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ABSTRACT: Granular materials can exhibit long-term rate-dependent relaxing response under fixed strain or stress conditions which 
has been attributed in the literature to be so-called ageing or creep phenomena, respectively. The grain-scale mechanisms that dictate 
this rate-dependent behaviour arise from the rearrangement of particles with or without crushing. Therefore, developing a formulation 
that can capture these grain-scale mechanisms in a continuum representation will be advantageous. This paper focuses on the 
constitutive modelling of granular materials within the concept of the hydrodynamic theory, which accounts for granular temperature 
as a specific state variable reflecting grain-scale dissipative mechanisms. Unlike previous hydrodynamic formulations, our 
formulation couples the hydrodynamic principles with mathematical ideas from the plasticity theory. Another novel feature of the 
current formulation is considering breakage as a state variable. We show that this formulation is capable of recovering: (1) rate-
dependent friction coefficient and density; (2) rate-dependent breakage behaviour; (3) incrementally non-linear response; (4) granular 
material response during transient loading; and finally, (5) long-term ageing and creep phenomena. 

RÉSUMÉ: Les matériaux granulaires peuvent présenter des dépendances, à déformation ou contrainte constante, qui, dans la littérature, 
ont été attribuées respectivement au vieillissement ou au fluage du matériau. À l’échelle des grains, les mécanismes à l’origine de ces 
dépendances dans les vitesses de déformation émergent des réarrangements des particules, avec ou sans fragmentation. En conséquence, 
il est nécessaire de développer une formulation capable de capturer ces mécanismes à l’échelle des grains dans une représentation 
continue. Cet article développe une loi de comportement pour les matériaux granulaire en se basant sur la théorie hydrodynamique, qui 
utilise la température granulaire comme une variable d’état rendant compte des mécanismes de dissipation à l’échelle des grains. 
Contrairement aux formulations précédentes, notre modèle couple les principes de l’hydrodynamique avec les concepts de théorie de la 
plasticité. De plus, un nouvel élément de notre formulation est de considérer le degré de fragmentation du matériau comme une variable 
d’état additionnelle, essentielle pour rendre compte du comportement du matériau granulaire. Nous montrons que cette formation permet 
d’expliquer: (1) les dépendances de la densité et du coefficient de friction avec les taux de déformation; (2) la dépendance du taux de 
fragmentation avec les taux de déformation; (3) les non-linéarités dans la réponse à un incrément de contrainte ou de deformation; (4) la 
réponse des matériaux granulaires en régime de chargement transitoire; et enfin, (5) les phénomènes de fluage et de vieillissement à long 
terme. 

KEYWORDS: Sand, hydrodynamics, plasticity theory, breakage mechanics, creep. 

1  INTRODUCTION 

Granular materials exhibit rate-dependent macroscopic response, 
as shown in discrete element rheological studies by Da Cruz et 
al. (2005) and Jop et al. (2006), and experimental rate-transient 
shearing tests on sand by Nawir et al. (2003). These rate-
dependent macroscopic phenomena originate from grain-scale 
interactions that cause dissipative mechanisms. Therefore, a 
constitutive model that is capable of capturing the rate-dependent 
macroscopic observations should consider a proper set of state 
variables to account for the grain-scale dissipative mechanisms. 
Granular temperature has been introduced in the literature as a 
variable that quantifies the extent of kinetic energy fluctuations 
of grains due to granular interactions. Following original ideas in 
Jiang & Liu (2009, 2015), Alaei et al. (2021) introduced their 
hydrodynamic based formulation for granular materials 
considering an energy form that depended on granular 
temperature. In order to introduce the explicit forms of the 
evolution equations for the state variables, Alaei et al. (2021) 
considered ideas from conventional plasticity, in particular 
bounding surface plasticity by Dafalias (1986). Therefore, their 
hydrodynamic-plastic formulation benefitted from the 
hydrodynamics theory to satisfy thermodynamic principles as 
well as conservation laws, and robust mathematical tools of 
plasticity theory to capture macroscopic observations.  

Grain crushing is another essential process in sand material 
that can affect its macroscopic response (Hardin 1985; Lade et 
al. 1996; McDowell & Bolton 2000; Zhang 2012). To consider 

the consequences of grain crushing on the macroscopic response 
of granular media, one needs a corresponding thermodynamic 
state variable that can be exploited in a model in addition to the 
ones specified in Alaei et al. (2021). The concept of breakage 𝐵𝐵 
as a thermodynamic state variable that quantifies the variations 
of grain size distribution was introduced in the breakage 
mechanics theory by Einav (2007). Einav considered the 
experimental measurability of 𝐵𝐵 based on the relative position 
from initial and ultimate grain size distributions. In this paper, 
we use the concepts introduced in the breakage mechanics theory 
and add 𝐵𝐵 as a state variable within the hydrodynamic frame in 
addition to granular temperature. We will show that granular 
temperature effects can be important in the crushing regimes of 
granular media as it can guide the model to capture the long-term 
effects, e.g. creep breakage (Lade 2007). 

2  HYDRODYNAMIC DERIVATION 

The first law of thermodynamics, which describes the 
conservation of energy, can be expressed as 

 𝜕𝜕𝑡𝑡𝑈𝑈 + 𝛻𝛻𝑖𝑖𝐸𝐸𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑖𝑖𝐺𝐺𝑖𝑖 , (1) 
 

where 𝑈𝑈 is the conserved energy density in a moving reference 

frame, 𝜌𝜌𝐺𝐺𝑖𝑖  is the gravitational force density and 𝐸𝐸𝑖𝑖  is the 

energy flux. Alaei et al. (2021) considered the general structure 

of conserved energy for non-crushable dry sand in a single 
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component continua to depend on entropy 𝑠𝑠, granular entropy 𝑠𝑠𝑔𝑔, density 𝜌𝜌, momentum 𝑔𝑔𝑖𝑖 and elastic strain 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒  as the state 

variables. Based on the theory of breakage mechanics by Einav 

(2007), here we consider an additional thermodynamic state 

variable 𝐵𝐵 into the conserved energy density. In this case, the 

conserved energy 𝑈𝑈 takes the following general form: 
 𝑈𝑈 = 𝑈𝑈(𝜌𝜌, 𝑔𝑔𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 , 𝑠𝑠, 𝑠𝑠𝑔𝑔, 𝐵𝐵). (2) 

 
   The conjugates for the first five variables above can be 
written as 

 𝜇𝜇𝜌𝜌 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝜌𝜌 ,  𝑣𝑣𝑖𝑖 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑔𝑔𝑖𝑖 ,  𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 ,  𝑇𝑇 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠 ,  𝑇𝑇𝑔𝑔 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠𝑔𝑔, (3) 

 
which are the chemical potential, velocity, elastic stress, thermal 
temperature and granular temperature, respectively. In addition, 
we consider the breakage energy (Einav 2007) that is conjugated 
to the state variable 𝐵𝐵: 

 𝐸𝐸𝐵𝐵 ≡ − ∂𝜕𝜕∂𝐵𝐵. (4) 

 
Following the hydrodynamics procedure, we define a stress 

measure: 
 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑝𝑝𝑇𝑇𝛿𝛿𝑖𝑖𝑖𝑖, (5) 

 

where 𝜎𝜎𝑖𝑖𝑖𝑖  is the total stress that goes into the momentum 

equation, 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷  is the viscous stress and 𝑝𝑝𝑇𝑇  is the 

thermodynamic pressure defined as  
 𝑝𝑝𝑇𝑇 = − 𝜕𝜕(𝜕𝜕/𝜌𝜌)𝜕𝜕(1/𝜌𝜌) |𝑠𝑠𝜌𝜌,𝑠𝑠𝑔𝑔𝜌𝜌 ,𝑣𝑣𝑖𝑖,𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 . (6) 

 
The relation in equation (5) is consistent with the standard 

sign convention in soil mechanics of positive stresses under 
compression. The second law of thermodynamics (the balance of 
thermal entropy) can always be written as 

 ∂𝑡𝑡𝑠𝑠 + ∇𝑖𝑖(𝑠𝑠𝑣𝑣𝑖𝑖 − 𝑓𝑓𝑖𝑖) = 𝑅𝑅𝑇𝑇 ≥ 0, (7) 

 
where 𝑠𝑠𝑣𝑣𝑖𝑖  and 𝑓𝑓𝑖𝑖  are the convective and dissipative thermal 
entropy currents, respectively; and 𝑅𝑅  is the thermal rate of 
dissipation (production rate of thermal entropy). Similarly, the 
evolution law for the granular entropy can be introduced as 

 ∂𝑡𝑡𝑠𝑠𝑔𝑔 + ∇𝑖𝑖(𝑠𝑠𝑔𝑔𝑣𝑣𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑔𝑔) = 𝑅𝑅𝑔𝑔𝑇𝑇𝑔𝑔 , (8) 

 

where 𝑠𝑠𝑔𝑔𝑣𝑣𝑖𝑖 and 𝑓𝑓𝑖𝑖𝑔𝑔
 are the convective and dissipative granular 

entropy currents, respectively; and 𝑅𝑅𝑔𝑔  is the granular rate of 

dissipation (production rate of granular entropy). Applying the 

hydrodynamic procedure (Alaei et al. 2021), one finds the 

following equation for the total rate of dissipation 
 𝑅𝑅 + 𝑅𝑅𝑔𝑔 = 𝑓𝑓𝑖𝑖𝛻𝛻𝑖𝑖𝑇𝑇 + 𝑓𝑓𝑖𝑖𝑔𝑔𝛻𝛻𝑖𝑖𝑇𝑇𝑔𝑔 + 𝛷𝛷𝑀𝑀 ≥ 0, (9) 

 
where the mechanical dissipation is expressed by 

 𝛷𝛷𝑀𝑀 ≡ 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷𝜀𝜀𝑖𝑖𝑖𝑖̇ + 𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 𝜀𝜀𝑖𝑖𝑖𝑖𝑝̇𝑝 + 𝐸𝐸𝐵𝐵𝐵̇𝐵. (10) 

 
   In the above expression, the first two viscous and plastic 
contributions were defined in Alaei et al. (2021), and the third 
contribution from breakage dissipation was established by Einav 
(2007). 

3  TWO-STAGE IRREVERSIBILITY 

Based on the original ideas from the development of the granular 

solid hydrodynamics theory by Jiang and Liu (2009, 2015), we 

employ the principle of two-stage irreversibility in granular 

media to account for energy decay through two separate granular 

and atomic scales. Adopting this concept, we consider that during 

a dissipative process in granular media the macroscopic energy 

can flow into thermal heat through two different ways; either 

directly or as a two-step process, whereby the energy first decays 

into the fluctuations of grains (granular heating), and only then 

into the fluctuations of atoms within the grains (thermal heating). 

In particular, the energy decays from the macroscopic scale to 

perturbing the grain scale degrees of freedom and the atomic 

ones (quantified by the granular and thermal rates of dissipation 𝑅𝑅𝑔𝑔  and 𝑅𝑅,  respectively), and from the grain scale into the 

atomic one, but never backwards (𝑅𝑅 ≥ 0). Conventionally, the 

second law of thermodynamics also implies that the thermal rate 

of dissipation must be non-negative.  The concept of two-stage 

irreversible energy decay implies that the total rate of dissipation 

must also be non-negative 𝑅𝑅 + 𝑅𝑅𝑔𝑔 ≥ 0, as shown in figure 1. 

Considering the principle of two-stage irreversibility and 
recalling the total rate of dissipation in equation (9), we propose 
the following relations for the thermal and granular rates of 
dissipation, respectively 

 𝑅𝑅 = 𝑓𝑓𝑖𝑖𝛻𝛻𝑖𝑖𝑇𝑇 + 𝜂𝜂𝑇𝑇𝑔𝑔2 ≥ 0, (11) 𝑅𝑅𝑔𝑔 = 𝑓𝑓𝑖𝑖𝑔𝑔𝛻𝛻𝑖𝑖𝑇𝑇𝑔𝑔 + 𝛷𝛷𝑀𝑀 − 𝜂𝜂𝑇𝑇𝑔𝑔2. (12) 

 

This choice of the above equations, along with the 

thermodynamic requirements on non-negativity of 𝑓𝑓𝑖𝑖∇𝑖𝑖𝑇𝑇 , 𝑓𝑓𝑖𝑖𝑔𝑔∇𝑖𝑖𝑇𝑇𝑔𝑔  and 𝜂𝜂  satisfies the non-negativity of the total 

dissipation rate, as well as the non-negativity of the thermal 

entropy production in equation (7). 
 

 
Figure 1. Principle of two-stage irreversibility (Jiang & Liu 2009, 2015). 
In granular media, macroscopic energy either dissipates directly to 

generate atomic vibrations (in the form of 𝑇𝑇), or in a two-stage process, 

first to generate granular vibrations (in the form of 𝑇𝑇𝑔𝑔) and only then 

decaying to form atomic vibrations (in the form of 𝑇𝑇). 

4  CONSTITUTIVE CONSIDERATIONS 

4.1  Kinetic pressure 

Adopting the ideas in Alaei et al. (2021) on an explicit form of 

granular energy density, the hydrodynamic derivation leads to a 

pure kinetic expression for thermodynamic pressure in the case 

of dry granular materials: 
 𝑝𝑝𝑇𝑇 = 𝑇𝑇𝑔𝑔2 ≡ 𝑝𝑝𝑘𝑘. (13) 
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Similar to the procedure adopted in Alaei et al. (2021), we 

take the kinetic pressure 𝑝𝑝𝑘𝑘 as an alternative state variable for 𝑇𝑇𝑔𝑔  and devise its rate equation in the absence of non-local 

phenomena: 
 𝑝𝑝𝑘̇𝑘 = Φ𝑀𝑀 − 𝜂𝜂𝑝𝑝𝑘𝑘. (14) 

 

Now recalling equation (5), the total mean and deviatoric 

stresses can be correspondingly written 
 𝑝𝑝 = 𝑝𝑝𝑒𝑒 + 𝑝𝑝𝑘𝑘 , (15) 𝑞𝑞 = 𝑞𝑞𝑒𝑒 + 𝑞𝑞𝐷𝐷 , (16) 

 

where 𝑝𝑝𝑒𝑒  and 𝑞𝑞𝑒𝑒  are elastic pressure and deviatoric stress 

while 𝑞𝑞𝐷𝐷 is the deviatoric viscous stress. 

4.2  Inertial number and kinetic number 

Rheological 𝜇𝜇(𝐼𝐼) and 𝜙𝜙(𝐼𝐼) relationships (Jop et al. 2006 and 

Da Cruz et al. 2005, respectively) capture correspondingly the 

rate-dependent friction coefficient and solid fraction of granular 

media at critical state as functions of inertial number 𝐼𝐼. Inspired 

by this idea, we devise the explicit form of 𝑝𝑝𝑘̇𝑘  equation, 

specifically the state function 𝜂𝜂. It could be shown that under 

monotonic shearing conditions (𝜀𝜀𝑠̇𝑠 = const ≠ 0), critical state 

can be reached and maintained when the kinetic pressure rate 

vanishes (𝑝𝑝𝑘̇𝑘 = 0) and the mechanical dissipation reduces to 𝛷𝛷𝑀𝑀 = √2/3|𝑞𝑞|𝜀𝜀𝑠̇𝑠. We therefore find an expression for the state 

function 𝜂𝜂, such that a new kinetic number 
  𝐼𝐼𝑘𝑘 = 𝑝𝑝𝑘𝑘𝑝𝑝 , (17) 

 

will be identical to inertial number 𝐼𝐼 = 𝑑𝑑𝜀𝜀𝑠̇𝑠√𝜌𝜌𝑠𝑠/𝑝𝑝  at critical 

state conditions: 
 𝜂𝜂 = 𝑀𝑀𝑑𝑑 √ 2𝑝𝑝3𝜌𝜌𝑠𝑠, (18) 

 

where 𝑀𝑀, 𝑑𝑑 and 𝜌𝜌𝑠𝑠 are the friction coefficient, grain size and 

solid density of grains. 

4.3  Rate- and breakage- dependent limits of solid fraction 

Adopting the idea of minimum and maximum limits of solid 
fraction discussed in Alaei et al. (2021), we consider the 
attainable solid fraction values to be confined by its rate-
dependent limits: 

 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘 (𝐼𝐼𝑘𝑘) = 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(1 − 𝐼𝐼𝑘𝑘), (19) 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 (𝐼𝐼𝑘𝑘) = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − (𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚)𝐼𝐼𝑘𝑘 , (20) 

 
where 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 and 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum solid 
fractions at rest. Breakage affects both the minimum and 
maximum limits of the solid fraction (Rubin & Einav 2011; 
Tengattini et al. 2016). Rubin & Einav (2011) introduced 
expressions for experimentally measurable minimum and 
maximum limits of porosity 𝑛𝑛. Considering their expressions 
and recalling the direct relationship between solid fraction and 
porosity 𝜙𝜙 = 1 − 𝑛𝑛 , we define the following experimentally 
measurable limits of solid fraction which depend on breakage 

 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝐵𝐵) ≡ 1 − (1 − 𝜙𝜙𝑙𝑙)(1 − 𝐵𝐵)𝑙𝑙 , (21) 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵) ≡ 1 − (1 − 𝜙𝜙𝑢𝑢)(1 − 𝐵𝐵)𝑢𝑢, (22) 

 

where 𝜙𝜙𝑙𝑙  and 𝜙𝜙𝑢𝑢  are the lower and upper limits of solid 

fraction at zero breakage, while the coefficients 𝑙𝑙 and 𝑢𝑢 are 

model constants. 

4.4  Rate-dependent friction coefficient 

Based on the empirical rheological relationship by Jop et al. 
(2006) capturing a rate-dependent ratio of total deviatoric and 
mean stresses at critical state conditions, and definition of kinetic 
number at section 4.2 we define 

 𝑀𝑀(𝐼𝐼𝑘𝑘) = 𝑞𝑞𝑝𝑝 ≡ 𝑀𝑀0 + 𝑏𝑏𝐼𝐼𝑘𝑘 , (23) 

 

where 𝑀𝑀0  is the static friction coefficient and 𝑏𝑏  is a model 

constant, previously defined by Jop et al. (2006).  

4.5  An extension to effective stress principle 

The total pressure in the current work, for the case of dry granular 
materials, is composed of the elastic and kinetic pressures. Since 
the elastic pressure is actually sustained by the skeleton of grains, 
we take a physical assumption that it is equivalent to effective 
pressure (Einav & Liu 2018). The effective stress principle 
(Terzaghi 1936) denotes that the shear resistance of a soil is 
related to the effective pressure applied to its skeleton. Therefore, 
shear resistance in the current work should be a function of 𝑝𝑝𝑒𝑒 . 

Total shear stress (equivalently the deviatoric stress) in the 
current work is composed of the elastic and viscous 
contributions. The original effective stress principle does not 
distinguish between the total and effective shear stresses, since 
rheological stress contributions are normally neglected in the 
case of geotechnical quasi-static regimes. However, rheological 
stresses can be important under elevated loading rates as well as 
transient loading conditions (Nawir et al. 2003). Here, following 
Alaei et al. (2021) we introduce an extended effective stress 
principle that relates the elastic (effective) stress ratio to the state 
of the material: 

 𝑞𝑞𝑒𝑒𝑝𝑝𝑒𝑒 ≡ 𝑀𝑀𝑒𝑒(state). (24) 

 
Our preliminary studies on the effective stress ratio in discrete 
element simulations reveal that the state function 𝑀𝑀𝑒𝑒 follows a 𝑀𝑀(𝐼𝐼𝑘𝑘) type of relationship. Note that the above elastic shear 
resistance concept is in addition to the idea of rate dependent total 
shear resistance in equation (23). The concept of an extended 
effective stress principle was validated in Alaei et al. (2021) 
against discrete element simulation results by Macaulay & 
Rognon (2020). 

Combining equations (23) and (24) will lead to an expression 

for the viscous stress as a function of the state of the material and 

the shearing rate it is subjected to, without introducing any new 

model constants (see Alaei et al. 2021). 

5  RATES OF BREAKAGE AND PLASTIC STRAIN 

In this section, we present a formalism to introduce incrementally 

non-linear (unlike elasto-plasticity) equations for the breakage 

and the plastic strain rates, using the bounding surface plasticity 

type of formulation in Alaei et al. (2021). We devise the 

expressions for the rate of 𝐵𝐵 and 𝜀𝜀𝑖𝑖𝑖𝑖𝑝𝑝 : 

 𝐵̇𝐵 = 𝜆𝜆𝐵𝐵𝐴𝐴𝐵𝐵,  𝜆𝜆𝐵𝐵 ≡ √𝜉𝜉⟨𝜆𝜆𝐴𝐴⟩, (25) 𝜀𝜀𝑖𝑖𝑖𝑖𝑝̇𝑝 = 𝜆𝜆𝑝𝑝𝐴𝐴𝑖𝑖𝑖𝑖 ,  𝜆𝜆𝑝𝑝 ≡ √𝜉𝜉|𝜆𝜆𝐴𝐴|, (26) 

 

where the choice of 𝜆𝜆𝐵𝐵 and 𝜆𝜆𝑝𝑝 are resolved to guarantee that 

the state of the material is maintained inside a bounding surface, 

𝑠𝑠,𝑠𝑠𝑔𝑔, 𝜌𝜌, 𝑔𝑔𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒
𝐵𝐵 𝑈𝑈𝑈𝑈 = 𝑈𝑈(𝜌𝜌, 𝑔𝑔𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 , 𝑠𝑠, 𝑠𝑠𝑔𝑔, 𝐵𝐵)

𝜇𝜇𝜌𝜌 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝜌𝜌 ,  𝑣𝑣𝑖𝑖 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑔𝑔𝑖𝑖 ,  𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 ,  𝑇𝑇 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠 ,  𝑇𝑇𝑔𝑔 ≡ 𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠𝑔𝑔,
𝐵𝐵𝐸𝐸𝐵𝐵 ≡ − ∂𝜕𝜕∂𝐵𝐵

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑝𝑝𝑇𝑇𝛿𝛿𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷 𝑝𝑝𝑇𝑇
𝑝𝑝𝑇𝑇 = − 𝜕𝜕(𝜕𝜕/𝜌𝜌)𝜕𝜕(1/𝜌𝜌) |𝑠𝑠𝜌𝜌,𝑠𝑠𝑔𝑔𝜌𝜌 ,𝑣𝑣𝑖𝑖,𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒

∂𝑡𝑡𝑠𝑠 + ∇𝑖𝑖(𝑠𝑠𝑣𝑣𝑖𝑖 − 𝑓𝑓𝑖𝑖) = 𝑅𝑅𝑇𝑇 ≥ 0𝑠𝑠𝑣𝑣𝑖𝑖 𝑓𝑓𝑖𝑖 𝑅𝑅
∂𝑡𝑡𝑠𝑠𝑔𝑔 + ∇𝑖𝑖(𝑠𝑠𝑔𝑔𝑣𝑣𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑔𝑔) = 𝑅𝑅𝑔𝑔𝑇𝑇𝑔𝑔𝑠𝑠𝑔𝑔𝑣𝑣𝑖𝑖 𝑓𝑓𝑖𝑖𝑔𝑔 𝑅𝑅𝑔𝑔

𝑅𝑅 + 𝑅𝑅𝑔𝑔 = 𝑓𝑓𝑖𝑖𝛻𝛻𝑖𝑖𝑇𝑇 + 𝑓𝑓𝑖𝑖𝑔𝑔𝛻𝛻𝑖𝑖𝑇𝑇𝑔𝑔 + 𝛷𝛷𝑀𝑀 ≥ 0
𝛷𝛷𝑀𝑀 ≡ 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷𝜀𝜀𝑖𝑖𝑖𝑖̇ + 𝜎𝜎𝑖𝑖𝑖𝑖𝑒𝑒 𝜀𝜀𝑖𝑖𝑖𝑖𝑝̇𝑝 + 𝐸𝐸𝐵𝐵𝐵̇𝐵

𝑅𝑅𝑔𝑔 𝑅𝑅, (𝑅𝑅 ≥ 0)..𝑅𝑅 + 𝑅𝑅𝑔𝑔 ≥ 0,
𝑅𝑅 = 𝑓𝑓𝑖𝑖𝛻𝛻𝑖𝑖𝑇𝑇 + 𝜂𝜂𝑇𝑇𝑔𝑔2 ≥ 0𝑅𝑅𝑔𝑔 = 𝑓𝑓𝑖𝑖𝑔𝑔𝛻𝛻𝑖𝑖𝑇𝑇𝑔𝑔 + 𝛷𝛷𝑀𝑀 − 𝜂𝜂𝑇𝑇𝑔𝑔2

𝑓𝑓𝑖𝑖∇𝑖𝑖𝑇𝑇𝑓𝑓𝑖𝑖𝑔𝑔∇𝑖𝑖𝑇𝑇𝑔𝑔 𝜂𝜂

𝑇𝑇 𝑇𝑇𝑔𝑔𝑇𝑇

𝑝𝑝𝑇𝑇 = 𝑇𝑇𝑔𝑔2 ≡ 𝑝𝑝𝑘𝑘
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while the plasticity multiplier 𝜆𝜆𝐴𝐴 is calculated to maintain the 

state on the auxiliary loading surface (see Alaei et al. 2021). In 

the above equations, 0 ≤ 𝜉𝜉 ≤ 1  is a current-to-bounding 

mapping ratio that determines how far the loading surface is from 

the bounding one (0 value indicates the farthest distance from 

bounding surface, while 1 value indicates that loading and 

bounding surfaces are identical). The Macaulay brackets 

function is considered with ⟨𝑥𝑥⟩ = 𝑥𝑥  if 𝑥𝑥 ≥ 0 , and ⟨𝑥𝑥⟩ = 0 

otherwise. This will satisfy the experimental observation that 

upon an isotropic unloading 𝜀𝜀𝑣̇𝑣 < 0  and 𝜀𝜀𝑠̇𝑠 = 0,  negligible 

breakage growth is expected. 

The choices in equations (25) and (26) to correspondingly 

take ⟨𝜆𝜆𝐴𝐴⟩ and |𝜆𝜆𝐴𝐴| is unlike the conventional bounding surface 

plasticity (Dafalias 1986) and employs an original idea in Einav 

(2012) to have freedom on the mathematical form of plasticity 

rules as long as the non-negativity of mechanical dissipation is 

satisfied. Advantages of adopting Einav’s idea in a constitutive 

model were presented in Alaei et al. (2021), to capture material 

response upon shear unloading of samples with non-zero initial 

stress ratios and to satisfy a sub-symmetry of granular dissipation 

rate (𝑅𝑅𝑔𝑔) upon time-reversal. 

Note that although 𝜆𝜆𝐴𝐴  is set to maintain the state on a 

loading surface, in reality we take √𝜉𝜉⟨𝜆𝜆𝐴𝐴⟩  and √𝜉𝜉|𝜆𝜆𝐴𝐴|  to 

determine the rates of 𝐵𝐵  and 𝜀𝜀𝑖𝑖𝑖𝑖𝑝𝑝 , respectively. Therefore, as 

long as 𝜉𝜉 ≠ 1 the state would not remain on a loading surface. 

However, as 𝜉𝜉 → 1 towards the bounding surface, we get 𝜆𝜆𝑝𝑝 →|𝜆𝜆𝐴𝐴| and 𝜆𝜆𝐵𝐵 → ⟨𝜆𝜆𝐴𝐴⟩, thus the state is slowly being attracted to 

the bounding surface. 

The simplified form of bounding surface (Mohr-Coulomb 

type) in Alaei et al. (2021) which does not yield on the isotropic 

compression line (𝑞𝑞 = 0) will result in pure elastic response 

under a pure isotropic compression (𝜀𝜀𝑣̇𝑣 > 0 and 𝜀𝜀𝑠̇𝑠 = 0). In the 

current model however, a more realistic bounding surface 

yielding along the isotropic compression line is required (Figure 

2). This yielding pressure, 𝑝𝑝𝐵𝐵, that represents the pressure at 

which the material starts to experience considerable breakage 

under pure isotropic loading conditions (𝜀𝜀𝑣̇𝑣 > 0 and 𝜀𝜀𝑠̇𝑠 = 0) 

is defined by relating 𝐸𝐸𝐵𝐵 and a critical breakage energy (Einav 

2007). 

Furthermore, the explicit form of the state functions 𝐴𝐴𝐵𝐵 and 𝐴𝐴𝑖𝑖𝑖𝑖  should be defined to guarantee the non-negativity of the 

mechanical dissipation. To this goal, one can adopt the robust 

procedure in Tengattini et al. (2016) where they first proposed an 

explicit form of the mechanical dissipation and then derived the 

yield function and explicit form of flow rules from it, in their 

elasto-plastic type of model. Here, we derive the state functions 𝐴𝐴𝐵𝐵  and 𝐴𝐴𝑖𝑖𝑖𝑖  from a bounding surface function (Figure 2) that 

could actually be taken to be identical to the breakage mechanics 

type of yield function in Tengattini et al. (2016). 
 

 
Figure 2. The bounding surface (thick line) and the loading surface 
(dashed line) passing through the stress state (marker), from which the 
value of 𝜉𝜉 is determined. The thin dashed line represents the critical 
state line (CSL) and the grey area represents the attainable stress states 
inside the bounding surface. 

Due to 𝑝𝑝𝑘𝑘 −dependence of the friction coefficient, limits of 

solid fraction and total pressure, the plasticity multiplier 𝜆𝜆𝐴𝐴 will 

have free terms including 𝑝𝑝𝑘𝑘 but without 𝜀𝜀𝑖𝑖𝑖𝑖̇ . As a result, under 

fixed strain or stress conditions following material loading, 𝜆𝜆𝐴𝐴 

and consequently the breakage and plastic strain rates can be 

non-zero. This will help in capturing the long-term rate-

dependent relaxing response related to ageing or creep 

phenomena (Lade 2007). 

6  MODEL EVALUATION 

Considering the Karlsruhe sand material calibrated in Alaei et al. 

(2021), we conduct a two-stage test (Figure 3a) starting from an 

initial confining pressure 𝑝𝑝0 = 100  kPa. During the first 

shearing stage we maintain a constant pressure 𝑝̇𝑝 = 0 and shear 

the model to produce 𝐼𝐼 = 0.5 at critical state (CS), while in the 

second stage we maintain the total strain constant 𝜀𝜀𝑖̇𝑖𝑖𝑖 = 0 . 

Figure 3a shows the evolution of the total deviatoric and mean 

stresses normalised by 𝑝𝑝0 over time. During the shear stage of 

the test the kinetic pressure rises towards its CS value, causing 

the total stress ratio to reach its rate-dependent value which is 

greater than the static friction coefficient 𝑀𝑀0 (see equation 23). 

During the second stage, 𝑞𝑞 experiences an abrupt change due to 

the linear dependence of 𝑞𝑞𝐷𝐷 on strain rate, a fact that has been 

observed experimentally (e.g., for sand by Lade 2007). Also 

during this stage, 𝑝𝑝𝑘𝑘  gradually relaxes to zero causing a 

relaxation of the elastic strain since 𝜀𝜀𝑖̇𝑖𝑖𝑖𝑒𝑒 = −𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝  where 𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝 ≠ 0. 

As discussed in the previous section, the multipliers λ𝑝𝑝 and λ𝐵𝐵 

and consequently 𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝  and 𝐵̇𝐵  may not vanish when 𝜀𝜀𝑖̇𝑖𝑖𝑖 = 0 , 

since they are functions of 𝑝𝑝𝑘𝑘. The overall total stress relaxation 

response in the second stage is known as an ‘ageing’ response in 

soil mechanics. 

 

 

 
Figure 3. Relaxation of the total deviatoric 𝑞𝑞 and mean 𝑝𝑝 stresses in 
the current model implementations. Two simulated tests with the same 
initial total pressure 𝑝𝑝0 = 100 kPa are initially subjected to the different 
shear rates to produce different inertial numbers 𝐼𝐼 =  0.5 in (a) and 𝐼𝐼 = 0.005 in (b), followed by a constant total strain stage. The stresses are 
normalised by the confining pressure 𝑝𝑝0 during the initial shear stage. 

We further examine this stress relaxation response by 

conducting another test with the same initial conditions, but with 

slower shearing during the shear stage, set to produce a smaller 

inertial number 𝐼𝐼 = 0.05 at CS. As indicated by figure 3b, here 

again the model represents its rate-dependent features as the total 

stress ratio at CS reaches a value smaller than the one in figure 
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3a. At the second stage of this test, the stress relaxation effect is 

less pronounced where the deviatoric and mean stresses relax 

only slightly towards non-zero values, in contrast to the previous 

test (with higher 𝐼𝐼  at CS). Similar rate-dependent stress 

relaxation response in granular materials has been observed in 

previous experimental studies (Lade 2007). 

Breakage evolution in the above tests is not reported here as 

it showed negligible growth, due to relatively high crushing 

strength of the modelled Karlsruhe sand material compared to the 

applied stress magnitudes. Further evaluation of the model for 

relatively weaker materials, for example Carbonate sand, is 

required to reveal its capabilities in capturing the particle 

breakage effects (Hardin 1985; McDowell & Bolton 2000; 

Zhang 2012). 

7  CONCLUSIONS 

We have introduced a simple hydrodynamic-plastic framework 
for constructing a rate-dependent constitutive model for 
crushable granular media. An energy form depending on the 
most essential set of state variables for sand was considered to 
construct the general implicit form of the evolution equations for 
state variables. Then conventional plasticity was exploited to 
introduce their explicit forms. The model is set to recover well 
known rheological 𝜇𝜇(𝐼𝐼)  and 𝜙𝜙(𝐼𝐼)  type of relationships. 
Furthermore, the rates of breakage and plastic strain were defined 
in terms of the kinetic pressure (equivalently granular 
temperature) which also dictates rate dependent dissipative 
mechanisms. Our simulations reveal that inclusion of kinetic 
pressure in the stress measure, and expressions for friction 
coefficient and solid fraction limits will result in free 𝑝𝑝𝑘𝑘 −dependent terms in the plasticity multiplier expression that 
helps in capturing the relaxation effects observed in the creep and 
ageing type of experiments. 
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𝜆𝜆𝐴𝐴0 ≤ 𝜉𝜉 ≤ 1
⟨𝑥𝑥⟩ = 𝑥𝑥 𝑥𝑥 ≥ 0 ⟨𝑥𝑥⟩ = 0𝜀𝜀𝑣̇𝑣 < 0 𝜀𝜀𝑠̇𝑠 = 0,

⟨𝜆𝜆𝐴𝐴⟩ |𝜆𝜆𝐴𝐴|

𝑅𝑅𝑔𝑔 𝜆𝜆𝐴𝐴 √𝜉𝜉⟨𝜆𝜆𝐴𝐴⟩ √𝜉𝜉|𝜆𝜆𝐴𝐴|𝐵𝐵 𝜀𝜀𝑖𝑖𝑖𝑖𝑝𝑝𝜉𝜉 ≠ 1𝜉𝜉 → 1 𝜆𝜆𝑝𝑝 →|𝜆𝜆𝐴𝐴| 𝜆𝜆𝐵𝐵 → ⟨𝜆𝜆𝐴𝐴⟩
𝑞𝑞 = 0 (𝜀𝜀𝑣̇𝑣 > 0 𝜀𝜀𝑠̇𝑠 = 0)

𝑝𝑝𝐵𝐵, (𝜀𝜀𝑣̇𝑣 > 0 𝜀𝜀𝑠̇𝑠 = 0)𝐸𝐸𝐵𝐵 𝐴𝐴𝐵𝐵𝐴𝐴𝑖𝑖𝑖𝑖

𝐴𝐴𝐵𝐵 𝐴𝐴𝑖𝑖𝑖𝑖

𝜉𝜉

𝑝𝑝𝑘𝑘 − 𝜆𝜆𝐴𝐴𝑝𝑝𝑘𝑘 𝜀𝜀𝑖𝑖𝑖𝑖̇ 𝜆𝜆𝐴𝐴

𝑝𝑝0 = 100 𝑝̇𝑝 = 0𝐼𝐼 = 0.5 𝜀𝜀𝑖̇𝑖𝑖𝑖 = 0𝑝𝑝0
𝑀𝑀0𝑞𝑞𝑞𝑞𝐷𝐷𝑝𝑝𝑘𝑘 𝜀𝜀𝑖̇𝑖𝑖𝑖𝑒𝑒 = −𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝 𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝 ≠ 0λ𝑝𝑝 λ𝐵𝐵𝜀𝜀𝑖̇𝑖𝑖𝑖𝑝𝑝 𝐵̇𝐵 𝜀𝜀𝑖̇𝑖𝑖𝑖 = 0𝑝𝑝𝑘𝑘

𝑞𝑞 𝑝𝑝𝑝𝑝0 = 100 𝐼𝐼 =  0.5 𝐼𝐼 = 0.005 𝑝𝑝0

𝐼𝐼 = 0.05
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