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A fully coupled absorbing boundary to simulate wave propagation through 
saturated partially drained porous half space using the Scaled Boundary Finite 
Element approach 

Une frontière absorbante entièrement couplée pour simuler la propagation des ondes à travers 

un demi-espace poreux saturé partiellement drainé à l'aide de l'approche par éléments finis de 

limite à l'échelle 

 

Mehran Hassanzadeh &  Mehmet Barış Can Ülker 
Institute of Disaster Management, Earthquake Engineering Program Istanbul Technical University, Turkey 

 

ABSTRACT: Natural hazards associated with earthquakes occurring in saturated soils signify the analysis of wave propagation 
through soil layers. Defining a reliable absorbing boundary to simulate radiation damping effects is one of the most challenging 
issues to be addressed in problems of soil-structure interaction. Thus far, most of such studies are performed considering the 
soil as a solid medium under either a fully drained or a fully undrained condition. A partially drained analysis, where soil is 
modeled as a fully coupled porous medium with an absorbing boundary essentially providing a realistic pore water flow between 
bounded and unbounded media is yet to be developed. In this study, a fully coupled absorbing boundary is developed to simulate 
wave propagation through saturated porous half space by extending the original formulation of the Scaled Boundary Finite 
Element Method (SBFEM). The coupled flow and deformation equations of poroelasticity are employed for the unbounded 
solid media. First, a semi-analytical solution is developed for the response of unbounded domain governed by the coupled 
equations. Then numerical solutions are obtained to validate the semi-analytical results, which are found to be in sufficiently 
good agreement. The proposed method is capable of modeling the partial drainage condition along interaction boundaries 
between near and far-field as well as of analyzing fully drained and undrained cases. Hence, it is quite useful for modeling soil

-structure interaction problems in earthquake engineering. 

KEYWORDS: Absorbing boundary, partially drained half space, saturated porous media, scaled boundary finite element 
method, wave propagation 

RÉSUMÉ : Les risques naturels associés aux séismes se produisant dans les sols saturés signifient l'analyse de la propagation 
des ondes à travers les couches du sol. La définition d'une limite absorbante fiable afin de simuler les effets d'amortissement du 
rayonnement est l'un des problèmes les plus difficiles à résoudre dans des problèmes tels que l'interaction sol-structure. Jusqu'à 
présent, la plupart de ces études sont réalisées en considérant le sol comme un milieu solide dans des conditions soit entièrement 
drainées, soit entièrement non drainées. Une analyse partiellement drainée, où le sol est modélisé comme un milieu poreux 
entièrement couplé avec une limite absorbante fournissant essentiellement un écoulement d'eau interstitielle réaliste entre les 
milieux limités et non liés, doit encore être développée. Dans cette étude, une frontière absorbante entièrement couplée est 
développée pour simuler la propagation des ondes à travers un demi-espace poreux saturé en étendant la formulation originale 
de la méthode des éléments finis à l'échelle (SBFEM). Les équations couplées d'écoulement et de déformation de poroélasticité 
sont utilisées pour les milieux solides non bornés. Premièrement, une solution semi-analytique est développée pour la réponse 
du domaine non borné régie par les équations couplées. Ensuite, des solutions numériques sont obtenues pour valider les résultats 
semi-analytiques, qui s'avèrent en accord suffisant. La méthode proposée s'avère capable de modéliser le drainage partiel le long 
des limites d'interaction entre les champs proches et lointains ainsi que d'analyser les conditions entièrement drainées et non 
drainées. Par conséquent, il est très utile pour modéliser les problèmes d'interaction sol-structure en génie parasismique. 

MOTS CLÉS: Limite absorbante, demi-espace partiellement drainé, milieux poreux saturés, méthode des éléments finis aux 
limites échelonnées, propagation des ondes 

1  INTRODUCTION 

Wave propagation in porous media has been studied by 
many researchers in various problems including 
poroelasticity and liquefaction, where a Newtonian pore 
fluid interacts with a deformable solid such as soils. A 
variety of numerical and analytical approaches are utilized 
to investigate the behavior of these materials. The dynamic 
solid-fluid coupling is first formulated by Biot (1962, 1955, 
1941). Later, the formulations are idealized based on inertial 

and drainage conditions (Ulker and Rahman 2009, 
Zienkiewicz et al. 1980) yielding three possible formulations 
for dynamic poroelasticity, i.e., fully dynamic (FD), partly 
dynamic (PD), and quasi-static (QS), where inertial terms 
associated with solid and fluid phases are considered in the 
FD form but neglected partly in the PD formulation and 
entirely in the QS solution (Ulker and Rahman 2009, Ulker 
et al. 2009). A plethora of investigations in this field have 
been performed using various numerical methods. 
Conventional finite element method (FEM) is widely used to 
solve poroelasticity problems, some of which are also 
performed by the second author (Ulker et al. 2009; Ulker et 


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al. 2010; Ulker et al. 2012; Ulker 2012; Ulker 2014). Finite 
difference method (FDM) is another powerful tool to 
analyze engineering problems along with the control volume 
method (CVM) to evaluate wave propagation phenomena in 
a three dimensional (3-D) spherical half space (Zhang et al. 
2014). Other numerical methods, meshless methods (Navas 
et al. 2016), boundary element method (BEM) (Igumnov et 
al. 2019), finite volume method (Nordbotten 2016) are also 
utilized to study such problems. Given the wave propagation 
analyses being performed in half space, satisfying the 
radiation conditions are of great importance. Moreover, in 
most studies, only the domain of the problem is considered, 
while the boundaries are considered either fully drained or 
fully undrianed signifying a rather unrealistic boundary 
condition. In reality, essentially a partly drained boundary 
condition exists. In order to satisfy the radiation condition, 
several techniques are used as artificial absorbing boundary 
(Xu et al. 2017), BEM (Schanz 2001), and the scaled 
boundary finite element method (SBFEM) (Chen et al. 
2015). Artificial absorbing boundaries are efficient methods 
to replicate the semi-infinite media. The BEM requires a 
fundamental solution, which must satisfy the governing 
equations in the domain of the problem (Wolf 2003). 
However, calculating the fundamental solution for different 
problems can be a very time consuming procedure. Wolf and 
Song (1996) present SBFEM for the first time for wave 
propagation problems in unbounded domains. SBFEM is 
capable of modeling radiation damping condition at the 
infinite boundary. There are some advantages that SBFEM 
possesses over the conventional FEM, FDM and BEM. 
Unlike BEM, no fundamental solution is required and unlike 
the FEM and FDM, only the boundaries of the problem are 
discretized in SBFEM. Then the convergence is satisfied 
through refining the mesh along the boundaries. Material 
anisotropy can also be applied without additional 
computational effort (Bazyar and Song 2008). 

With these capabilities, the SBFEM is now generally 
considered to be an extended analysis approach applied to 
various problems in geo-enginering. While, SBFEM 
formulations for fully drained unbounded media are 
developed by several researchers, to the best of our 
knowledge, it is not the case for saturated unbounded media 
and such SBFEM formulation will be an original 
contribution. As far as the frequency-domain approach, 
which is the main objective of this research, dynamic 
stiffness of dry unbounded media can be developed using a 
fourth order Rung-Kutta method )Wolf and Song 1996), 
through a Pade approximation (Bazyar and Song, 2010), or 
by using the continued fractions method (Bazyar and Song 
2008). In the case of two-phase infinite domains, however, 
Biot’s coupled equations should be solved. 

In this study, we consider a soil media, which is 
horizontally extended towards infinity and vertically 
restricted to bedrock, where the coupled flow-deformation 
equations are solved for a 1-D case. Moreover, formulation 
of the SBFEM for the coupled dynamic matrix of saturated 
unbounded media is presented and the accuracy of the 
proposed approach is evaluated by solving a number of 
benchmark examples. 

 

2  THE PROPOSED FORMULATION 

As mentioned previously, it is possible to have various 
idealizations (formulations) for the coupled flow and 

deformation problems depending on the motion of the pore 
fluid and the solid skeleton as well as the permeability of the 
porous medium. In this paper, the PD formulation is 
considered, therefore the below system is written in terms of 
its momentum and mass balance as, 

 𝐿𝐿𝑇𝑇𝐷𝐷𝐿𝐿𝑢𝑢 + 𝐿𝐿𝑇𝑇𝑝𝑝 − 𝜌𝜌𝑢̈𝑢 = 0 (1) 

 𝐿𝐿𝑝𝑝𝑇𝑇𝐷𝐷𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑇𝑇𝑢̇𝑢 −  1𝑄𝑄 𝑝̇𝑝 = 0 (2) 

 
where, L and D are the differential operator and 

constitutive matrix for displacement, u and Lp and Dp are the 
differential operator and constitutive matrix for pore water 
pressure, p, respectively, and ρ is the mass density of solid 
particles. In addition, the parameter Q is defined as, 

 
Q = K f /n (3) 

 
where, Kf is the compressibility modulus of pore water 

and n is the porosity of the soil. In this study, an example for 
the considered soil media is shown in Fig. 1a. In order to 
adopt the SBFEM formulation for such a problem, a scaling 
center located at infinity is assumed. The scaled boundary 
mesh used for discretizing the interface between near and the 
far-field is illustrated in Fig. 1b. 

 

 

 
Figure 1. (a) The semi-infinite porous media and (b) Near and far 
field interface 

The geometry in the scaled boundary coordinate system 
can be defined using Eq. 4 and 5. 

 𝑥𝑥(ξ) = 𝑥𝑥𝑏𝑏 + ξ (4) 
 𝑦𝑦(𝜂𝜂) = 𝑁𝑁(𝜂𝜂)𝑦𝑦𝑏𝑏 (5) 

 
Here, xb and yb are the coordinates on the boundary in the 
Cartesian system, and ξ and η are horizontal and vertical 
coordinates of the scaled boundary. N(η) is the vector of 
shape functions. The relationship between spatial derivatives 
concerning Cartesian and scaled boundary coordinates can 
be stated with the Jacobian matrix. Similar to the original 
SBFEM formulation, the Jacobian can be calculated as, 𝐽𝐽(𝜂𝜂) = ⌊𝑥𝑥(𝜉𝜉),𝜉𝜉 𝑦𝑦(𝜂𝜂),𝜉𝜉𝑥𝑥(𝜉𝜉),𝜂𝜂 𝑦𝑦(𝜂𝜂),𝜂𝜂⌋ (6) 
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𝐽𝐽(𝜂𝜂) = ⌊1 00 𝑦𝑦(𝜂𝜂),𝜂𝜂⌋ (7) 

 
Using the definition of the Jacobian matrix, and 

considering Eq. 8 and 9, differential operators can be defined 
using Eq. 10 and 11. 

 𝑏𝑏1 = 1 (8) 

 𝑏𝑏2 = 1|𝐽𝐽| (9) 

 𝜕𝜕𝜕𝜕𝑥𝑥 = 𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 (10) 

 𝜕𝜕𝜕𝜕𝑦𝑦 = 𝑏𝑏2 𝜕𝜕𝜕𝜕𝜂𝜂 (11) 

 
For 1D wave propagation in the x-direction, and 

substituting Eq. 10 and 11 in Eq. 1 and 2 and by considering 
Lp=L, governing differential equations can be transferred to 
scaled boundary coordinate system. Resulting equations are 
defined below, 

 (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝐷𝐷(𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑢𝑢 + (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇𝑝𝑝 − 𝜌𝜌𝑢̈𝑢 = 0 (12) 

 (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝐷𝐷𝑝𝑝 (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 ) 𝑝𝑝 + (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝑢̇𝑢− 1𝑄𝑄 𝑝̇𝑝 = 0 

(13) 

 
The responses of displacement and pore water pressure 

can be approximated by interpolating nodal values using the 
equations, 

 𝑢𝑢 = 𝑢𝑢(𝜉𝜉, 𝜂𝜂) = 𝑁𝑁𝑝𝑝(𝜂𝜂)𝑢𝑢(𝜉𝜉)   (14) 
 𝑝𝑝 = 𝑝𝑝(𝜉𝜉, 𝜂𝜂) = 𝑁𝑁𝑝𝑝(𝜂𝜂)𝑝𝑝(𝜉𝜉) (15) 

 
To avoid numerical issues, the number of nodes selected 

per element for determining displacements can be more than 
those for pore water pressure, consequently, Np≠Nu. By 
substituting Eq. 14 and 15 into Eq. 12 and 13, respectively, 
and simplifying, governing differential equations can be 
stated as, 

 (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝐷𝐷(𝐵𝐵1u,𝜉𝜉 ) + (1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝑁𝑁𝑃𝑃𝑝𝑝+ 𝑖𝑖2𝜌𝜌𝑁𝑁𝑝𝑝𝑢𝑢 = 0 

(16) 

 (𝑏𝑏1 𝜕𝜕𝜕𝜕𝜉𝜉 )𝑇𝑇 𝐷𝐷𝑝𝑝 (𝐵𝐵𝑝𝑝1p,𝜉𝜉 ) + 𝑖𝑖𝑖𝑖𝑁𝑁𝑝𝑝u,𝜉𝜉− 1𝑄𝑄 𝑖𝑖𝑖𝑖𝑁𝑁𝑝𝑝𝑝𝑝 = 0 

(17) 

 
In these equations,  is the angular frequency and B1 and 

Bp1 are defined as follows, 𝐵𝐵1 = 𝑏𝑏1𝑁𝑁𝑝𝑝(𝜂𝜂) (18) 

 

𝐵𝐵𝑝𝑝1 = 𝑏𝑏1𝑁𝑁𝑝𝑝(𝜂𝜂) (19) 

 
Using the Galerkin method the weak forms of Eq. 16 and 

17 are obtained as,  

 𝐸𝐸0u,𝜉𝜉𝜉𝜉+ 𝐺𝐺0𝑝𝑝,𝜉𝜉 + 𝑖𝑖2𝑀𝑀0𝑢𝑢 = 0 (20) 

 𝐻𝐻0p,𝜉𝜉𝜉𝜉+ 𝑖𝑖𝑖𝑖(𝐺𝐺0)𝑇𝑇𝑢𝑢,𝜉𝜉 − 𝑖𝑖𝑖𝑖𝑀𝑀1𝑝𝑝 = 0 (21) 

 
which are coupled scaled boundary equations for 

displacement and pore pressure used in 1D wave 
propagation problems. Coefficient matrices, which are used 
in these equations can be determined as follows, 

 𝐸𝐸0 = ∫ 𝐵𝐵1𝑇𝑇𝐷𝐷𝐵𝐵1|𝐽𝐽|+1
−1 𝑑𝑑𝜂𝜂 (22) 

 𝐺𝐺0 = ∫ 𝑁𝑁𝑇𝑇𝑝𝑝𝑁𝑁𝑝𝑝|𝐽𝐽|+1
−1 𝑑𝑑𝜂𝜂 (23) 

 𝑀𝑀0 = ∫ 𝑁𝑁𝑇𝑇𝑝𝑝𝜌𝜌𝑁𝑁𝑝𝑝|𝐽𝐽|+1
−1 𝑑𝑑𝜂𝜂 (24) 

 𝑀𝑀1 = ∫ 𝑁𝑁𝑇𝑇𝑝𝑝 1𝑄𝑄 𝑁𝑁𝑝𝑝|𝐽𝐽|+1
−1 𝑑𝑑𝜂𝜂 (25) 

 𝐻𝐻0 = ∫ 𝐵𝐵𝑝𝑝1𝑇𝑇𝐷𝐷𝑝𝑝𝐵𝐵𝑝𝑝1|𝐽𝐽|+1
−1 𝑑𝑑𝜂𝜂 (26) 

 
Dynamic stiffness for displacement and pore pressure can 

be divided into four parts: pure displacement or dry soil, Suu, 
pure pore pressure, Spp, soil-pore water interaction, Sup, and 
pore water-soil interaction, Spu. The coupled stiffness 
relationship for a saturated unbounded media in terms of 
pure displacement and pure pore pressure can be assumed as, 

 [𝑆𝑆𝑝𝑝𝑝𝑝 00 𝑆𝑆𝑝𝑝𝑝𝑝] {𝑢𝑢𝑝𝑝} = {𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝} (27) 

 
which can be converted to below equations by matrix 

multiplication as, 
  𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢 = 𝑅𝑅𝑝𝑝 (28) 

 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑝𝑝 (29) 

 
Utilizing Eq. 28 and 29, and considering Eq. 30 and 31 

for internal nodal forces and internal nodal flow (Wolf 
2003), displacement-pore pressure relationships can be 
converted into dynamic stiffness-degree of freedom (DOF) 
relations as Eq. 32 and 33. 
 𝑅𝑅𝑝𝑝 = −(𝐸𝐸0𝑢𝑢,𝜉𝜉) (30) 

 𝑅𝑅𝑝𝑝 = −(𝐻𝐻0𝑝𝑝,𝜉𝜉) (31) 

 𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢 = −𝐸𝐸0𝑢𝑢,𝜉𝜉  (32) 

 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 = −𝐻𝐻0𝑝𝑝,𝜉𝜉 (33) 

 

 

 

)

𝐿𝐿𝑇𝑇𝐷𝐷𝐿𝐿𝑢𝑢 + 𝐿𝐿𝑇𝑇𝑝𝑝 − 𝜌𝜌𝑢̈𝑢 = 0 (1) 

𝐿𝐿𝑝𝑝𝑇𝑇𝐷𝐷𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑇𝑇𝑢̇𝑢 −  1𝑄𝑄 𝑝̇𝑝 = 0
ρ

= (3) 

1

1

𝑥𝑥(ξ) = 𝑥𝑥𝑏𝑏 + ξ (4) 𝑦𝑦(𝜂𝜂) = 𝑁𝑁(𝜂𝜂)𝑦𝑦𝑏𝑏 (5) 

ξ η
η

𝐽𝐽(𝜂𝜂) = ⌊𝑥𝑥(𝜉𝜉),𝜉𝜉 𝑦𝑦(𝜂𝜂),𝜉𝜉𝑥𝑥(𝜉𝜉),𝜂𝜂 𝑦𝑦(𝜂𝜂),𝜂𝜂⌋
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Considering Eq. 32 and 33, dynamic stiffness of saturated 
unbounded media for the coupling term can be easily 
extracted by eliminating u and p from both sides of these 
equations. Note that, G0 is the interaction coefficient 
between displacement and pore pressure. The resulting terms 
of dynamic stiffness for interaction between deformation and 
flow are expressed as, 

 𝑆𝑆𝑝𝑝𝑝𝑝 = −𝑖𝑖𝑖𝑖(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝(𝐺𝐺0)𝑇𝑇 (34) 

 𝑆𝑆𝑝𝑝𝑝𝑝 = −(𝐻𝐻0)−1𝐺𝐺0𝑆𝑆𝑝𝑝𝑝𝑝 

 
(35) 

By substituting the derivative of Eq. 32 with respect to ξ 
into Eq. 20 and eliminating the second term of Eq. 20, Eq. 
36 can be determined,  

 −𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢,𝜉𝜉 + 𝑖𝑖2𝑀𝑀0𝑢𝑢 = 0 (36) 

 
Using Eq. 32 and substituting resulting equation for 𝑢𝑢,𝜉𝜉  in 

Eq. 36, Eq. 37 is obtained,  
  𝑆𝑆𝑝𝑝𝑝𝑝(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢 + 𝑖𝑖2𝑀𝑀0𝑢𝑢 = 0 (37) 

 

Then by eliminating nodal displacement vector from all 

terms and using the same change of variables procedure for 

w proposed by Wolf (2003) for diffusion formulation of 

SBFEM, the scaled boundary differential equation for pure 

elasto-dynamics in frequency domain can be extracted as, 

  𝑆𝑆𝑝𝑝𝑝𝑝(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝 + 𝑖𝑖2𝑀𝑀0 = 0 (38) 

The same procedure can be performed for the Spp part and 
a SBFE equation for pore water pressure in frequency 
domain can be achieved as,  

 𝑆𝑆𝑝𝑝𝑝𝑝(𝐻𝐻0)−1𝑆𝑆𝑝𝑝𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑀𝑀1 = 0 (39) 

 
This equation expresses the dynamic stiffness differential 
equation of saturated unbounded media for the pp term. For 
pure diffusion problems, Eq. 39 define the governing 
equation of the problem. 

Asymptotic expansion of the dynamic-stiffness matrix in 
high frequency components for "uu" and "pp" terms of the 
saturated unbounded media can be done using the same 
procedure proposed by Wolf and Song (1996) for 
elastodynamics and diffusion by setting E1 and E2 equal to 
zero. Subsequently, the SBFEM equation in dynamic 
stiffness (Eq. 38 and 39) is integrated for decreasing ω  using 
the asymptotic expansion of the dynamic-stiffness matrix as 
the starting value. This establishes the dynamic-stiffness 
matrix over the entire frequency range. In this paper the Pade 
approximation is used for integrating Eq. 38 and 39. 

3  NUMERICAL VERIFICATION 

An elastic semi-infinite media, as seen in Fig. 2, is used to 
measure the efficiency of the proposed methodology. A 
Ricker wavelet type horizontal dynamic load function is 
applied to the domain of interest. The elasticity modulus of 
the media is E=2×105 kN/m2, with constant Poisson's ratio 
of =0.3, and constant density of ρ=2×103 kg/m3 in this 
example. In Fig. 2, Green nodes define the unbounded 

domain solved with SBFE method, and black and blue nodes 
have pore pressure and displacement DOFs, respectively. 

Dynamic load is applied at point A (Fig. 2) with the 
frequency content of the load function plotted in Fig. 3. For 
the purpose of verification, an extended mesh is created, 
which discretizes a domain with a length of 3500m with a 
depth of 30m. Extended mesh method (EMM) is one of the 
common methods that is used to solve and verify wave 
propagation problems (Bazyar 2007). In this method, a large 
domain is modelled, which ensures that there is enough time 
between the wave hitting the model boundary and its return 
to the observation points. Then the obtained response can be 
used to evaluate the accuracy of other methods. Fig. 4 shows 
the extended mesh used to solve this problem. The FE-
SBFEM coupled model employs 25 nodes, while the 
classical extended mesh approach contains 245 nodes. 

 

 
Figure 2. Considered semi-infinite media and the used FEM-
SBFEM mesh 

 

 
Figure 3. Applied dynamic load function in frequency domain 

 

 
Figure 4. The semi-infinite media with an extended FE mesh 
(numbers are in meters) 
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The SBFEM and the EMM are used to calculate the 
displacement time history of point A and the excess pore 
water pressure of point B. The responses are shown in Fig. 
5. 

 

 

 
Figure 5. (a) Amplitude of horizontal displacement at point A (b) 
Amplitude of excess pore water pressure at point B. 

The applied methods converge to the same response, as 
seen in Figure 5 indicating that the modified SBFEM can 
effectively model this problem. The excess pore pressure 
near the boundaries using both methods also demonstrate 
similar response as shown in Fig. 5a. This is due to the fact 
that propagating wave continues to travel horizontally 
through the boundaries without disturbance. The pore 
pressure and displacements are attenuated towards infinity. 

4  CONCLUSION 

In this paper, the poroelasticity formulation of the scaled 
boundary finite element method is developed for the 
problem of 1D wave propagation through porous media. A 
semi-infinite saturated porous media is considered with a 
physical bottom boundary as bedrock. Pore water flow 
between bounded and unbounded media is enabled by using 
SBFEM formulation, thus, a partially drained boundary 
condition is provided. Moreover, by using this approach, 
radiation damping condition at infinity is satisfied. Also with 
this method, displacements and excess pore pressures vanish 
at infinite domain. This is particularly important for soil-
structure interaction problems in earthquake engineering. 
The proposed formulation is compared with the results of the 
extended mesh method showing a good agreement, which 

provides confidence for further use of the proposed 
absorbing boundary condition. 
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𝑆𝑆𝑝𝑝𝑝𝑝 = −𝑖𝑖𝑖𝑖(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝(𝐺𝐺0)𝑇𝑇
𝑆𝑆𝑝𝑝𝑝𝑝 = −(𝐻𝐻0)−1𝐺𝐺0𝑆𝑆𝑝𝑝𝑝𝑝

ξ 

−𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢,𝜉𝜉 + 𝑖𝑖2𝑀𝑀0𝑢𝑢 = 0 36) 𝑢𝑢,𝜉𝜉  
𝑆𝑆𝑝𝑝𝑝𝑝(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝𝑢𝑢 + 𝑖𝑖2𝑀𝑀0𝑢𝑢 = 0 37) 

𝑆𝑆𝑝𝑝𝑝𝑝(𝐸𝐸0)−1𝑆𝑆𝑝𝑝𝑝𝑝 + 𝑖𝑖2𝑀𝑀0 = 0 38) 

𝑆𝑆𝑝𝑝𝑝𝑝(𝐻𝐻0)−1𝑆𝑆𝑝𝑝𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑀𝑀1 = 0 39) 
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