
INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

The paper was published in the proceedings of the 
20th International Conference on Soil Mechanics and 
Geotechnical Engineering and was edited by Mizanur 
Rahman and Mark Jaksa. The conference was held from 
May 1st to May 5th 2022 in Sydney, Australia.

https://www.issmge.org/publications/online-library


 

 

Development and application of a GPGPU-parallelized hybrid finite-discrete 
element method for modelling geo-structure collapse and resultant debris flow 

 

Hongyuan Liu  

School of Engineering, University of Tasmania, Australia, hong.liu@utas.edu.au 

 

Daisuke Fukuda 

Faculty of Engineering, Hokkaido University, Japan 

 

ABSTRACT: FDEM is seldom implemented to model non-cohesive soils due to intensive computational costs required for 
contact detections and interactions of irregular-shaped non-cohesive soil particles. This study first reviews a series of aut
hors’ recent developments for speeding up the contact detections and interactions for FDEM including GPGPU-paralleliza
tion, efficient contact activation approach, mass scaling, hyperplane separation theorem, as well as adaptive and semi-ada
ptive contact activation scheme. With them implemented, our GPGPU-parallelized HFDEM is about 8,000 to 61,000 time
s faster than sequential FDEM code, which paves the way for investigating the instability and collapse of geo-structures 
and resultant debris fragmentation and flow involving in a large number of irregular-shaped non-cohesive debris. The GP
GPU-parallelized HFDEM is then implemented to investigate the collapse process of 3D irregular-shaped and non-cohesiv
e soils heaps under gravity, and the excavation-induced slope instability as well as the resultant complex debris fragment
ation and flow process.  

RÉSUMÉ : Le FDEM est rarement mis en œuvre pour modéliser des sols non cohésifs en raison des coûts de calcul intensifs requis pour 
les détections de contact et les interactions de particules de sol non cohésives de forme irrégulière. Cette étude passe d'abord en revue 
une série de développements d'auteurs pour accélérer les détections de contact et les interactions pour FDEM, y compris la parallélisation 
GPGPU, l'approche d'activation de contact efficace, la mise à l'échelle de masse, le théorème de séparation d'hyperplan, ainsi que le 
schéma d'activation de contact adaptatif et semi-adaptatif. Avec leur mise en œuvre, notre HFDEM parallélisé GPGPU est environ 8000 
à 61000 fois plus rapide que le code FDEM séquentiel, ce qui ouvre la voie à l'étude de l'instabilité et de l'effondrement des géo-structures 
et de la fragmentation et des flux de débris résultants impliquant un grand nombre de débris non cohésifs en forme. Le HFDEM parallélisé 
par GPGPU est ensuite mis en œuvre pour étudier le processus d'effondrement des tas de sols de forme irrégulière et non cohésive 3D 
sous gravité, et l'instabilité de la pente induite par l'excavation ainsi que le processus complexe de fragmentation et d'écoulement des 
débris qui en résulte. 

KEYWORDS: FDEM, geo-structure collapse, slope instability, debris flow, and irregular-shaped non-cohesive particles. 

 
1  INTRODUCTION 

More and more geotechnical infrastructures such as underground 
metro systems, hydropower plants and highways have been being 
built during recent decades. Correspondingly, engineering 
disasters, such as tunnel collapse and slope failure, have occurred 
from time to time. The study of geomaterial damage and failure 
mechanism is the key to understanding geo-structure stability 
and preventing possible geo-disasters. 

With rapid developments of computer power, interactive 
computer graphics and topological data structures, numerical 
methods have been a robust tool to investigate geomaterial 
damage and failure. Among them, the combined finite-discrete 
element method (FDEM), initially proposed by Munjiza et al. 
(1995), incorporates the advantages of the most advanced 
continuous and discontinuous methods and thus can naturally 
model the transition from continuum to discontinuum during 
material damage and failure. Correspondingly, FDEM has been 
applied and further developed by a number of researchers around 
the world to simulate the damage and fracture of civil 
engineering materials and the collapse and fragmentation of civil 
engineering structures, especially since the first two-dimensional 
(2D) open-source FDEM software, i.e. the Y2D code, was made 
available to the research community (Munjiza, 2004). 

However, most of these studies apply FDEM in rock 
mechanics (Latham et al., 2013; Rougier et al., 2014; Lisjak et 
al., 2018; Fukuda et al., 2020) and few researchers have applied 
FDEM into soil mechanics. Moreover, due to the nature of 
intensive computations involved in contact detections and 

interactions of complex discrete rock fragments, FDEM has only 
been applied to model small-scale rock failures in laboratory and 
has seldom been capable of investigating the instability and 
collapse of large-scale geotechnical engineering structures. 
Correspondingly, this paper intends to apply a self-developed 
hybrid FDEM parallelized on the basis of the general-purpose 
graphic-process-unit (GPGPU) using the compute unified device 
architecture (CUDA) C/C++ in investigating geostructures 
collapse and resultant debris fragmentation and flow.  

2  GPGPU-PARALLELIZED HYBRID FINITE-DISCRETE 
ELEMENT METHOD  

An integrated development environment (IDE) of both two-
dimensional (2D) and three-dimensional (3D) hybrid finite-
discrete element method (HFDEM) has been developed by the 
authors (Liu et al., 2015) and has been applied to model a series 
of applications involving in geomaterial damage, failure and 
collapse (Liu et al., 2016; An et al., 2017). To overcome the 
computationally expensive issue of FDEM, the authors (Fukuda 
et al., 2019 & 2020) recently parallelized the HFDEM IDE2D/3D 
code on the basis of GPGPU using CUDA C/C++. The detailed 
computing performance analysis shows the GPGPU-parallelized 
HFDEM 2D/3D IDE code can achieve the maximum speedups 
of 128.6 and 286 times in the case of the 2D and 3D modellings, 
respectively. More recently, adaptive efficient contact activation 
(Mohammadnejad et al., 2020), mass scaling, hyperplane 
separation theorem and semi-adaptive contact activation 
approach (Fukuda et al., 2021) have been implemented by the 
authors to further speed up GPGPU-parallelized HFDEM. Rough 
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estimation has shown our GPGPU-parallelized HFDEM is about 
8,165 to 61,344 times faster than the sequential FDEM code, 
which paves the way for investigating the instability and collapse 
of large-scale geotechnical engineering structures using the 2D 
and even 3D FDEM. 

This section introduces the further developments of the 
efficient contact interactions between any arbitrary-shaped 
particles, the insertion of cohesive joints inside each particle and 
cohesive-less joints between the particles, and the local damping 
while the fundamental theory and detailed implementation of the 
GPGPU-parallelized HFDEM2D/3D software can be found in 
the authors’ former publications (Fukuda et al., 2019 & 2020). In 
the FDEM, the numerical model is considered to consist of a 
single discrete particle or a number of interactive discrete 
particles such as those shown in Fig. 1. Each discrete particle is 
of a general shape and size and is modelled by a single discrete 
element. Each discrete element is then discretized into finite 
elements to analyze deformability, failure and fracture, thus 
imposing no additional requirements on handling the geometry 
and interaction of individual discrete particles, which have 
advantages over purely discrete element method such as PFC and 
UDEC.  

 

 

 
Figure 1. Particles in the finite-discrete element model: a) discrete 
particles and b) densely packed particles.  

The contact between the discrete particles is essentially that 
between the tetrahedral elements in 3D or the triangular elements 
in 2D, which is modelled using the penalty method. For example, 
when any two tetrahedral elements subjected to contact detection 
are found to overlap each other, the contact potential due to the 
overlapping of two elements is exactly computed. The normal 
contact force, fcon_n, is then computed for each contacting couple, 
which acts normally to the contact surface and is proportional to 
the contact potential. The proportional factor is called the normal 
“contact penalty”, Pn_con. After the normal contact force, fcon_n, 
and its acting point are obtained, the nominal normal overlap, on, 
and relative displacement vector, Δuslide, at the acting point of 
fcon_n are readily computed. After fcon_n is determined, the 
magnitude of the tangential contact force vector, ||fcon_tan||, is 
computed according to the classical Coulomb friction law. The 
||fcon_tan|| is computed based on Eq. 1: 

 ‖𝐟𝐟con_tan‖ = 𝜇𝜇fric𝑓𝑓con_n (1) 
 
where μfric is the friction coefficient between the contact surfaces. 
The tangential contact force, fcon_tan, is applied parallel to the 
contact surface in the opposite direction to Δuslide. In the full 
contact activation approach, all elements in the model domain are 
subjected to contact interaction force calculations above, which 
is inefficient and rather time consuming, especially in the case 
that no failures of the particles occur. An adaptive contact 
activation approach is then proposed, in which, only the 
tetrahedral elements in the model boundary and in the vicinity of 
newly failed cohesive elements become contact candidates and 
are added to the contact detection list, as shown in Fig. 2.  
 

 

 
Figure 2. Adaptive contact activation approach: deep blue represents the 
elements without subjecting to contact calculation while other colors 
represents the elements subjected to contact calculation.  

 
One advantage of the adaptive contact activation approach is 

that the contact detection and contact force calculations are 
necessary only for the initial material surfaces until the failures 
occur, which makes the dramatic savings of the computational 
time compared with the full contact activation approach. 
However, the adaptive contact activation approach suffers from 
numerical instabilities characterized by spurious fracture mode. 
It has been proven by the authors (Fukuda et al., 2021) that the 
spurious fracture mode is due to the topological inconsistency of 
the mesh caused by shear softening of cohesive elements. 
Correspondingly, a semi-adaptive contact activation approach is 
developed by the authors (Fukuda et al., 2021) to overcome the 
numerical instability when the state of the cohesive elements just 
enters the shear softening regime and the damage variable just 
satisfies a certain threshold. In this way, the semi-adaptive 
contact activation approach overcomes not only the spurious 
fracture mode but also the time-consuming contact interaction 
calculation.  

Initially discrete particles such as soils, rock aggregates and 
rock fragments can be modelled by inserting cohesive-less 
elements between the discrete particles while the failure and 
fracture of the discrete particles are modelled using cohesive 
elements, which is another advantage of FDEM over other 
numerical methods. Fig. 3 depicts the constitutive behaviors of 
cohesive elements implemented in FDEM, in which the normal 
and shear cohesive tractions, (σcoh and τcoh, respectively), acting 
on each face of the cohesive elements are computed using Eqs. 
2-3 and 4-5 assuming tensile and shear softening behaviors, 
respectively: 

𝜎𝜎𝑐𝑐𝑐𝑐ℎ = { 2𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝑠𝑠 𝑜𝑜 < 0𝑔𝑔(𝑜𝑜)𝑓𝑓(𝐷𝐷)𝑇𝑇𝑠𝑠 0 ≤ 𝑜𝑜 ≤ 𝑜𝑜𝑝𝑝𝑓𝑓(𝐷𝐷)𝑇𝑇𝑠𝑠 𝑜𝑜 > 𝑜𝑜𝑝𝑝  (2) 
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𝑔𝑔(𝑜𝑜) = [2𝑐𝑐𝑐𝑐𝑜𝑜 − ( 𝑐𝑐𝑐𝑐𝑜𝑜)2] (3) 

 
 𝜏𝜏𝑐𝑐𝑐𝑐ℎ = {𝑔𝑔(𝑠𝑠)[𝑓𝑓(𝐷𝐷)𝑐𝑐 − 𝜎𝜎𝑐𝑐𝑐𝑐ℎ𝑡𝑡𝑡𝑡𝑡𝑡∅] 0 ≤ |𝑠𝑠| ≤ 𝑠𝑠𝑝𝑝𝑓𝑓(𝐷𝐷)𝑐𝑐 − 𝜎𝜎𝑐𝑐𝑐𝑐ℎ𝑡𝑡𝑡𝑡𝑡𝑡∅ 𝑠𝑠𝑝𝑝 < |𝑠𝑠|  (4) 

 𝑔𝑔(𝑠𝑠) = [2|𝑠𝑠|𝑠𝑠𝑜𝑜 − (|𝑠𝑠|𝑠𝑠𝑜𝑜)2] (5) 

 
where op and sp are the elastic limits of the opening displacement 
o and the shear displacement s, respectively, ooverlap is the 
representative overlap when o is negative, Ts is the tensile 
strength of the cohesive element, c is the cohesion, and ϕ is the 
internal friction angle. Positive o and σcoh values indicate crack 
opening and a tensile cohesive traction, respectively. Eq. 4 
corresponds to the Mohr-Coulomb shear strength model with a 
tension cut-off. The cohesive tractions σcoh and τcoh are applied to 
the opposite directions of the relative opening and sliding in the 
cohesive elements, respectively. 

 

 
Figure 3. Constitutive behaviors of cohesive elements  

As can be seen from Fig. 3, the cohesive elements become 
cohesive-less when 𝑜𝑜 ≥ 𝑜𝑜𝑡𝑡 and ‖𝑠𝑠‖ ≥ 𝑠𝑠𝑡𝑡 in the case of tensile 
and shear behaviours, respectively. Similar to the cohesive-less 
elements, the interaction between the cohesive-less phases of the 
cohesive elements is modelled by the penalty method, in which 
the contact potential due to the overlapping is exactly computed 
and the normal contact force is then proportional to the contact 
potential and the shear contact force is finally calculated 
according to the Coulomb model, as introduced previously. 

To realistically model the movement of the discrete particles, 
viscous damping is needed to be implemented into FDEM. A 
damping coefficient is incorporated into the constitutive model 

in FDEM, which is the so-called critical damping technique, one 
of the simplest approaches that have been used in many explicit 
FDEM. However, it was noted that the convergence rate of the 
critical damping technique is rather poor. Correspondingly, a 
local damping with a mass scaling technique is implemented into 
the GPGPU-parallelized HFDEM IDE code following Eq. 6: 

 𝑴𝑴𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝜕𝜕2𝒖𝒖 𝜕𝜕𝑡𝑡2 = 𝒇𝒇𝑡𝑡𝑐𝑐𝑡𝑡⁄ + 𝛼𝛼‖𝒇𝒇𝑡𝑡𝑐𝑐𝑡𝑡‖𝑠𝑠𝑔𝑔𝑡𝑡(𝒗𝒗) (6) 
 

where Mscale is the scaled lumped mass, ftot is the nodal out-of-
balance-force, v is the nodal velocity, ||ftot|| is the absolute value 
of each component of ftot, sgn(∙) is the sign function automatically 
determined by the sign of (∙) and α is the local damping 
coefficient. 

3  HYBRID FINITE-DISCRETE ELEMENT MODELLING 
OF THE COLLAPSE PROCESS OF COHESIVELESS SOIL 
HEAPS UNDER GRAVITY  

Chen and Wang (2019) conducted a simple 2D modelling of the 
collapse process of a rectangular non-cohesive soil heap under 
gravity using a sequential 2D finite-discrete element method, in 
which 7142 constant-strain triangular elements are used to 
represent the rectangular soil heap with a size of 4 m x 2 m and 
the calculation takes 298.6 hours. The same model is adopted in 
this study but is extended into 3D to become a cuboid non-
cohesive soil heaps, which has a size of 4 m x 2 m x 2m, as shown 
in Fig. 4 a. Characteristic element size for the soil heap is 0.05 
m. Correspondingly, the soil heaps are discretized into several 
ten thousands of four-node tetrahedral elements, each of which 
is regarded as non-cohesive.  
 

 
 

 
Figure 4. Numerical model of the non-cohesive soil heap and its support 

In Fig. 4, the support is made of steel, whose physical-
mechanical properties are listed in Table 1 together with those of 
the soil heap. The friction coefficient between the soil particles 

Δu

f

f

‖𝐟𝐟con_tan‖ = 𝜇𝜇fric𝑓𝑓con_n
μ

f
Δu

σ τ

𝜎𝜎𝑐𝑐𝑐𝑐ℎ = { 2𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝑠𝑠 𝑜𝑜 < 0𝑔𝑔(𝑜𝑜)𝑓𝑓(𝐷𝐷)𝑇𝑇𝑠𝑠 0 ≤ 𝑜𝑜 ≤ 𝑜𝑜𝑝𝑝𝑓𝑓(𝐷𝐷)𝑇𝑇𝑠𝑠 𝑜𝑜 > 𝑜𝑜𝑝𝑝
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and that between the soil particle and the steel surface are both 
defined as 0.6. The support is fixed and only gravity is applied to 
the soil heaps. Time step is 0.1 micro-seconds. Thanks to the 
GPGPU-parallelization, the running time is about 10 hours, 
which is much shorter than 298.6 hours required by the 2D 
modelling with less elements of Chen and Wang (2019). 
 
Table 1. Physical-mechanical properties of the soil heap and its support  
 

Properties Soil Support 
Young’s modulus 
(MPa) 

1.8 200,000 

Poisson’s ratio 0.3 0.3 
Density (kg/m3) 1850 7800 
Friction angle (◦) 25 N/A 

 
Fig. 5 depicts the modelled failure process of the soil heaps at 

representative time from the GPGPU-parallelized HFDEM 
modelling. The representative time is deliberately chosen as the 
same as that in the 2D FDEM modelling of Chen and Wang 
(2019) and the 2D SPH modelling of Bui et al. (2008). It is 
understandable that the non-cohesive soil collapses naturally 
under self-weight due to gravity since there is no support in the 
right side.  
 

 

 

 

 
 

Figure 5. 3D modelling of the failure process of non-cohesive soil heaps  

   It can be seen from Fig. 5 that the large deformation and 
failure of soil heaps have been well simulated. Moreover, it is 
found that the parameter of local damping has an important 
influence on the repose angle and the horizontal running 
distance. In Fig. 5, the local damping coefficient is chosen as 0.08 
so that the maximum horizontal running distance of the soil 
particle becomes consistent with that from the 2D modelling of 
Bui et al. (2008). With the local damping coefficient of 0.08, the 

modelled failure process of the soil heaps agree well with that 
from the 2D modelling of Chen and Wang (2019) and Bui et al. 
(2008). Once the self-weight is applied, the soil on the right side 
collapse, as shown in Fig. 5 a at 0.8 s, since no cohesion is 
considered in the GPGPU-parallelized FDEM modelling. Then, 
a steeper slope is formed with smaller horizontal running 
distance (Fig. 5b at 1.1 s). After that, the soil moves rightwards 
gradually (Fig. 5c at 1.4s) and eventually rests (Fig. 5d at 2.5s). 
As mentioned, the local damping coefficient has an important 
influence. A series of 3D FDEM modellings are conducted to 
investigate the influence, in which all other parameters are kept 
as the same while the local damping coefficient varies. Fig. 6 
illustrates the effect of various local damping coefficients on the 
failure process of the soil heaps. It can be seen that both the 
repose angle and the horizontal running distance are affected by 
the local damping coefficients. A similar FDEM approach was 
adopted by Chen and Wang (2019) although 2D. It is interesting 
to note this effect is not mentioned at all.     
 

 

 

 
 

Figure 6. Effect of the local damping coefficient on the failure process of 
the non-cohesive soil heaps. 

   Besides, it should be noted that, although the maximum 
horizontal running distances from this 3D modelling is the same 
as that from the 2D modelling of Chen and Wang (2019) and Bui 
et al. (2008), the repose angle from the 3D modelling is much 
steeper, which are probably caused by the irregular shape of the 
soil particles. In the 2D SPH modelling by Bui et al. (2008), 
circular particles were adopted while triangular particles were in 
the 2D FDEM modelling by Chen and Wang (2019). The repose 
angle from Chen and Wang (2019) is 20 degrees, which is 3 
degrees higher than 17 degrees from Bui et al. (2008). The 3D 
four-node tetrahedral particles adopted in this study are even 
more irregular compared with the 2D triangular particles. Thus, 
it should be reasonable that a high angle of repose is obtained 
from the 3D FDEM modelling. To clarify the effect of the 
particle shape on the repose angle, the soil heaps with tetrahedral 
parameters in Fig. 4 are replaced by using irregular-shaped 
Voronoi particles, as shown in Fig. 7. These irregular-shaped 
Voronoi particles are first generated using Neper (Query et al., 
2011) and then meshed using Gmsh (Geuzaine and Remacle, 
2009). They are then imported into the GPGPU-parallelized 
HFDEM to replace the soil heaps in Fig. 4 while the supports are 

a) t = 0.8 s  

b) t = 1.1 s  

c) t = 1.4 s  

d) t = 2.5 s  

a) 𝛼𝛼 = 0 & t = 1.4 s 

b) 𝛼𝛼 = 0.01 & t = 1.4 s 
  

c) 𝛼𝛼 = 0.08 & t = 1.4 s 
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kept as the same. To save the pages, the corresponding results are 
not presented here but will be presented elsewhere.  
 

 

 

 
Figure 7. Non-cohesive soil heaps consisting of irregular-shaped Voronoi 
particles. 

4  EXCAVATION-INDUCED SLOPE INSTABILITY AND 
DEBRIS FRAGMENTATION AND FLOW 

In this section, numerical simulations are conducted using the 
GPGPU-parallelized HFDEM to demonstrate its ability in 
modelling excavation-induced instability and resultant debris 
fragmentation and flow. The numerical model is depicted in Fig. 
8, which has a size of 100 m x 200 m. Geostatic stress analysis is 
firstly conducted to obtain the initial stress fields due to the self-
weight of the ground using the GPGPU-parallelized HFDEM 
with the local damping scheme. Once static equilibrium is 
achieved, the ground in the right side is excavated. At the same 
time, both non-cohesive and cohesive elements are inserted 
between triangular elements in the zone bounded by the two 
yellow lines and other zones, respectively. After that, the 
excavation-induced unloading process is modelled using the 
GPGPU-parallelized HFDEM through the dynamic relaxation 
scheme with the critical damping.     
 

 

Figure 8. Numerical model of excavation-induced slope instability 
 

 

 

 

 

 

 

 
Figure 9. Excavation-induced slope instability and debris flow  

a) t = 0 s 

b) t = 1 s 

c) t = 2 s 

d) t = 3 s 

e) t = 4 s 

f) t = 4.5 s 

ulus 

◦

 

s  

 

s  

𝛼𝛼 = 0 4 s 

𝛼𝛼 = 0.01

𝛼𝛼 = 0.08
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   Fig. 9 illustrates the excavation-induced slope instability and 
debris fragmentation and flow process modelled using the 
GPGPU-parallelized FDEM. Once the ground in the top-right 
part of the model is excavated, the ground on the slope loses the 
confinements and the movements of the slope are triggered, as 
shown in Fig. 9a. After that, only the area marked by the green 
doted lines is depicted for better visualization. As can be seen 
from Fig. 9b, the movement first occurs in the layer of cohesive-
less ground while the grounds above the cohesive-less layer 
move together due to the self-weight and the loss of confinement.  
The inhomogeneous movements of the cohesive-less grounds 
result in the stress concentration happening in the initially intact 
ground layer above the cohesive-less ground layer. The stress 
concentration causes cracks are initiated and propagate to break 
the initially intact ground layer into various fragments moving 
downward the slope. At 2 s as shown in Fig. 9c, the front of the 
downward moving ground contacts and collides with the bench 
of the slope resulting in further fragmentations. After that, parts 
of the formed fragments and parts of the downward moving 
grounds fill in the toe of the slope (Fig. 9d) to form a flatter 
surface reducing the collisions between the downward moving 
ground and the bench of the slope and facilitate the debris flow 
(Fig. 9e). During the debris flow process, the debris further 
fragments to result in numerous debris, which collide with each 
other in complex manners and flow along the bench of the slope.  

5  CONCLUSIONS   

Although FDEM is nowadays widely used to investigate the 
fracture and failure of cohesive materials such as rocks in rock 
mechanics, FDEM is seldom implemented to model the physical-
mechanical behaviors of non-cohesive materials such as soils in 
soil mechanics, which is probably due to the intensive 
computational costs required for the calculation of contact 
detection and contact interaction of irregular-shaped non-
cohesive particles. This study first summarizes a series of 
authors’ recent developments greatly speeding up the contact 
detection and interaction calculation in FDEM, which includes 
the GPGPU-parallelization, efficient contact activation 
approach, mass scaling, hyperplane separation theorem, as well 
as adaptive and semi-adaptive contact activation scheme. With 
them implemented, our GPGPU-parallelized HFDEM is about 
8,000 to 61,000 times faster than the sequential FDEM code, 
which paves the way for investigating the instability and collapse 
of geo-structures and resultant debris fragmentation and flow 
involving in a large number of irregular-shaped non-cohesive 
debris. The GPGPU-parallelized HFDEM is then implemented 
to investigate the collapse process of 3D irregular-shaped and 
non-cohesive soils heaps under gravity, which is compared with 
others’ 2D FDEM and SPH modelling. Good agreements are 
found among the modelled collapse process and maximum 
horizontal running distance if appropriate local damping 
coefficients are chosen. However, our modelled repose angle is 
much steeper than that from 2D modellings in literatures, which 
is probably caused by the effects of 3D irregular-shaped soil 
particles considered in this study. After that, the GPGPU-
parallelized HFDEM is applied to study the excavation-induced 
slope instability as well as the resultant complex debris 
fragmentation and flow process. It is finally concluded that the 
GPGPU-parallelized HFDEM provides a powerful numerical 
tool for investigating the instability and collapse of geo-
structures and resultant debris fragmentation and flow process 
involving in a large number of irregular-shaped non-cohesive 
debris.  
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