loss of life and infrastructure damages, see Figure 1.
Remobilizations of the coseismic landslide deposits in the form 
of debris flows during subsequent rainy periods are the common 
geological hazard in areas affected by earthquake-induced 
landslides (Fan et al. 2019a). 

The 2008 Wenchuan earthquake triggered the largest number 
of coseismic landslides on record: 200,000 (Xu et al. 2014). 
After this event, extensive debris remobilizations were occurred 
continuously for several years, even multiple times in the same 
deposit (Fan et al. 2021a). They often resulted in human losses 
and damage to property and infrastructure. The prediction of 
post-seismic landslides is almost based on analysing the 
relationship between debris flows initiation and cumulative 
rainfall. We noticed that the triggering rainfall intensities of post-
seismic debris flows evolve with time. Based on 172 triggering 
rainfalls and 2396 non-triggering rainfalls of debris flows from 
2008 to 2013 after the Wenchuan earthquake, we analysed the 
evolution of probabilistic rainfall thresholds for post-seismic 
debris flows using a Bayesian technique and found that rainfall 
thresholds significantly decrease compared with pre-earthquake
events initially and later tend to increase annually (Jiang et al. 
2021). Meanwhile, the triggering rainfall characteristics tend to 
gradually change from a short-duration high-intensity pattern to 
a long-duration and low-intensity pattern. 

Elevated frequency of debris flows has been reported also 
after the 2015 Gorkha earthquake in Nepal (Dahlquist & West
2019) and 2017 Juizhaigou earthquake in China (Fan et al. 
2021a). Nevertheless, studies show that the rates of debris 
remobilisations and post-seismic landslides eventually return to 
a pre-earthquake level in a few years (Marc et al. 2015; Fan et al.
2019a). The decay timescale of major post-seismic landslide 
disturbance appears to be a few years to several decades (Fan et 
al. 2019a). For example, after Mw 7.6 Chi-Chi earthquake of 
1999, the affected areas progressively returned to the pre-
earthquake condition within seven to ten years; whereas that for 
Wenchuan is more than 10 years. It is also worth to note that there 
were catastrophic reactivations during major rainstorm events in 
Wenchuan (e.g., 12th August 2010 rainstorm, 4th July 2011 
storm and 9th July 2013 storm). Hence, extreme rainfall 
variability needs to be taken into account in projections of 
landslide decay assessments.

Figure 1. The distribution of strong earthquakes in the Tibetan Plateau 
and its margins. Earthquakes in this region are according to the
Earthquake Hazards program dataset
(https://earthquake.usgs.gov/earthquakes). Size of filled circles
corresponds to earthquake magnitude. The background Terrain is from 
the Stamen Design open-source maps (http://maps.stamen.com/).

2.2 Climate change-induced slope failures in permafrost 
regions on TP 

Permafrost related slopes failures are typical examples of 
climate-change-induced geohazards. The 0.5 additional 
warming is a severe threat to cold permafrost regions like the 
Qinghai-Tibet plateau. The frequency of extreme weather-related 
geohazards is increasing, and freeze-thaw induced slope failures 
in permafrost regions are not exempt. Over 1,500,000 km2 area 
of Qinghai-Tibet plateau consists of permafrost (Zhou et al. 
2018; Niu et al. 2005). During thawing, shear strength reduction 
occurs in ice-rich sediments within the active layer and triggers 
slope failures. Driven by the increasing demand for infrastructure 
development, transport networks encounter thaw induced-
permafrost slope failures along the new engineering corridors 
(Niu et al. 2014). Studies in the recent decades' efforts on 
understanding the types of these slope failures as retrogressive 
flows, thaw slumps, and gelifluction (Wei et al. 2006). Of these 
types, retrogressive failures and active layer detachment thaw 
slumps are prominent. Terrian factors, i.e., slope, aspect, deposits 
characteristics, temperature, and ground-ice content, control 
these slope failures' spatial distribution (Niu et al. 2005). External 
triggering factors of these slope failures are increased 
temperature (thawing), heavy summer precipitation, and 
occasionally an earthquake. Studies have identified a 253% 
increase in thaw slumps in the last decade (Luo et al. 2019). With 
the rise of air temperature during the thawing season and 
abundant precipitation related to extreme-weather events under 
climate change, it is vital to expect the trend to prolong. 

2.3 Climate change-induced ice/rock mass strength 
degradation and cascading hazards

The temperature of ice is one of the most important factors 
affecting the strength of ice (Petrovic 2003). The influence of 
temperature rise on ice strength mainly includes three aspects: 
directly reducing the strength of ice, the temperature stress that 
causes cracks in the ice, and the melting of ice reduces the 
confining pressure of the ice. The existing research results show 
that when the ice temperature is above -30°C, its strength 
decreases significantly with the increase of the ice temperature 
(Chang et al. 2021). Uneven temperature changes will produce 
temperature stress, causing cracks in the ice, thereby reducing the 
strength of the ice layer. In addition, the mechanical properties 
of ice, like rocks, are also significantly affected by the stress 
environment in which it is placed. When the upper ice layer 
melts, the confining pressure of the lower ice layer decreases, 
which will also cause the loss of its strength. 

On the other hand, the increase in temperature will also lead 
to changes in the structure of the ice layer. It can be clearly found 
in the field survey that the snow line has raised as the temperature 
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rises. As for the ice layer on the slope surface, the lower part 
becomes thinner due to the rising temperature, and the upper part 
becomes thicker due to further snowfall, which causes the slope 
of the ice layer to increase, and the ice layer is prone to instability 
(Kääb et al. 2018). In addition, the melting of the lower ice layer 
also produces an effect similar to "excavating the foot of a slope", 
which easily induces the collapse of the ice layer. 

Due to above reasons, ice avalanches have continued to occur 
on TP in recent years. For example, in 2016, two large-scale ice 
avalanches occurred in the Ngari area of the Tibet Autonomous 
Region, causing serious casualties and property losses (Kääb et 
al. 2018). Ice avalanches can also cause cascading disasters such 
as glacial lake outbursts. The ice body falling into the glacial lake 
can stir up huge surges, swelling through the dam and then 
causing the dam to break (Cook et al. 2016). 

The increase in temperature not only leads to a decrease in the 
strength of the ice, but also causes damage to the mechanical 
properties of the rock mass. Freeze-thaw is generally considered 
to be one of the leading mechanisms for the deterioration of rock 
mechanical properties in cold regions (Huang et al. 2020). 
Climate warming will gradually increase the severity and area of 
freeze-thaw damage on TP. The infiltration of ice and snow melt 
is another major factor that causes rock mass instability in cold 
regions. Water infiltration not only lubricates the joints and 
cracks of the rock mass, but also generates hydrodynamic 
pressure and hydrostatic pressure, and even leads to liquefaction 
of the sliding surface, which further promotes the generation and 
development of landslides or collapses. 

On the TP and its margin regions, active tectonic movements 
coupled with long-term geological evolution processes such as 
freeze-thaw cycles, dry-wet cycles, loading and unloading, have 
formed potentially unstable rock masses in many areas. In 
addition to the infiltration of ice and snow melt water, climate 
change can also lead to extreme weather such as heavy rainfall, 
rapid changes in hydrological conditions often become a direct 
factor inducing the instability of dangerous rock masses. The 
aforementioned Yigong landslide that occurred in 2000 was 
caused by the coupling of such long-term and short-term 
inducing factors (Li et al. 2020; Zhou et al. 2016), see Figure 2a. 

The Chamoli ice and rock avalanche that occurred in 2021 in 
India also has a similar initiation mechanism, Figure 2a (Shugar 
et al. 2021). Existing research results have shown that in the years 
before the event completely collapsed, obvious seasonal 
deformation characteristics have been revealed: the ice rock mass 
deforms in summer, but remains stable in other seasons (Pandey 
et al. 2021). In the winter when the avalanche occurred, 
significant abnormal temperature changes also appeared. This 
further confirms that the hydrological driving factors caused by 
climate change have an important influence in the evolution of 
such events.  

 
Figure 2. (a) The catastrophic Yigong Landslide occurred in 2000 in TP, 
and (b) the Chamoli ice-rock avalanches occurred in 2021 in India 

2.4 Climate change-induced debris flows and flash floods  

As a common type of natural hazard in mountainous areas, debris 
flow is usually a mixed flow of rocks, mud, water and air (Iverson 
1997; Hürlimann et al. 2019). The velocity and impact force of a 
debris flow could be tremendous, imposing serious threats to 
people, properties, and infrastructure in the affected areas. Due 
to favourable natural environments for geohazards, the southeast 
of the Tibetan Plateau suffers serious debris flow hazards, which 
are initiated by intensive rainstorms, maritime monsoon glacier 
melting, glacial avalanches and glacial lake outburst floods 
(GLOFs) (Wei et al. 2018). Especially, with the effect of climatic 
warming, the occurrence of debris flows becomes more frequent. 
Previous studies have demonstrated that three key factors may 
contribute to the triggering of debris flows, including steep slope, 
availability of sediment and input water flow (Mcguire et al. 
2017). On one hand, climatic warming will induce glacier retreat 
and permafrost degradation, which will expose more moraine 
and rock slopes. The new-exposed moraine will be the 
supplement sediment for debris flows, which will promote the 
activities of debris flows (Walter et al. 2020). On the other hand, 
the high temperature will accelerate the melting of the glaciers, 
the meltwater will be transformed into the runoff in the channel. 
The effect of meltwater for the initiation of debris flow is similar 
to that of antecedent rainfall. The melted water will saturate the 
moraine, which makes the moraine into a water-filled state. 
Under the action of heavy rainfall in the later period, the moraine 
deposits in the channel will be easily washed away to transfer a 
debris flow (Kumar et al. 2018). At the same time, in the 
background of climate warming, the climatic characteristics in 
the TP increasingly show a trend that the rainfall and high 
temperature will occur in the same period, that is, the strong 
melting of glaciers occurs in summer, and this is also the season 
of concentrated precipitation. The superposition of concentrated 
rainfall and high temperature will enhance the volume of water 
supply in the channel and promote the occurrence of debris flows 
under the coupling effect of glacial-melting and intensive rainfall 
(Deng et al. 2017). In addition, climatic warming will also 
increase the numbers and volumes of moraine-dammed lakes 
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with the possibility of hazardous debris flows induced by Glacial 
Lake Outburst Floods (GLOFs) in the Tibetan Plateau.  

Due to climate change, glaciers in the TP have shown an 
accelerating retreat (Dussaillant et al. 2019; Fujita and Ageta 
2000; Kääb et al. 2018; Ke et al. 2017; Yao et al. 2012). By 2015, 
the area of glaciers has decreased by about 178 km2 since 1999 
(Bhattacharya et al. 2021). The increased melting volume of 
glaciers has largely increased the frequency of mass movements, 
especially debris flows (Aggarwal et al. 2017; Muneeb et al. 
2021; Ashraf et al. 2012; Cook et al.2018; Veh et al. 2019). In 
the past sixty years, many large debris flows took place in the 
Tibetan Plateau, especially along the Yarlung River (Wang et al. 
2021). These debris flows severely impacted the Sichuan-Tibet 
highway (State Highway G318) along the right bank of Parlung 
River, and the highway was frequently closed for long periods 
(Zou et al. 2019). On 29th Sep 1953, a mega glacier debris flow 
with a leading head of 40m occurred in the Guxiang Gully, the 
sediment transport volume of the debris flow was about 17.1×106

m3 (Zou et al. 2020; Dang et al. 2009). A huge debris flow 
accumulation fan with an area of 4.2 km2 also formed at the 
mouth of the gully and blocked the Parlung River, a tributary of 
the Yarlung River. The debris flow event caused more than 140 
deaths and a large amount of arable land was buried (You 2001). 
On September 4 of 2007, July 25–31 and September 5–8 of 2010, 
three large-scale debris flows took place in the Tianmo gully, a 
tributary of the Parlung River (Figure 3) (Wei et al. 2018; Deng 
et al. 2017; Wang et al. 2018). All the three debris flow events 
blocked Parlung river and produced dammed lakes. The outburst 
flow intensively scoured the foot of the high terrace at opposite 
bank and made it collapse, resulting in the ruin of State Highway 
G318 base and the interruption of traffic (Zou et al. 2020; Ge et 
al. 2014). The distribution of large-scale geohazards in the south-
eastern of the TP is shown in Figure 4 and Table 1.

Figure 3. The Tianmo debris flow destroyed the G318 Highway in TP

Figure 4. Distribution of large-scale chains of geohazards in the southeastern 
Tibetan Plateau

Table 1. Details of rock-ice avalanche in the Tibetan Plateau

ID
Locatio

n
Latitu

de
Longitu

de
Date Type Referen

ces

1
Yigong 30.23 95.00 2000.04

.09
Rock-ice
avalanche

Li et al. 
2020

2
Aru 34.03 82.25 2016.07

.17
Glacier/ice
avalanche

Kääb et 
al. 2018

34.01 82.26 2016.09
.02

Glacier/ice
avalanche

3

Yarlon
g

Tsangp
u

(Sedon
gpu)

29.81 94.92 Before 
2014

Liqiang 
et al. 
2018

2014

2017.10
.22

2017.11

2017.12

2018.01

2018.07
.06

2018.10
.17

Rock-ice 
avalanche

2018.10
.29

Rock-ice 
avalanche

4
Amney 
Mache

n

34.82 99.43 2004.02
.10

Glacier/ice 
avalanche

Paul
2019

2007.10
.08

2016.10
.06

5
Yulong
Mount

ain

27.09 100.19 2004.03
.12

Rock-ice 
avalanche

Zhang 
et al.
2007

6

Peilong 
gully

1968-
1977?

Glacier 
landslide

Li et al. 
2021;

Wang et 
al. 1999

7

Jiubie 
Peak in 
Kongur 
Mount

ains

38.71 75.27 2015.05 Glacier 
surge and 

ice 
avalanche

Li et al. 
2016

8
Zelong
nong

glacier

29.62 94.99 1950.08
.15

Glacier 
surge/avala

nche
1968.09

.02
1984.04

.13

9

Kunlun
Mount

ain

35.75 93.53 2001.11
.14

Ice 
avalanche

van der 
Woerd 
et al., 
2004

10

North 
Terong 
glacier

34.33 77.16 2000.04
.05

Rock-ice 
avalanche

Bhutyan
i and 

Mahto 
2018

2.5 Climate change-induced glacier retreat and chains of 
hazards

Due to climate change, glacier retreating, as well as increasing 
number of glacial lakes nurturing by glacier retreating process, 
are hot issues emerging during recent years, especially regional 
inventories and spatial-temporal evolution analysis (Dehecq et 
al. 2018; Chen et al. 2021; Dou et al. 2021a; Wang et al. 2020). 
The TP climate is under the combined effects of the East Asian 
and South Asian monsoons and of the westerlies, resulting in 
inhomogeneous distribution and variation of glacier and glacial 
lakes (Chen et al. 2021; Yang et al. 2014). 

The satellite images with the least cloud cover and the least 
mountain shadows were selected by the relevant algorithms, and 
based on Google Earth Engine using image fusion techniques
(Gorelick et al. 2017; Kumar and Mutanga 2018), we fused the 
42833 Landsat satellite images into three images of different 
periods (1990-1999, 2000-2012 and 2013-209) over the past 
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three decades, followed by subsequent processing using © 
ArcGIS Pro and © ENVI software, including manual cross-
checking and correction by image interpreters (Figure 5). Based 
on this we produced an updated inventory of TP glacial lakes 
with complete data for three periods (Dou et al. 2021b). In the 
last thress decades, our inventory showed that the number and 
area of glacial lakes in TP region had increased by 3285 and 
258.82 km2, respectively (Figure 6). There area, however, 
decreased in the western Pamir and the eastern Hindu Kush due 
to reduced rainfall rates (Dou et al. 2021a).  

 
Figure 5. Flowchart of the glacial lake automatic extraction and mapping 
workflow 

 
Figure 6. Area change rate of glacial lakes from the first period (1990-
1999) to the last period (2013-2019) on 1°×1° grids. The circle size 
represents the total glacial lake area in the first period of each grid 

The accompanied GLOFs aggravated with glacier retreat and 
glacial lakes expansion. Benefit from remote sensing 
development, archived glacial lakes and GLOF database are 
established to explore their spatial-temporal evolution (Zheng et 
al. 2021a; Veh et al. 2019; Veh et al. 2020). Since 1900, more 
than 100 GLOFs have originated in the Himalayas, causing 
damage to bridges, road, houses and other infrastructure (Zhang 
et al. 2022; Nie et al. 2018; Zheng et al. 2021b). More than 50% 
of catastrophic moraine dam failures ascribed to rock/ice 
avalanche in the Himalaya (Allen et al. 2016). Similarly, some 
research revealed that 26 out of 33 glacial lakes outburst are 
related to rock/ice avalanche in TB region (Liu et al. 2019). 
Therefore, exploring the process and mechanisms of those chains 
of hazards is essential for risk assessment.  

With the development of urbanization and hydropower 
projects booming in TB, downstream impact of GLOFs is urgent 
for policy-makers and research scientists (Dubey and Goyal 
2020). Some large-scale analyses have been made to assess and 
predict dangerous glacial lake (Allen Simon et al. 2019; Zheng 
et al. 2021a). Apart from regional analysis, individual case also 
made detailed assessment by numerical simulation or other 
methods (Westoby et al. 2014; Mergili et al. 2017). However, 
accurate assessment was impeded by nearly inaccessible of 

glacial lake on TP, and limited accessible cases seemed crucial 
to acknowledge the characteristics of glacial lakes on TP.  

3  MECHANISM OF CLIMATE CHANGE INDUCED 
CASCADING HAZARDS 

3.1  Post-seismic landslides and debris flows driven by climatic 
forces 

The coseismic deposits are typically constituted by loose 
materials with significant amounts of fines, hence are susceptible 
to sudden collapse and liquefaction upon loss of suction or pore 
water pressure increase (Hu et al. 2017, 2018). Hence the major 
factor for the post-seismic landslides and debris remobilization 
in earthquake affected areas are found to be the volumes of 
coseismic deposits and rainfall intensities (Dadson et al. 2004; 
Hovius et al. 1997; Marc et al. 2016).  Other than the above, 
multiple mechanisms may also be at play (Kincey et al. 2021); 
essential controls seem to be the sizes, topography, landcover, 
and hydrological conditions, the healing or removal of 
seismically damaged layers, climatic factors, and the legacy of 

2021b; Tian et al. 2020). The decay of post-seismic landslide 
activities is controlled by various processes, including the 
progressive exhaustion of the hillslope and channel material, 
precipitation regime, and hillslope healing due to revegetation, 
grain coarsening and consolidation (Domènech et al. 2019; Fan 
et al. 2018, 2019a). An important one among these is the recovery 
of vegetation growth (Lin et al. 2006; Saba et al. 2010; Yang et 
al. 2017, 2018; Fan et al. 2018). Yunus et al. (2020) by analyzing 
decadal evolution of vegetation recovery in the affected region 
showed that post-earthquake landslide activity returned to the 
pre-earthquake level within 18 years. Tanyas et al. (2021a) 
reported that quick recovery of post-seismic landslides, also 
correlated with the seasonality of precipitation. According to 
them, a prolonged precipitation makes the recovery process 
quicken.  

3.2  Initiation and runout mechanism of rock-ice avalanches-
debris flows 

Rock-ice avalanches and resulting debris flows origination in 
mountain permafrost regions are more significant threats of 
climate change regarding the scale and nature of impacts of these 
geohazards. In comparison, the magnitude of the long-runout 
rock-ice avalanches were always enormous; their frequency in 
the recent decade has increased, possibly due to climate change 
(Huggel et al. 2010; Schneider et al. 2011; Schneider et al. 2013; 
Cloutier et al. 2017). Unlike the progress in understanding the 
initiation and runout mechanisms of warmer region rock-
avalanches (Hungr 2006; Korup 2011; Shugar et al. 2013; 
Dufresne et al. 2016), there are critical gaps in our knowledge on 
rock-ice avalanches (Pudasaini & Krautblatter 2014; Yu et al. 
2020; Sansone et al. 2021). Similar to rock avalanches triggered 
by an earthquake, studies explain a few instances of earthquake-
triggered rock-ice avalanches on TP (van der Woerd et al. 2004). 
However, the initiation mechanism is still speculative for many 
climate-weather driven rock-ice avalanches (Martha et al. 2021; 
Shugar et al. 2021). Debris flows origination from rock-ice 
avalanches are a more significant threat than rock-ice avalanches 
(Yu et al. 2020). Cold region permafrost debris flows multiply 
the impact of rock-ice avalanches into glaciers. Permafrost debris 
flows are more common in Tibet (Ge et al. 2014; Deng et al.  
2017; Wei et al. 2018). Yu et al. (2020) separate the initiation 
mechanism of debris flow into geomechanically related and 
hydraulically related groups. Geomechanically triggered debris 
flows originate through rock-ice avalanches and liquefaction of 
moraine deposits (Noetzli et al. 2006; Jiskoot 2011; Carey et al. 
2012), and hydraulically triggered debris flow originate through 
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heavy rainfall and/or rapid ice/snowmelt runoff.  

3.3  Mechanism of moraine dam breach  

Moraine dam breach and subsequent flooding are typical 
examples of climate change induced-cascading hazards on TP 
(Montgomery et al. 2004; Korup & Montgomery 2008). Recent 
events of rock-avalanche and rock-ice avalanche landslide 
damming events highlight the climate emergency on TP and also 
signifies the importance and threat of these transboundary 
geohazards. The impacts of moraine dam breach are cascading in 
nature due of sequential triggering of secondary hazards i.e., 
flash floods, and debris flows (Cui et al. 2010; Cui et al. 2013; 
Xiangang et al. 2017; Bazai et al. 2021). Recent reviews on the 
formation and stability and breach mechanisms of landslide dams 
highlight the present state of knowledge and gaps in 
understanding of dam breach mechanisms and modelling (Fan et 
al. 2020; Fan et al. 2021b; Zhong et al. 2021). However, detailed 
studies on moraine dam failure are few (Neupane et al. 2019).  
Moraine dams are mechanistically weaker compared to landslide 
dams due to their mixed grain composition, morphology and 
sloping positions (Neupane et al. 2019). The width to height ratio 
of moraine dams is found to be smaller than landslide dams 
(Evans 1986; Clague & Evans 1994; Evans et al. 1996). Neupane 
et al. (2019) differentiate types of moraine dams using their 
sediment height and composition. Triggering or initiation of a 
moraine dams are referred to thawing of ice-rich sediments, 
sudden impact of snow/ice/rock/rock-ice avalanches into glacial 
lakes, tectonic events i.e., earthquake triggering these mass 
movements, and extreme-hydro-meteorological events like 
abrupt snowmelt, and heavy precipitation. While the onset of 
failures is known for the reasons above, the instability of dam 
breach is driven by wave overtopping, erosion (both internal and 
external), seepage and slope failures. These are similar 
mechanisms of landslide dam breach. However, moraine-dam 
breach is characterised by thermo-hydro-mechanical changes 
that dynamically take place during failure (Hewitt 1999; Korup 
& Tweed 2007; Neupane et al. 2019).  

4  CONCLUSIONS 

In the Tibetan Plateau and it's margins, the impact of climate 
change is evident from the concurrent, cascading, and chains of 
geohazards in recent decades (Lu et. al. 2019). Both tectonic 
driven and climate driven geological processes have converted to 
geohazards due to enhanced activity i.e., glacier retreat, glacial 
lake outburst floods (GLOFs), cloud outburst events, flooding 
and landslides caused by warming-induced changes. With the 
rise of air temperature during the thawing season and abundant 
precipitation related to extreme-weather events under climate 
change, it is vital to expect the trend to prolong. This brief review 
emphasizes the following directions for future research outlook: 

 The Tibetan Plateau is one of the most sensitive regions in 
the world to climate change, and also one of the most 
tectonically active regions with frequent strong earthquakes. 
The climatic and tectonic conditions and their coupling 
effects on causing geological hazards on TP are not well 
understood.  

 Efforts have been made in generating glacier and glacier 
lake inventories, but there is still a data gap in all different 
types of geological hazards for the whole TP. Most of 
database cover only specific areas. Both spatial and 
temporal resolution of database need to be improved. 

 Based on the abovementioned multi-temporal inventory of 
multi-hazards, the spatio-temporal evolution of geological 
hazards for the whole TP can be analysed. How their 

evolution responses to climate change and tectonic 
movements needs more studies in the future.  

 Early recognition and warning of cascading hazards on TP 
based on multi-source remote sensing data and monitoring 
system are crucial to control their potential risk. Seismic 
monitoring system might be a useful method to monitoring 
potential hazards in the inaccessible regions.  

 The initiation and runout mechanisms of large rock-ice 
avalanches and debris flows, especially the thermo-hydro-
mechanical coupling mechanism need to be further studied 
by field monitoring and laboratory tests.  

 Risk prediction of future hazards by considering different 
magnitudes of earthquakes, climate change and their 
coupling effect is in high need of risk control of cascading 
hazards on TP. To this end, numerical models based on 
mechanism research will be very helpful. 
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