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A fully coupled absorbing boundary to simulate wave propagation through
saturated partially drained porous half space using the Scaled Boundary Finite
Element approach

Une frontiere absorbante entiérement couplée pour simuler la propagation des ondes a travers
un demi-espace poreux sature partiellement drainé a I'aide de I'approche par éléments finis de
limite a I'échelle

Mehran Hassanzadeh & Mehmet Baris Can Ulker
Institute of Disaster Management, Earthquake Engineering Program Istanbul Technical University, Turkey

ABSTRACT: Natural hazards associated with earthquakes occurring in saturated soils signify the analysis of wave propagation
through soil layers. Defining a reliable absorbing boundary to simulate radiation damping effects is one of the most challenging
issues to be addressed in problems of soil-structure interaction. Thus far, most of such studies are performed considering the
soil as a solid medium under either a fully drained or a fully undrained condition. A partially drained analysis, where soil is
modeled as a fully coupled porous medium with an absorbing boundary essentially providing a realistic pore water flow between
bounded and unbounded media is yet to be developed. In this study, a fully coupled absorbing boundary is developed to simulate
wave propagation through saturated porous half space by extending the original formulation of the Scaled Boundary Finite
Element Method (SBFEM). The coupled flow and deformation equations of poroelasticity are employed for the unbounded
solid media. First, a semi-analytical solution is developed for the response of unbounded domain governed by the coupled
equations. Then numerical solutions are obtained to validate the semi-analytical results, which are found to be in sufficiently
good agreement. The proposed method is capable of modeling the partial drainage condition along interaction boundaries
between near and far-field as well as of analyzing fully drained and undrained cases. Hence, it is quite useful for modeling soil
-structure interaction problems in earthquake engineering.

KEYWORDS: Absorbing boundary, partially drained half space, saturated porous media, scaled boundary finite element
method, wave propagation

RESUME : Les risques naturels associés aux séismes se produisant dans les sols saturés signifient I'analyse de la propagation
des ondes a travers les couches du sol. La définition d'une limite absorbante fiable afin de simuler les effets d'amortissement du
rayonnement est 1'un des problémes les plus difficiles a résoudre dans des problémes tels que l'interaction sol-structure. Jusqu'a
présent, la plupart de ces études sont réalisées en considérant le sol comme un milieu solide dans des conditions soit entiérement
drainées, soit enticrement non drainées. Une analyse partiellement drainée, ou le sol est modélisé comme un milieu poreux
entiérement couplé avec une limite absorbante fournissant essentiellement un écoulement d'eau interstitielle réaliste entre les
milieux limités et non liés, doit encore étre développée. Dans cette étude, une frontiére absorbante entiérement couplée est
développée pour simuler la propagation des ondes a travers un demi-espace poreux saturé en étendant la formulation originale
de la méthode des éléments finis a 'échelle (SBFEM). Les équations couplées d'écoulement et de déformation de poroélasticité
sont utilisées pour les milieux solides non bornés. Premiérement, une solution semi-analytique est développée pour la réponse
du domaine non borné régie par les équations couplées. Ensuite, des solutions numériques sont obtenues pour valider les résultats
semi-analytiques, qui s'averent en accord suffisant. La méthode proposée s'avére capable de modéliser le drainage partiel le long
des limites d'interaction entre les champs proches et lointains ainsi que d'analyser les conditions entierement drainées et non
drainées. Par conséquent, il est trés utile pour modéliser les probleémes d'interaction sol-structure en génie parasismique.

MOTS CLES: Limite absorbante, demi-espace partiellement drainé, milieux poreux saturés, méthode des éléments finis aux
limites échelonnées, propagation des ondes

and drainage conditions (Ulker and Rahman 2009,
Zienkiewicz et al. 1980) yielding three possible formulations

1 INTRODUCTION

Wave propagation in porous media has been studied by
many researchers in various problems including
poroelasticity and liquefaction, where a Newtonian pore
fluid interacts with a deformable solid such as soils. A
variety of numerical and analytical approaches are utilized
to investigate the behavior of these materials. The dynamic
solid-fluid coupling is first formulated by Biot (1962, 1955,
1941). Later, the formulations are idealized based on inertial
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for dynamic poroelasticity, i.e., fully dynamic (FD), partly
dynamic (PD), and quasi-static (QS), where inertial terms
associated with solid and fluid phases are considered in the
FD form but neglected partly in the PD formulation and
entirely in the QS solution (Ulker and Rahman 2009, Ulker
et al. 2009). A plethora of investigations in this field have
been performed using various numerical methods.
Conventional finite element method (FEM) is widely used to
solve poroelasticity problems, some of which are also
performed by the second author (Ulker et al. 2009; Ulker et



al. 2010; Ulker et al. 2012; Ulker 2012; Ulker 2014). Finite
difference method (FDM) is another powerful tool to
analyze engineering problems along with the control volume
method (CVM) to evaluate wave propagation phenomena in
a three dimensional (3-D) spherical half space (Zhang et al.
2014). Other numerical methods, meshless methods (Navas
et al. 2016), boundary element method (BEM) (Igumnov et
al. 2019), finite volume method (Nordbotten 2016) are also
utilized to study such problems. Given the wave propagation
analyses being performed in half space, satisfying the
radiation conditions are of great importance. Moreover, in
most studies, only the domain of the problem is considered,
while the boundaries are considered either fully drained or
fully undrianed signifying a rather unrealistic boundary
condition. In reality, essentially a partly drained boundary
condition exists. In order to satisfy the radiation condition,
several techniques are used as artificial absorbing boundary
(Xu et al. 2017), BEM (Schanz 2001), and the scaled
boundary finite element method (SBFEM) (Chen et al.
2015). Artificial absorbing boundaries are efficient methods
to replicate the semi-infinite media. The BEM requires a
fundamental solution, which must satisfy the governing
equations in the domain of the problem (Wolf 2003).
However, calculating the fundamental solution for different
problems can be a very time consuming procedure. Wolf and
Song (1996) present SBFEM for the first time for wave
propagation problems in unbounded domains. SBFEM is
capable of modeling radiation damping condition at the
infinite boundary. There are some advantages that SBFEM
possesses over the conventional FEM, FDM and BEM.
Unlike BEM, no fundamental solution is required and unlike
the FEM and FDM, only the boundaries of the problem are
discretized in SBFEM. Then the convergence is satisfied
through refining the mesh along the boundaries. Material
anisotropy can also be applied without additional
computational effort (Bazyar and Song 2008).

With these capabilities, the SBFEM is now generally
considered to be an extended analysis approach applied to
various problems in geo-enginering. While, SBFEM
formulations for fully drained unbounded media are
developed by several researchers, to the best of our
knowledge, it is not the case for saturated unbounded media
and such SBFEM formulation will be an original
contribution. As far as the frequency-domain approach,
which is the main objective of this research, dynamic
stiffness of dry unbounded media can be developed using a
fourth order Rung-Kutta method (Wolf and Song 1996),
through a Pade approximation (Bazyar and Song, 2010), or
by using the continued fractions method (Bazyar and Song
2008). In the case of two-phase infinite domains, however,
Biot’s coupled equations should be solved.

In this study, we consider a soil media, which is
horizontally extended towards infinity and vertically
restricted to bedrock, where the coupled flow-deformation
equations are solved for a 1-D case. Moreover, formulation
of the SBFEM for the coupled dynamic matrix of saturated
unbounded media is presented and the accuracy of the
proposed approach is evaluated by solving a number of
benchmark examples.

2 THE PROPOSED FORMULATION

As mentioned previously, it is possible to have various
idealizations (formulations) for the coupled flow and
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deformation problems depending on the motion of the pore
fluid and the solid skeleton as well as the permeability of the
porous medium. In this paper, the PD formulation is
considered, therefore the below system is written in terms of
its momentum and mass balance as,

LTDLu+ L™p —pii =0 (1)
T T. 1 .
Ly Dylpp + Ly 0 — ap =0 2)

where, L and D are the differential operator and
constitutive matrix for displacement, u and L, and D, are the
differential operator and constitutive matrix for pore water
pressure, p, respectively, and p is the mass density of solid
particles. In addition, the parameter Q is defined as,

Q=Ky/n ©)

where, Ky is the compressibility modulus of pore water
and 7 is the porosity of the soil. In this study, an example for
the considered soil media is shown in Fig. la. In order to
adopt the SBFEM formulation for such a problem, a scaling
center located at infinity is assumed. The scaled boundary
mesh used for discretizing the interface between near and the
far-field is illustrated in Fig. 1b.

(a) ] —
] —=

Far field — Near field Far field
P e

(b)

Near field
Far field

Figure 1. (a) The semi-infinite porous media and (b) Near and far
field interface

The geometry in the scaled boundary coordinate system
can be defined using Eq. 4 and 5.

x() =xp +§ 4)
y(@) = Nmyy (%)

Here, x» and y» are the coordinates on the boundary in the
Cartesian system, and ¢ and # are horizontal and vertical
coordinates of the scaled boundary. M(y) is the vector of
shape functions. The relationship between spatial derivatives
concerning Cartesian and scaled boundary coordinates can
be stated with the Jacobian matrix. Similar to the original
SBFEM formulation, the Jacobian can be calculated as,

x() e y(’?),;J

Jn) = Lc(f),n Y ©
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Using the definition of the Jacobian matrix, and
considering Eq. 8 and 9, differential operators can be defined
using Eq. 10 and 11.

b =1 (®)
1

by = — )
/1

0

Frie by == (10)

22 (11

dy an

For 1D wave propagation in the x-direction, and
substituting Eq. 10 and 11 in Eq. 1 and 2 and by considering
Ly=L, governing differential equations can be transferred to
scaled boundary coordinate system. Resulting equations are
defined below,

(blj—f)TD(blaa—f)u+(b1:—€)Tp—pil= 0o (12
T T
(bl(,f—f) Dp<b1:—€>p1+ (bl(j—f) i )

The responses of displacement and pore water pressure
can be approximated by interpolating nodal values using the
equations,

u=u(,n) = N,(mu()
p=pE&n = N,(mp()

(14)
(15)

To avoid numerical issues, the number of nodes selected
per element for determining displacements can be more than
those for pore water pressure, consequently, Ny#N.. By
substituting Eq. 14 and 15 into Eq. 12 and 13, respectively,
and simplifying, governing differential equations can be
stated as,

a\" a\"
(bla_f) D(Blu,§)+<1a—€) Npp (16)
+w?pN,u=0
a\T
(bl 6_5) Dp (Bplp,g) + l'WNuu,f
. (17)
- ainpp =0

In these equations, o is the angular frequency and B; and
By are defined as follows,

By = byiN, (1) (18)
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Bpl = ble(n) (19)
Using the Galerkin method the weak forms of Eq. 16 and
17 are obtained as,

Eee+ GOpg + w2MOu = 0 (20)

Hop,§§+ iW(GO)Tug - lWMlp =0 (21)

which are coupled scaled boundary equations for
displacement and pore pressure used in 1D wave
propagation problems. Coefficient matrices, which are used
in these equations can be determined as follows,

+1

E° = f BYTDB|]| dn 22)
-1
+1

6= [ NNl 23)
-1
+1

MO = -’- NTupNuljl dT] (24)
-1
+1 1

=[N, ENbldy 25)
-1
+1

H® =f B,""D,B, ]| dn (26)
-1

Dynamic stiffness for displacement and pore pressure can
be divided into four parts: pure displacement or dry soil, Suu,
pure pore pressure, Spp, soil-pore water interaction, Sup, and
pore water-soil interaction, Sp.. The coupled stiffness
relationship for a saturated unbounded media in terms of
pure displacement and pure pore pressure can be assumed as,

s k=R

which can be converted to below equations by matrix
multiplication as,

@7

Suutt = Ry (28)

Sypp = Ry (29)

Utilizing Eq. 28 and 29, and considering Eq. 30 and 31
for internal nodal forces and internal nodal flow (Wolf
2003), displacement-pore pressure relationships can be
converted into dynamic stiffness-degree of freedom (DOF)
relations as Eq. 32 and 33.

Ry, = —(E%ug) (30)
R, =—(Hpg) (31
Syt = —E%ug (32)
SppP = —Hopg (33)



Considering Eq. 32 and 33, dynamic stiffness of saturated
unbounded media for the coupling term can be easily
extracted by eliminating u and p from both sides of these
equations. Note that, G is the interaction coefficient
between displacement and pore pressure. The resulting terms
of dynamic stiffness for interaction between deformation and
flow are expressed as,

Spu _iW(EO)_ISuu(GO)T (34)

Sup = —(H®)™1G°S,,,

(35)

By substituting the derivative of Eq. 32 with respect to &
into Eq. 20 and eliminating the second term of Eq. 20, Eq.
36 can be determined,

—Syulte + w2Mu =0 (36)

Using Eq. 32 and substituting resulting equation for u ¢ in
Eq. 36, Eq. 37 is obtained,

S (B9 S u+w?Mou =0 37

Then by eliminating nodal displacement vector from all
terms and using the same change of variables procedure for
w proposed by Wolf (2003) for diffusion formulation of
SBFEM, the scaled boundary differential equation for pure
elasto-dynamics in frequency domain can be extracted as,

Suu(E9) 1S, + w2MO =0 (38)

The same procedure can be performed for the S, part and
a SBFE equation for pore water pressure in frequency
domain can be achieved as,

Spp(H®) 1S, — iwM! = 0 39)

This equation expresses the dynamic stiffness differential
equation of saturated unbounded media for the pp term. For
pure diffusion problems, Eq. 39 define the governing
equation of the problem.

Asymptotic expansion of the dynamic-stiffness matrix in
high frequency components for "uu" and "pp" terms of the
saturated unbounded media can be done using the same
procedure proposed by Wolf and Song (1996) for
elastodynamics and diffusion by setting E' and E? equal to
zero. Subsequently, the SBFEM equation in dynamic
stiffness (Eq. 38 and 39) is integrated for decreasing o using
the asymptotic expansion of the dynamic-stiffness matrix as
the starting value. This establishes the dynamic-stiffness
matrix over the entire frequency range. In this paper the Pade
approximation is used for integrating Eq. 38 and 39.

3 NUMERICAL VERIFICATION

An elastic semi-infinite media, as seen in Fig. 2, is used to
measure the efficiency of the proposed methodology. A
Ricker wavelet type horizontal dynamic load function is
applied to the domain of interest. The elasticity modulus of
the media is E=2x10° kN/m?, with constant Poisson's ratio
of v=0.3, and constant density of p=2x10° kg/m’ in this
example. In Fig. 2, Green nodes define the unbounded
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domain solved with SBFE method, and black and blue nodes
have pore pressure and displacement DOFs, respectively.
Dynamic load is applied at point A (Fig. 2) with the
frequency content of the load function plotted in Fig. 3. For
the purpose of verification, an extended mesh is created,
which discretizes a domain with a length of 3500m with a
depth of 30m. Extended mesh method (EMM) is one of the
common methods that is used to solve and verify wave
propagation problems (Bazyar 2007). In this method, a large
domain is modelled, which ensures that there is enough time
between the wave hitting the model boundary and its return
to the observation points. Then the obtained response can be
used to evaluate the accuracy of other methods. Fig. 4 shows
the extended mesh used to solve this problem. The FE-
SBFEM coupled model employs 25 nodes, while the
classical extended mesh approach contains 245 nodes.

Depth (m)

Width (m)

Figure 2. Considered semi-infinite media and the used FEM-
SBFEM mesh

60

0 10 20 30

f (Hz)
Figure 3. Applied dynamic load function in frequency domain

O OOOHOEOAK

308 o SOOD-C
0 1000 2000 3000

Figure 4. The semi-infinite media with an extended FE mesh
(numbers are in meters)



The SBFEM and the EMM are used to calculate the
displacement time history of point A and the excess pore
water pressure of point B. The responses are shown in Fig.
5.
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Figure 5. (a) Amplitude of horizontal displacement at point A (b)
Amplitude of excess pore water pressure at point B.

The applied methods converge to the same response, as
seen in Figure 5 indicating that the modified SBFEM can
effectively model this problem. The excess pore pressure
near the boundaries using both methods also demonstrate
similar response as shown in Fig. Sa. This is due to the fact
that propagating wave continues to travel horizontally
through the boundaries without disturbance. The pore
pressure and displacements are attenuated towards infinity.

4 CONCLUSION

In this paper, the poroelasticity formulation of the scaled
boundary finite element method is developed for the
problem of 1D wave propagation through porous media. A
semi-infinite saturated porous media is considered with a
physical bottom boundary as bedrock. Pore water flow
between bounded and unbounded media is enabled by using
SBFEM formulation, thus, a partially drained boundary
condition is provided. Moreover, by using this approach,
radiation damping condition at infinity is satisfied. Also with
this method, displacements and excess pore pressures vanish
at infinite domain. This is particularly important for soil-
structure interaction problems in earthquake engineering.
The proposed formulation is compared with the results of the
extended mesh method showing a good agreement, which
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provides confidence for further use of the proposed
absorbing boundary condition.
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