
INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

The paper was published in the proceedings of the 
20th International Conference on Soil Mechanics and 
Geotechnical Engineering and was edited by Mizanur 
Rahman and Mark Jaksa. The conference was held from 
May 1st to May 5th 2022 in Sydney, Australia.

https://www.issmge.org/publications/online-library


 

 

A scalable three-dimensional multiscale framework for modeling of granular column 
collapse  

Un cadre multi-échelle tridimensionnel évolutif pour la modélisation de l'effondrement de colonnes 
granulaires 

 

Weijian Liang & Jidong Zhao 

Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong 
Kong, wliangab@connect.ust.hk 

 

 

ABSTRACT: This study presents a scalable three-dimensional (3D) multiscale framework to model large deformation of granular 

media. The multiscale framework features a hierarchical coupling of a continuum approach Material Point Method (MPM) and a 

discrete approach Discrete Element Method (DEM) for cross-scale simulation of boundary value problems. Specifically, the MPM 

is used to solve the governing equations of a macroscopic boundary value problem that may enter the large deformation regime, 

while the DEM is used to provide the path-dependent mechanical response required at each material point of MPM based on grain-

scale, contact-based simulations. The innovative bridging of MPM and DEM allows to easily tackle large deformation problems in 

geomechanics while bypassing the requirement of a presumed constitutive model typically exceedingly complicated in continuum 

approach. To mitigate the pertinent computation cost for 3D large-scale simulations, we further propose an effective, scalable 

Message Passing Interface (MPI) based parallel scheme for the multiscale approach and port it onto the Tianhe 2 supercomputer. 

Simulations of the collapse of a three-dimensional granular column are conducted and results on the rheology of the collapsing 

column and the evolution of macroscopic energy are examined and discussed. The study demonstrates the predictive power of 

multiscale modeling in solving practical problems of granular media. 

KEYWORDS: multiscale modeling; three-dimension; Message Passing Interface (MPI); column collapse 

 
1  INTRODUCTION. 

Granular materials are ubiquitous in our daily life. However, it is 
still challenging to accurately predict the mechanical responses 
of granular materials in a setting of engineering-scale 
applications due to the underlying grains interaction. Recently, 
hierarchical multiscale modeling has been flourishing in 
computational geomechanics, in an attempt to provide the 
community a next-generation numerical analysis toolbox for 
tackling these obstacles. These multiscale frameworks mainly 
deploy Discrete Element Method (DEM) to provide 
micromechanics-based solutions for upscaled continuum 
approaches, like FEM (Guo & Zhao, 2014), MPM (Liang & 
Zhao, 2019) or Smooth Particle Finite Element Method 
(SPFEM) (Guo et al., 2021), bypassing the use of 
phenomenological constitutive laws. These approaches have 
showcased promising capacity in typical engineering 
applications, like borehole instability (Wu et al. 2018) and pull-
out of anchor (Liang et al. 2021). 

Due to the excessive computational intensity, most multiscale 
modeling applications so far are constrained in two-dimensional 
(2D) scenarios. Although 2D multiscale modeling based on plane 
strain/stress assumptions can offer unique insights into certain 
problems, it is not without limitations. The first one is related to 
the DEM solver by which the mechanical behavior of granular 
materials is reproduced. Using discs (2D) to represent granular 
grains, all out-of-plane grain motions and inter-particle 
interactions are prohibited. Despite such constraints can render a 
qualitatively sound behavior of the granular media, the 
predictions may not be quantitatively comparable with 
experimental data (e.g., porosity, peak/residual stress, and 
dilatancy). Meanwhile, it is well-known that macroscopic 
phenomena of granular materials are controlled not only by the 
mechanical properties of specimens but also by the geometry 
setting and the loading conditions. A representative example is 
the compression test on a sandy soil specimen. For a densely-
packed sample, cross-shape shear bands are commonly observed 

under plane strain setting, whereas octopus-shaped shear 
localization zone and diffuse failure may occur under triaxial 
compression or extension (Guo and Zhao 2016). Moreover, the  
 
2D setting may also prohibit modeling of some practical 
problems, such as debris flow which naturally occurs in 
mountainous areas with complex terrain. Given these issues, it is 
of great importance to implement a fully 3D multiscale 
framework and facilitate more accurate and realistic modeling of 
practical engineering problems. 

Although the extension from 2D to 3D is conceptually 
straightforward, it remains challenging from an implementation 
perspective. A crucial issue needed to be addressed for 3D 
multiscale modeling is how to handle the arising tremendous 
computational cost. Typically, for a 3D MPM simulation, the 
number of material points involved is at least one order larger 
than that in 2D. Moreover, the Representative Element Volume 
(RVE) that is used to obtain mechanical responses of media also 
has to contain more grain particles. These two factors jointly 
render 3D multiscale modeling to be more computationally 
expensive compared to its 2D counterpart and therefore 
demanding a high-performance solution. 

In this study, an efficient and scalable parallel scheme is 
proposed for the hierarchical multiscale framework, taking the 
advantage of flagship supercomputing facilities, to solve 3D 
large-scale problems. In what follows, the multiscale framework 
is briefed and the proposed parallel scheme is elaborated. Then 
its performance will be also evaluated by the simulation of the 
3D granular column collapse. Finally, results on the rheology of 
the collapsing column and the evolution of macroscopic energy 
will be discussed.  

 
2  MULTISCALE FRAMEWORK AND PARALLELISM 

The multiscale framework in this study is established through a 
hierarchical coupling of a continuum approach MPM and a 
discrete approach DEM. Specifically, the MPM is used to solve 
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kinematics and deformation of a continuum which is governed 
by the following equations of conservation:  
 D𝜌𝜌D𝑡𝑡 = 0 (1) 𝜌𝜌 D𝒗𝒗D𝑡𝑡 = ∇ ∙ 𝝈𝝈 + 𝜌𝜌𝑔𝑔 (2) 

 
where 𝜌𝜌  is density; 𝒗𝒗 denotes velocity; 𝝈𝝈 is Cauchy stress 
and 𝑔𝑔 is the gravity acceleration. Since the mass of individual 
material points in MPM remains unchanged throughout the 
simulation, the mass conservation (Eqn. 1) is automatically 
satisfied. While the momentum equation could be solved 
accordingly on the background mesh in a similar manner as 
FEM. For conventional MPM, a constitutive model describing 
the strain-stress relation is required to close the system. However, 
within the MPM-DEM multiscale framework, the nonlinear, 
path-dependent mechanical responses of granular media are 
provided by DEM through grain-scale, contact-based 
simulations on RVE. For a DEM assembly, the Cauchy stress 𝜎𝜎 
is computed based on the Love-Weber formula (Christoffersen et 
al, 1981; Nicot et al, 2013) which reads: 
 𝝈𝝈 = 1𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 ∑ 𝒅𝒅 ⊗ 𝒇𝒇𝑐𝑐𝑁𝑁𝑐𝑐  (3) 

 

where 𝑉𝑉𝑅𝑅𝑉𝑉𝑅𝑅  is the volume of the RVE; 𝑁𝑁𝑐𝑐  is the amount of 

contact within the packing; 𝒅𝒅  represents the branch vector 

joining centroids of two particles in contact and 𝒇𝒇𝑐𝑐 denotes the 

contact force. The innovative bridging of MPM and DEM allows 

to easily tackle large deformation problems in geotechnical 

engineering while bypassing presumed phenomenological 

constitutive models.  
In the present multiscale framework, two codes, CB-Geo 

MPM and YADE are deployed for MPM and DEM solver, 
respectively. Since shearing RVE in DEM is the most 
computationally expensive part of the entire computation, the 
large-scale parallelism across distributed compute nodes is 
merely implemented for accelerating the DEM computation, 
while the MPM which is less expensive is only handled among 
different threads within a single node using Intel Threading 
Building Blocks (TBB) for simplicity. 

The proposed parallel is favorable for massively parallel CPU 
cores within a torus network. Central to the proposed parallel 
scheme is the data and task parallelism. The parallel scheme 
implementation is based on a single-level flat MPI model and 
could be graphically illustrated in Fig. 1. Prior to the explicit time 
integration, the set containing the entire material points index is 
divided nearly evenly into N partitions (N is equal to the 
number of MPI processes) and distributed to all MPI processes. 
With assigned indexes, the DEM solver in each process could 
load corresponding RVE packings into local memory. Loading 
packing into separated processing units helps to achieve data 
parallelism, minimizing data exchange between the master and 
slave threads and hence reducing the communication overhead. 
Operations in subsequent coupling cycles are executed in a 
similar manner. Firstly, the incremental deformation gradients 
for all RVEs are computed in the MPM solver. Then they are 
distributed to all MPI threads by a collective communication 
routine MPI_SCATTER. Based on these deformation 
information, the task of shearing RVE, which is the most 
computationally intensive part within the entire workflow, is 
undertaken by all MPI processes concurrently. Once the task of 
shearing RVE is finished across all processing units, material 
responses (i.e., Cauchy stress and averaged particle rotation) will 
be retrieved from the deformed RVE and sent back to the master 
rank (via MPI_GATHER) for subsequent computations in the 
MPM solver, such as updating the motions and positions of 
material points. 

This 3D multiscale framework is further installed onto 
Tianhe-2 at the Guangzhou National Supercomputer Centre to 
give a full play to the proposed parallel scheme. As a top-ranking 
supercomputer, Tianhe-2 has around 16 000 nodes with each 
equipped with 2-way 12-core Intel Xeon E5-2692v2 CPU, 3x 
Intel Xeon Phi coprocessor, 64GB memory and customized 
internal high-speed interconnection TH-2 Express-2. It is noted 
that although the proposed framework is run on massively large-
scale architectures such as Tianhe-2, it is also suitable for 
medium-size clusters as well as common desktops since it is 
developed for the standard Linux environment despite the 
problems size may be constrained due to the memory limitation 

 

 
Figure 1. Illustration of the parallel scheme for MPM-DEM multiscale 
framework 

 

3  MODELING 3D GRANULAR COLUMN COLLAPSE 

In this section, a 3D granular column collapse is modeled to 

evaluate the performance of the proposed parallel scheme as well 

as to demonstrate the potential of the 3D multiscale approach. 

3.1  Model setup 

The model setup for the simulation is shown in Fig. 2. The 
slumping is carried out within a rectangular chamber with a 
width of 0.45m. The dimensions of the granular column are 
denoted by 𝐿𝐿(length) and 𝐻𝐻(height). The subscript “𝑖𝑖” and “𝑓𝑓” 
represent the initial and final state, respectively. In the current 
study, 𝐻𝐻𝑖𝑖 is set to 1.32m, 𝐿𝐿𝑖𝑖 is set to 0.55m and the aspect ratio 
for the column 𝑎𝑎(= 𝐻𝐻𝑖𝑖 𝐿𝐿𝑖𝑖⁄ ) is equal to 2.4. The whole simulation 
domain is discretized by hexahedron elements with an element 
size of 0.05m. It is worth pointing out that the dimension selected 
for the simulation has been scaled up 10 times compared to the 
experimental setting (Lajeunesse et al. 2005) for a larger time 
step size. The bed of the chamber is assumed to be rough while 
the side walls are set to be frictionless. Before the 
commencement of the collapse, RVE packings to be embedded 
to material points are prepared based on the microscopic 
parameters listed in Table 1. 

The entire simulation is divided into two stages: in the first 
stage, an additional Dirichlet boundary condition (velocity 
constraint) is imposed at the lateral free surface of the column to 
achieve a stable, equilibrium state. While in the second one, this 
constraint is removed, and the column could flow down freely.  
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Table 1. Microscopic parameters in DEM solver 

Parameter Symbol[unit] Value 

Number of particles 𝑁𝑁𝑝𝑝 800 

Radius 𝑟𝑟[mm] 0.92-1.38 

density 𝜌𝜌[kg/m3] 2500 

Young’s modulus  𝐸𝐸[MPa] 600 

Interparticle friction 𝜇𝜇 0.518 

 

 
Figure 2. Model setup for 3D granular column collapse 

 

3.2  Parallel performance 

In the current simulation, the granular column contains 65 882 

RVEs. With each comprising 800 DEM particles, the problem 

size involves up to 52,705,600 grains. The simulation is carried 

out on Tianhe-2 supercomputer hosted in Guangzhou, China and 

the elapsed wall clock time is around 10 hours with 16 nodes 

(384 CPU cores). 

To measure the performance of the parallel scheme, we carry 

out a strong scaling test (fixed workload) for the same problem. 

In the scaling test, the computation runs 500 steps with 1 to 256 

compute nodes (CPU cores ranges from 24 to 6144), and the 

corresponding elapsed time is recorded as 𝑡𝑡𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . Given the 

computation time, it is straightforward to obtain the parallel 

acceleration by the speedup factor:  𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 = 𝑡𝑡1 𝑡𝑡𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁄ . In 

addition, the execution time for the MPM part, DEM part, and 

MPI communication in each coupling cycle are also recorded for 

analysis. Particularly, the cost of MPM includes computing 

deformation gradient for all RVEs and updating motions and 

positions of material points, the cost of MPI includes scattering 

the deformation information and gathering homogenized stresses 

while the DEM cost refers to the time needed to load all RVEs 

with prescribed boundary conditions. Since the output step 

(generate .vtk file) is only executed every thousand steps in 

typical practice, it is not included in this scaling test. 

The execution time profile in the strong scaling test is shown 

in Fig. 3. As indicated by the case with 𝑁𝑁𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛 = 1, the DEM 

simulation in each step takes around 17.9 s, constituting up about 

97.7% of the overall elapsed time. This proportion is so high that 

it is reasonable to pay efforts to improve this specified part as 

done by this study. With more nodes utilized, the cost of DEM 

drops substantially, which appears to be inversely proportional 

to the number of nodes. While for the MPM part, the 

computational cost remains around 0.36 s since no MPI-based 

parallel scheme is implemented for MPM computation.  

 

 
Figure 3. Averaged execution time per step for each part of the 
computation in strong scaling test 

 

Fig. 4 shows the parallel acceleration against the number of 

nodes. For comparison purposes, we also include the ideal 

scaling and the prediction by Amdahl’s Law in the figure. 

Amdahl’s Law states that the upper limit of the speedup can be 

achieved in a strong scale test can be described by following 

 𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 = 1 (𝑠𝑠 + 𝑝𝑝𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)⁄  (4) 

 

where 𝑠𝑠  and 𝑝𝑝  are the fractions of serial and parallel parts 

within the entire computation. As shown in Fig. 4, the multiscale 

modeling could be significantly accelerated by the proposed 

efficient and scalable parallel scheme. Specifically, the proposed 

parallel scheme can achieve an ideal linear parallel acceleration 

for the DEM part across all cases tested. While for the overall 

computation, the speedup is up to 26.77 for 64 nodes and 31.66 

for 128 nodes, which agrees well with Amdahl’s Law prediction. 

It is also observed that there is a minor drop in the speedup when 

using 256 nodes. This performance loss is mainly due to the 

increase in communication overhead exceeds the reduction in 

DEM computation as depicted in Fig. 3.  

3.3  Flow rheology and energy evolution 

For the granular column collapse, its flow rheology is first 
studied. Fig. 5 shows snapshots of the velocity field of the 
column during the collapse. A dimensionless characteristic time 𝑡𝑡∗ is used in the analysis, which is related to the free fall of the 
granular column via the following equation: 
 𝑡𝑡∗ = √𝐻𝐻𝑖𝑖 𝑔𝑔⁄  (5) 

 
where 𝑔𝑔 is the gravity. The characteristic time is computed as 𝑡𝑡∗ = 0.367s in the current setting. From Fig. 5, it is observed that 
the failure is initiated from the bottom of the outer surface of the 

D𝜌𝜌D𝑡𝑡 = 0𝜌𝜌 D𝒗𝒗D𝑡𝑡 = ∇ ∙ 𝝈𝝈 + 𝜌𝜌𝑔𝑔𝜌𝜌 𝒗𝒗 𝝈𝝈𝑔𝑔

𝜎𝜎
𝝈𝝈 = 1𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 ∑ 𝒅𝒅 ⊗ 𝒇𝒇𝑐𝑐𝑁𝑁𝑐𝑐𝑉𝑉𝑅𝑅𝑉𝑉𝑅𝑅 𝑁𝑁𝑐𝑐𝒅𝒅 𝒇𝒇𝑐𝑐

N N

𝐿𝐿 𝐻𝐻 𝑖𝑖 𝑓𝑓𝐻𝐻𝑖𝑖 𝐿𝐿𝑖𝑖𝑎𝑎 = 𝐻𝐻𝑖𝑖 𝐿𝐿𝑖𝑖⁄
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column. In the early stage, the slip surface is around 45° to the 
ground surface. This failure surface keeps propagating and tilling 
slightly upwards. For the mobilized mass, its upper part tends to 
fall freely while the lower part slice along the failure plane. At 𝑡𝑡 =  3𝑡𝑡∗, the majority of the column ceases moving and only 
those close to the toe move slowly. At 𝑡𝑡 =  6𝑡𝑡∗ , the whole 
column deposits completely and the final deposition is in a 
wedge shape. It is also observed the runout distance of this study 
is slightly smaller than the experimental result (Lajeunesse et al. 
2005). The underestimation of the runout distance is because the 
simulation adopts a relatively large element size (0.05 m) and the 
displacement constraint in the base to be more noticeable. 

 

 
Figure 4. Computation speedup versus node number in strong scaling test 

 
The collapse process is commonly accompanied by apparent 

particle rotations. Herein, we extract the average particle rotation 𝜽̅𝜽 from RVEs for analysis which is defined as: 
 𝜽̅𝜽 = 1𝑁𝑁𝑝𝑝 ∑𝑁𝑁𝑝𝑝  (6) 

where 𝑁𝑁𝑝𝑝 is the number of particles within the packing and . 
Fig. 6 shows the average particle rotation for the granular column 
at the final state. It appears that the soil close to the corner of the 
chamber does not experience any particle rotation, manifesting 
itself as a static zone throughout the collapse process. As such, 
the average particle rotation may serve as an alternative indicator 
to defines the interface between the static zone and flow layer 
which is somehow blurred to define by merely velocity field 
because of the continuous development during the whole 
process. 
Finally, the evolution of energy is also investigated. The potential 
energy 𝐸𝐸𝑝𝑝, kinetic energy 𝐸𝐸𝑘𝑘 and dissipated energy 𝐸𝐸𝑑𝑑 can be 
computed as follow: 

 𝐸𝐸𝑝𝑝 = ∑ 𝑚𝑚𝑖𝑖𝑔𝑔𝑧𝑧𝑖𝑖𝑁𝑁𝑚𝑚𝑝𝑝𝑖𝑖=1  (7) 𝐸𝐸𝑘𝑘 = ∑ 12 𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖2𝑁𝑁𝑚𝑚𝑝𝑝𝑖𝑖=1  (8) 𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑝𝑝0 − 𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑘𝑘 (9) 

 
where 𝐸𝐸𝑝𝑝0 is the initial potential energy, 𝑁𝑁𝑚𝑚𝑝𝑝 is the number of 
material points, 𝑚𝑚, 𝑧𝑧, and 𝑣𝑣 are the mass, the height, and the 
translational velocity of an individual material point. Fig. 7 
depicts the evolution of normalized energy. During a short period 
immediately after the collapse, the potential energy decrease and 
partially converts to kinetic energy. After the collapse process is 
fully developed, the kinetic energy starts to decrease steadily 
while the dissipated energy raises rapidly until a constant value 
is reached 𝐸𝐸𝑑𝑑/𝐸𝐸𝑝𝑝0 = 0.549. 
 

 
Figure 5. Snapshots of the velocity field for the granular column in 𝑡𝑡 = 𝑡𝑡∗, 3𝑡𝑡∗  and 6𝑡𝑡∗. The dashed line in 𝑡𝑡 = 6𝑡𝑡∗ indicates the scaled soil 
configuration in experimental test (Lajeunesse et al. 2005) 

 

 
Figure 6. Accumulated averaged particle rotation at the final state 
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Figure 7. Evolution of normalized potential, kinetic, and dissipated 
energy 

4  CONCLUSIONS 

This study presents a three-dimensional multiscale framework 
for modeling large-scale problems of granular materials. To 
mitigate the pertinent computation cost for 3D large-scale 
simulations, we propose an effective and scalable MPI-based 
parallel scheme for the multiscale approach and further 
implemented it onto flagship supercomputing facilities. This 
proposed parallel scheme could achieve a computation 
acceleration of 31.66 using 128 nodes on the Tianhe-2 
supercomputer. The predictive power of the multiscale approach 
equipped is also demonstrated by modeling the typical 3D 
column collapse.  
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𝑡𝑡 =  3𝑡𝑡∗ 𝑡𝑡 =  6𝑡𝑡∗

𝜽̅𝜽 𝜽̅𝜽 = 1𝑁𝑁𝑝𝑝 ∑𝑁𝑁𝑝𝑝𝑁𝑁𝑝𝑝

𝐸𝐸𝑝𝑝 𝐸𝐸𝑘𝑘 𝐸𝐸𝑑𝑑
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𝐸𝐸𝑑𝑑/𝐸𝐸𝑝𝑝0 = 0.549

𝑡𝑡 = 𝑡𝑡∗, 3𝑡𝑡∗  6𝑡𝑡∗ 𝑡𝑡 = 6𝑡𝑡∗
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