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ABSTRACT: Traditional geotechnical analyses carried out for structures involve assessing the onset of failure and designing 
structures that can sustain loads that they would encounter. Large mass movements are typically avoided. In this work, the Convected 
Particle Domain Interpolation (CPDI) method, an advancement to the classical Material Point Method (MPM) is utilised to represent 
the soil structure. The numerical package can simulate and investigate large mass movements should catastrophic damage occur. It 
can estimate the large deformations encountered in granular media during failure with the aid of an advanced elasto-plastic 
constitutive law – UBCSAND model. The numerical tool’s ability to capture large material movement is highlighted in this paper, 
in which a granular column collapse is simulated with the predictions compared against experimental results. 

RÉSUMÉ : Les analyses géotechniques traditionnelles effectuées pour les structures impliquent l'évaluation du début de la défaillance 
et la conception des structures de manière à ce qu'elles puissent supporter les charges qu'elles rencontreraient, les grands mouvements 
de masse étant rarement rencontrés. Dans ce travail, la méthode CPDI (Convected Particle Domain Interpolation), un progrès par rapport 
à la méthode classique des points de matériaux (MPM), est utilisée pour représenter la structure du sol. Ensemble, le progiciel numérique 
peut simuler et étudier de grands mouvements de masse lorsque des dommages catastrophiques se produisent sur les structures. L'outil 
numérique peut estimer les grandes déformations rencontrées dans les milieux granulaires lors d'une défaillance à l'aide d'une loi 
constitutive élasto-plastique avancée - le modèle UBCSAND, qui est inscrit dans le code. La capacité de l'outil numérique à saisir les 
grands mouvements de matériaux, qui sont généralement entravés dans les logiciels géotechniques commerciaux, est mise en évidence 
dans ce travail, et les applications à une simulation d'effondrement de colonne granulaire comparée à des résultats expérimentaux sont 
utilisées à titre d'exemple. 
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1  INTRODUCTION 

A particularly challenging aspect in the context of finite elements 
analysis is the modelling of large deformations. Capturing large 
material movements has been of interest, not only for structural 
engineering problems but has also found its use in the 
geotechnical community. There have been a number of 
approaches developed to capture large deformations, the most 
popular including: 1) Arbitrary Lagrangian Eulerian method 
(ALE) (Donea, Huerta, Ponthot, & Rodrı́guez-Ferran, 2017), 2) 
Coupled Eulerian Lagrangian method (CEL) (Qiu, Henke, & 
Grabe, 2011), 3) Particle-In-Cell method (PIC) (Harlow, 1964), 
4) Material Point Method (MPM) (Coetzee, Vermeer, & Basson, 
2005) to name a few. The Material Point Method (MPM) has 
gained traction in the past decade due to its versatility in handling 
contact, soil-structure in interaction and the availability of a 
plethora of constitutive laws that model soil more accurately. 
MPM has been improved over the years in the form of the 
Generalized Interpolation Material Point method (GIMP) 
(Bardenhagen & Kober, 2004) and the Convected Particle 
Domain Interpolation method (CPDI) (Sadeghirad, Brannon, & 
Burghardt, 2011). Improvements in the formulation were 
effected to improve the performance and accuracy. There have 
been other conventional methods employed to improve the 
efficiency of the code, such as adopting higher-order elements or 

B-Spline functions. A numerical overhead is naturally imposed 
in such cases. The CPDI variation of the classical MPM is 
emphasized in this work.  

It is important that the numerical implementation is tested and 
validated. Variables like the sensitivity of a solution to the 
meshing scheme used (mesh dependency), numerical damping 
and background smoothening algorithms must be understood to 
ensure that the simulations not only match the experimental 
measurements but are also numerically accurate and not a result 
of numerical artefacts within the code. To this end, this paper 
aims to outline the theory behind an in-house CPDI code and 
compares the performance of MPM and CPDI using the Method 
of Manufactured Solutions, as well as providing results from 
mesh sensitivity analyses. The predictions of a granular column 
collapse experiment from a simulation employing the 
UBCSAND elasto-plastic constitutive law are also provided and 
compared to the experimental observations.  

2  CONVECTED PARTICLE INTERPOLATION METHOD 

In the classical formulation of MPM, the continuum is 
represented by Lagrangian points that are commonly referred to 
as particles/material points. The particles move through a fixed 
Eulerian mesh, commonly referred to as background grid/mesh. 

flow. More complex systems, where the cohesion of the soil
the turbulence of the seepage flow must be considered, will be 
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State variables and physical properties of the continuum such as 
mass, momentum, stress and strain, as well as other state 
variables are stored in the particles. At the beginning of a 
computational step, all relevant information required for the 
solution is transferred from the particles to the background 
computational grid with the help of suitable shape functions. The 
incremental solution is determined on the grid in a Lagrangian 
fashion. At the end of the computational step, the solution is 
mapped back to the particles from the background to update the 
information residing with the particles, and the grid is reset for 
the next computational step. The best aspects of Lagrangian and 
Eulerian approaches are utilised while avoiding some 
shortcomings of both. A detailed formulation of MPM is 
available in Reference (Kafaji, 2013).   

One drawback of the classical MPM formulations is the cell-
crossing noise that causes spurious variations in the internal 
energy 𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 that is described by the relation: 
 𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑩𝑩𝑻𝑻𝝈𝝈,         (1) 

 
where 𝝈𝝈  the total stress and 𝑩𝑩  represents the strain-
displacement matrix. When adopting linear shape functions for 
the solution process, the gradients are “constant” within each 
cell, leading to discontinuous values between cells, which in turn 
causes a jump in the local internal forces as the “collocated” 
particles migrate from one cell to another. CPDI mitigates this 
noise by defining a finite size domain, such as that employed in 
GIMP, allowing the particles to gradually cross boundaries. 

As opposed to the classical MPM wherein the particle 
domains are collocated, the CPDI method defines two vectors 
(𝑟𝑟10, 𝑟𝑟20), with the superscript 0 representing the current initial 
state, and the subscripts 1 and 2 referring to two vectors that are 
originally in the horizontal and vertical directions, respectively. 
These vectors are used to track the deformation of a particle 
according to the relations: 

 𝒓𝒓1𝑛𝑛 = 𝑭𝑭𝑝𝑝𝑛𝑛  𝒓𝒓𝟏𝟏0 ,      𝒓𝒓2𝑛𝑛 = 𝑭𝑭𝑝𝑝𝑛𝑛  𝒓𝒓20,       (2) 

 
in which n refers to the updated time step and 𝑭𝑭𝑝𝑝𝑛𝑛 is the updated 
deformation gradient. In order to eliminate the need to divide the 
continuum into particles according to the cell boundaries, an 
alternate set of shape functions are defined according to the 
domain of each particle, given by: 

 𝜙𝜙𝑖𝑖𝑝𝑝  ≌ 14  [𝑆𝑆𝑖𝑖(x1p) + 𝑆𝑆𝑖𝑖(x2p)+𝑆𝑆𝑖𝑖(x3p) + 𝑆𝑆𝑖𝑖(x4p)],      (3) 

 
with 𝑆𝑆𝑖𝑖 (xjp)  representing the grid shape functions with 𝑗𝑗 ∈[1,2,3,4]  referring to corners of particle p’s domain. The 
deformation gradient shown in Equation (2) is updated using the 
relation: 

 𝐹𝐹𝑝𝑝𝑛𝑛+1 = (𝑰𝑰 + ∇𝑣𝑣𝑝𝑝𝑛𝑛+1Δt)𝐹𝐹𝑝𝑝𝑛𝑛,        (4) 

 
where Δt is the incremental time step and 𝑰𝑰 is the second-order 
identity tensor. The extension of CPDI to axisymmetric problems 
is presented in reference (Hamad, 2016), and the extension of 
axisymmetric problems to accommodate saturated media along 
with applications is described in reference (Giridharan, Gowda, 
Stolle, & Moormann, 2020). 

2.1  Performance of MPM and CPDI 

As indicated previously, the assigning of finite-sized domains to 
the particles avoids the generation of spurious internal forces.  
The errors associated with these two methods are compared in 
this section. To this end, the Method of Manufactured Solutions 
(MMS) is used. The MMS is particularly useful in this case as it 
provides a procedure to manufacture an exact solution, without 
being concerned about its physical realism. Analytical solutions 

can be obtained for code accuracy verification. Readers are 
directed to Reference (Roache, 2002) for an overview of MMS. 
The comparison of performance presented in this work is for a 
two-dimensional problem. Similar tests have been carried out in 
references (Sadeghirad, Brannon, & Burghardt, 2011), 
(Sadeghirad, Brannon, & Guilkey, 2013). Since the solution of 
the model is known a priori, the external force required to 
achieve the desired deformation can be analytically determined. 
Although the MMS procedure is intended for total Lagrangian 
form, and the current CPDI algorithm utilizes an updated 
Lagrangian form, the solutions are comparable (Wallstedt & 
Guilkey, 2008).  

The external force formulation used in the frame of total 
Lagrangian formulation can be adopted for the current CPDI 
scheme. A unit square domain (L = 1 m) is assumed and as 
indicated in reference (Sadeghirad, Brannon, & Burghardt, 
2011), the displacement fields are given by the relations: 

 𝑢𝑢𝑥𝑥 = 𝐴𝐴 sin (2𝜋𝜋𝜋𝜋𝐿𝐿 ) sin (𝐶𝐶𝜋𝜋𝑝𝑝𝐿𝐿 ),  and 

 𝑢𝑢𝑦𝑦 = 𝐴𝐴 sin (2𝜋𝜋𝜋𝜋𝐿𝐿 ) sin (𝐶𝐶𝜋𝜋𝑝𝑝𝐿𝐿 + 𝜋𝜋),     (5) 

 
where, A is the maximum amplitude of 5 cm, X and Y are 
positions in the reference configuration. Constant C is defined by 
the relation: 

 

 𝐶𝐶 =  √𝐸𝐸 𝜌𝜌0⁄  .       (6) 

 

with the modulus of elasticity being 𝐸𝐸 = 1 104 and Poisson’s 
ratio taking on the value 0.3 and the initial density (𝜌𝜌0) taken as 

1 𝑘𝑘/𝑐𝑐𝑚𝑚3. Substituting Eq. (5) into the equations of motion, in 

combination with a neo-Hookean law, yields the body forces. A 

detailed derivation of the body forces are presented in 

(Sadeghirad, Brannon, & Burghardt, 2011). The comparison 

between the two methods is achieved by quantifying the error 

norm calculated from the two methods, which is given by the 

relation:  𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟 = √∑ ∑ ||Δ𝐮𝐮||2𝑁𝑁𝑝𝑝  𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡×𝑁𝑁𝑝𝑝 ,        (7) 

 

where, Δ𝐮𝐮  is the difference between the computed and 

analytical displacements, 𝑁𝑁𝑝𝑝  and 𝑁𝑁𝑝𝑝  are the total number of 

time steps and particles, respectively. The problem domain is 

discretized using five resolutions: 8×8, 16×16, 32×32, 64×64 and 

128×128 elements. Each grid element is populated with 1, 4 or 9 

particles. Timestep Δ𝑡𝑡 = 0.4√Δ𝑥𝑥/𝐶𝐶 , where Δ𝑥𝑥  is the 

computational grid size. The problem is repeated for classical 

MPM and CPDI formulations. Figure 1 shows the rate of 

convergence for the MPM and CPDI methods for the different 

simulations. A lower rate of convergence is observed in the MPM 

method compared to that obtained by the CPDI algorithm for 

each of the cases. This is an indication that the alternative basis 

functions proposed for the CPDI assist in evaluating the mapping 

matrix that couples grid values to particles values (𝜙𝜙𝑖𝑖𝑝𝑝), and its 

gradients (∇𝜙𝜙𝑖𝑖𝑝𝑝) more accurately.  

By increasing the number of particles per element while 
keeping the grid size constant, the error is reduced roughly 
linearly, although a more pronounced error reduction is noticed 
in the CPDI method than in the MPM. For the case at hand, 
regular distribution of particle domains is used. For cases where 
the region of high particle activity in the form of deformation or 
strain generations is expected beforehand, a non-uniform particle 
distribution would be computationally less taxing. Care must, 
however, be taken to ensure adequate particle packing on the 
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regions with larger particle distribution to ameliorate build-up of 
error.   

 

 
Figure 1. Convergence curves for classical MPM and CPDI method for 
axis-aligned displacement in a unit square problem. 

2.2  Verification of frame-indifference  

Another important aspect of numerical modelling of large 
deformations is the principle of material frame indifference.  
For small deformation problems, a difference between the 
reference and deformed configuration can normally be neglected 
when setting up the field equations. This cannot be assumed for 
finite deformations. The principle of material objectivity requires 
that the material response be independent of the observer. Thus, 
constitutive laws must be written in such a manner to obey this. 
Interested readers are directed to Reference (Malvern, 1969), 
who provides more information about material frame difference. 
Reference (Speziale, 1998) also presents a critical review of the 
concepts of material frame indifference, as does Reference 
(Belytschko, Liu, Moran, & Elkhodary, 2013), who provide a 
comprehensive survey of material objectivity in the context of 
continuum mechanics.  

Within the context of MPM, Reference (Kamojjala & 
Brannon, 2011) present an efficient algorithm using polar 
decomposition. The algorithm presented in this reference has 
been implemented in the CPDI code used in this work. The idea 
behind their algorithm highlights the fact that the approaches 
commonly used to satisfy objectivity does not suffice. Obtaining 
solutions assuming an unrotated frame, and implicitly neglecting 
rotations during the time increment by employing a single 
orthogonal tensor for all non-rotation operations during the time 
step might lead to an incorrect solution in finite deformations.  
The algorithm employed is as follows: 1) stresses 𝝈𝝈𝑛𝑛  are 
initialized, where n is the time; 2) stresses are unrotated using the 
relation 𝝈̅𝝈𝑛𝑛 = 𝑭𝑭𝑛𝑛𝑇𝑇 ∙ 𝝈𝝈𝑛𝑛 ∙ 𝑭𝑭𝑛𝑛; 3) updated stresses (𝝈̅𝝈𝑛𝑛+1) are then 
computed using a suitable constitutive law; and 4) updated 
unrotated stresses are rotated back using the relation 𝝈𝝈𝑛𝑛+1 =𝑭𝑭𝑛𝑛+1𝑇𝑇 ∙ 𝝈̅𝝈𝑛𝑛+1 ∙ 𝑭𝑭𝑛𝑛+1. The same algorithm can be employed for the 
symmetric part of the velocity gradient 𝑫𝑫𝑛𝑛 . For the sake of 
completeness, it is to be noted that the incorrect way of 
performing this procedure is to use a constant deformation 
gradient 𝑭𝑭𝑛𝑛 without updating it.  

To demonstrate the algorithm, a classical unit square element 
test is performed using CPDI. The solution consists of two 
stages: 1) uniaxial straining, where the acceleration due to 
gravity acts on the element, increasing its stress from 0 to its 
maximum value; and then 2) the rigid body rotation of the 
element is introduced, which is achieved by slowly rotating the 
block by 90°. The entire simulating takes place in 2 seconds, each 

phase taking a second. As an example for this simulation, a linear 
elastic constitutive law is chosen with the modulus of elasticity 
as 500 kPa and Poisson’s ratio as 0.3. An explicit time-stepping 
algorithm is employed. From Fig. 2, it can be inferred that the 
vertical and horizontal stresses increase linearly during the first 
phase of the solution. In the second phase, the gravity vector is 
rotated by 90°, to simulate the rotation of the block. The 
horizontal and vertical stress swap values with each other, as one 
would expect. Small shear stresses that are generated quickly 
dissipate as the solution progresses. Results from this test 
conclusively prove that regardless of large rotations, objectivity 
criterion is satisfied in the numerical code. 

 

 
Figure 2. Normalized stress components vs. time for rotated block 
simulation. 

3  GRANULAR COLUMN COLLAPSE 

The CPDI code that is presented and tested in Section 2 is now 
used to simulate the collapse of a granular column, in which the 
predictions are compared with the experimental results. The goal 
is to examine the influence of variables such as particles per cell, 
numerical damping, and the effects of the smoothening algorithm 
and constitutive law. The simulation of granular column collapse 
is not new, having been already published in References 
(Kermani, Li, & Qiu, 2014), (Kumar, Delenne, & Soga, 2017), 
(Mast, Arduino, Mackenzie-Helnwein, & Miller, 2015). 
Reference (Sołowski & Sloan, 2013) performed a granular 
column collapse study using MPM. Numerical damping was 
introduced into the simulation to obtain a better fit to the result, 
as higher-than-expected run-off was observed for columns with 
high aspect ratios (greater than 2.0). Efforts have been made in 
the current study to gauge the effect of numerical damping on the 
final-run off, as well as the effect of the number of particles per 
cell, the effect of smoothening, as well as the effect of 
constitutive laws on the system. To this end, the experiments 
performed in Reference (Lube, Huppert, Sparks, & Freundt, 
2007) is simulated.  

They investigated a two-dimensional granular flow formed 
during the collapse of a rectangular column of sand into a wide 
horizontal channel. While different aspect ratios were chosen for 
the experiments (between 3.0 and 9.5), only corresponding to an 
aspect ratio of 7.0 is analysed herein. Their container 
accommodated the granular media at one end of the tank and 
included a gate to release the granular material. This allowed a 
more focused parameter study. The width of the column was 9.05 
cm, with the height of the column being 63.35 cm. A mixture of 
industrial black and light grey coloured quartz sands with grain 
size 1.4 ± 0.4 mm was chosen. The following physical properties 

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑩𝑩𝑻𝑻𝝈𝝈𝝈𝝈 𝑩𝑩

𝑟𝑟10, 𝑟𝑟20

𝒓𝒓1𝑛𝑛 = 𝑭𝑭𝑝𝑝𝑛𝑛  𝒓𝒓𝟏𝟏0 ,      𝒓𝒓2𝑛𝑛 = 𝑭𝑭𝑝𝑝𝑛𝑛  𝒓𝒓20 𝑭𝑭𝑝𝑝𝑛𝑛

𝜙𝜙𝑖𝑖𝑝𝑝  ≌ 14  [𝑆𝑆𝑖𝑖(x1p) + 𝑆𝑆𝑖𝑖(x2p)+𝑆𝑆𝑖𝑖(x3p) + 𝑆𝑆𝑖𝑖(x4p)]𝑆𝑆𝑖𝑖 (xjp) 𝑗𝑗 ∈[1,2,3,4]
𝐹𝐹𝑝𝑝𝑛𝑛+1 = (𝑰𝑰 + ∇𝑣𝑣𝑝𝑝𝑛𝑛+1Δt)𝐹𝐹𝑝𝑝𝑛𝑛Δt 𝑰𝑰

𝑢𝑢𝑥𝑥 = 𝐴𝐴 sin (2𝜋𝜋𝜋𝜋𝐿𝐿 ) sin (𝐶𝐶𝜋𝜋𝑝𝑝𝐿𝐿 ), 
𝑢𝑢𝑦𝑦 = 𝐴𝐴 sin (2𝜋𝜋𝜋𝜋𝐿𝐿 ) sin (𝐶𝐶𝜋𝜋𝑝𝑝𝐿𝐿 + 𝜋𝜋)

𝐶𝐶 =  √𝐸𝐸 𝜌𝜌0⁄
𝐸𝐸 = 1 104 𝜌𝜌0)𝑘𝑘/𝑐𝑐𝑚𝑚3

 𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟 = √∑ ∑ ||Δ𝐮𝐮||2𝑁𝑁𝑝𝑝  𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡×𝑁𝑁𝑝𝑝Δ𝐮𝐮 𝑁𝑁𝑝𝑝 𝑁𝑁𝑝𝑝
Δ𝑡𝑡 = 0.4√Δ𝑥𝑥/𝐶𝐶 Δ𝑥𝑥

𝜙𝜙𝑖𝑖𝑝𝑝∇𝜙𝜙𝑖𝑖𝑝𝑝
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were recorded for the quartz sand: solid density 2650 𝑘𝑘𝑘𝑘/𝑚𝑚3 
and angle of repose 31°. In the experiment, the retaining gates 
were removed very quickly and the ensuing deformation and the 
free surface was observed through the glass walls.  

 
Table 1. Parameters for Quartz sand 

Parameter 𝜌𝜌0 [kg/m3] 𝐸𝐸 [kPa] 𝜈𝜈 [-] 𝜙𝜙 [°] 𝜓𝜓 [°] 

Value 2650 840 0.3 31 1 

 
An elasto-plastic Mohr-Coulomb failure criterion was chosen 

in the current study to model the sand, which was replaced with 
the UBCSAND model. Parameters for the Mohr-Coulomb model 
are provided in Table 1. A non-slip condition between the 
granular media and the ground was assigned following Reference 
(Lube, Huppert, Sparks, & Freundt, 2005). The collapse of the 
granular column was entirely modelled using CPDI. A two-
dimensional regular mesh with a cell dimension of 0.67 mm was 
chosen. The elements were initially populated with either 1, 4 or 
9 particles.   

 

 
Figure 3. Initial setup of model for granular collapse, (units in mm). 

The initial configuration of the simulation is shown in Figure 
3, with the computational grid shown in the background and 
particles being shown in blue. Acceleration due to gravity was 
taken to be 10 𝑚𝑚/𝑠𝑠2. Results from Reference (Lube, Huppert, 
Sparks, & Freundt, 2007) were digitized to allow for comparison 
between the simulation and experimental results. Three aspects 
were studied: 1) effect of the number of particles on the final 
solution; 2) influence of numerical damping; and 3) effect of 
kinematic locking smoothening on the final runout. The results 
of MPM, and by extension, CPDI depend on the mesh. Final 
results are not only sensitive to the size of the background grid 
but also to the number of particles that populate the background 
grid. A parameter study for a dynamic solution in this regard was 
considered valuable. The influence of numerical damping, often 
used to assist in convergence, was studied first. Thereafter, the 
numerical results were compared against a simulation 
implementing the more advanced, elasto-plastic UBCSAND 
constitutive law.  

 

 
Figure 4. Effect of number of particles on the total run-off. 

Figure 4 shows the results of a parameter study where the 
number of particles per grid was varied between 1 and 9. No 
numerical damping was used. The background grid was not 
altered. Results show that regardless of the number of particles, 
the final run-off is overpredicted in the numerical model. Since 
the CPDI particles are themselves allowed to deform, it is not 
surprising to note that different final heights are obtained from 
the simulation. For the case of 1 particle-per-grid, the run-off is 
overpredicted and the final height is underpredicted, the latter 
owing to deformation of the particle. As the number of particles 
per grid increases, the final height reaches roughly the 
experimental value. From Figure 1, where there is evidence that 
a system with higher particles yields lower global error, a choice 
was subsequently made to perform further simulations with only 
9 particles per cell.   

 

 
 

Figure 5. Effect of numerical damping on the total run-off. 

Effect of numerical damping is considered next. Reference 
(Sołowski & Sloan, 2015) had utilised numerical damping for 
MPM simulations of granular column collapse, in part to 
improve convergence, and to approximate the loss of energy of 
grains upon movement without strain change, which is mostly in 
the form of friction between particles. It is imperative to note that 
such damping algorithms are artificial in nature, and can 
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influence the results significantly when used incorrectly. From 
Figure 5, it can be seen that as the damping coefficient is 
increased, the final run-off approaches closer to the experimental 
value, which is similar to what others have experienced.  

 

 
Figure 6. Study of kinetic and potential energies of the system for 
different damping coefficients. 

The kinetic and potential energies of the system for different 
damping coefficients are presented in Figure 6. While there are 
no discernible changes observed in the potential energy, as it 
should be, with minor deviations being considered as a numerical 
artefact of the solution procedure, kinetic energies show a 
marked change when damping coefficients are changed. Results 
from 3D-DEM (Discrete Element Method) simulations 
performed in Reference (Utili, Zhao, & Houlsby, 2015) for the 
collapse of a granular column, wherein energy dissipation studies 
were performed, also drew similar results to those shown in 
Figure 6, that the loss of energy in the system, owing to 
intergranular friction, is in the form of kinetic energy.  

 

 
Figure 7. Effect of smoothening on the final run-off. 

The effect of locking is especially pronounced when using 
lower-order elements, like in the case of this work. There are 
various ways to mitigate the effects of locking in MPM. In some 
cases undesirable changes in stiffness to the element develop. 
Readers are directed to Reference (Mast, Mackenzie-Helnwein, 
Arduino, Miller, & Shin, 2012) for a detailed formulation of the 
Hu-Washizu kinematic locking mitigation algorithm, which 
served as the basis for the implementation in this CPDI code.  

Figure 7 shows the result of using two anti-locking procedures 
for the granular flow problem. No damping was used for these 
simulations. We observe that volumetric smoothening yields 
incorrect results. The run-off is over-predicted, as is the height of 
the slope. The apparent ‘softening’ of the material, although 
beneficial in fluid dynamics problems, where there is increased 
stiffness in the element due to locking, which is not ideal for 

granular problems, where the pressure locking effect is less 
pronounced. On the other hand, the use of deviatoric strain-rate 
smoothening, which acts on the deviatoric portion of the stress 
and strain field yields better results. The spurious stress 
deviations, which are caused in part due to shear locking, is 
alleviated, and the artificially high run-off, like those observed in 
Reference (Sołowski & Sloan, 2013) can be reduced. Although a 
more thorough analysis is required, a theory that is proposed to 
better the results is that the velocities that are calculated on the 
grid are a result of the collocated values of stresses and strains 
from the particles, which are 9 in this case. An averaging exercise 
happens on the grid, which does not necessarily have the correct 
value, and leads to an overestimation of the grid, and 
consequently, the particle velocity. By using a smoothening 
filter, this error is negated, and the resultant solution is closer to 
the experimental values.  

Reference (Mast C. M., 2013) studied the influence of 
different failure laws on the final result for the granular column 
collapse simulation. Reference (Fern & Soga, 2016) also studied 
the variation in behaviour of granular column collapse using an 
advanced constitutive law (Nor-Sand) and compared its results 
with those obtained with the classical Mohr-Coulomb model. 
This study adopted the UBCSAND constitutive law to model the 
collapse and make observations about the final run-off. A concise 
summary of the UBCSAND model is available in Reference 
(Giridharan, Gowda, Stolle, & Moormann, 2020). Although it is 
pertinent to note that UBCSAND model is widely used in the 
field of seismic modelling, and its use here might not be of great 
value, especially given that the model neither has any appreciable 
cyclic loads nor is the soil saturated, it is nevertheless of interest 
to observe the influence of hardening on the final result. This 
exercise is viewed mainly as an additional validation of not only 
the CPDI code but also in the in-house implementation of the 
UBCSAND model, which is based on the work from Reference 
(Naesgaard, 2011). The parameters for the UBCSAND model, 
tabulated in Table 2, were calibrated for the quartz sand mixture 
used in the experiment.  

 
Table 2. Parameters for UBCSAND model 𝑁𝑁160[-] 𝑚𝑚𝑒𝑒 [-] 𝑛𝑛𝑒𝑒 [-] 𝑛𝑛𝑝𝑝 [-] 𝐾𝐾𝐺𝐺𝐸𝐸 [-] 𝐾𝐾𝐵𝐵𝐸𝐸 [-] 

10.7 0.7 0.7 0.4 100 125 𝐾𝐾𝐺𝐺𝑃𝑃 [-] 𝜙𝜙𝑝𝑝𝑝𝑝 [°] 𝜙𝜙𝑓𝑓 [°] 𝑐𝑐 [kPa] 𝑃𝑃𝑃𝑃 [kPa] 𝜎𝜎𝑝𝑝  [kPa] 

5 31 31.1 0 100 0 

hfac1 [-] hfac2 [-] hfac3 [-] hfac4 [-] hfac5 [-] hfac6 [-] 

0.65 0.85 1.0 0.6 1.0 0.95 

 
Results of the simulation (shown in Figure 8) were obtained 

with deviatoric smoothening together 5% damping using the 
Mohr-Coulomb model (represented with a red line) and the 
UBCSAND model. While the UBCSAND model closely follows 
the experiments during the first 0.17 seconds, the results start to 
follow the Mohr-Coulomb model in the latter part of the 
simulation. The final run-off prediction from both the models are 
quite close to the result obtained from the experiment (shown in 
black). The result from the UBCSAND model indicates that the 
model was marginally stiffer than its Mohr-Coulomb 
counterpart. One explanation that can be provided for this 
phenomenon is the presence of a hardening in the case of 
UBCSAND, in addition to Mohr-Coulomb plasticity correction. 
This correction is particularly useful in case of modelling 
liquefaction (Giridharan, Gowda, Stolle, & Moormann, 2020), 
however in this case, it alters the stiffness too much. A better fit 
can be obtained by better calibrating the parameters, particularly 
the hardening factors (hfac-s). That would require good quality 
experimental data, that was in dearth for the quartz sand. 
Nevertheless, even a cursory calibration procedure was sufficient 
to achieve reasonable numerical performance from the 
UBCSAND model, as evidenced by the results presented.  
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Figure 8. Comparison between simulations performed using Mohr-
Coulomb model and UBCSAND constitutive law.  

4  CONCLUSIONS 

A novel extension of the MPM, known as CPDI towards 
applications in the field of geotechnical engineering was 
considered in this study. The aim was to validate the CPDI code, 
by means of comparing its performance against the classical 
MPM, and to ensure that the code obeyed the fundamental law 
of objectivity, which can be overlooked quite easily when 
implementing the code from a classical finite-element point of 
view. A granular column collapse simulation was performed and 
compared against the experimental results, with observations 
about the effect of various parameters that influence the results 
made along the way. An advanced elasto-plastic model 
UBCSAND was used to compare the results against Mohr-
Coulomb, yielding comparable results. The CPDI code 
developed here, although imposes a bit of computational 
overhead, makes up in the fact that the results from the 
simulation are more accurate and consequently, can be applied 
with confidence to real-world problems. Further research in this 
direction would not only involve dynamic problems like 
earthquake simulation in saturated sand but also would involve 
problems involving large time scales, like that of a creeping soil 
problem.  
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