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ABSTRACT: Numerical implementation of soil constitutive models is a challenging task, where a fundamental and critical step is 
the verification of the numerical code by observing the preformation by showing the yield surface on the π plane and other specified 
stress paths. Unfortunately, this remains as difficult work as most of the currently available programs did not directly provide this 
functionality. This paper provides a simple methodology to realize this based on the commercial package, ABAQUS. User Subroutine 
URDFIL is used to extract the element stress and strain information and Subroutine DLOAD is used to control the load (stress) 
according to the required stress path. The data exchange between the two User Subroutines is realized by two Utility Subroutines, 
POSFIL, and DBFILE. A ‘release spring’ is introduced to ensure that the complete data can be obtained during the analysis. This 
method has been tested by using Mohr-Coulomb model, Matsuoka-Nakai model, Lade-Duncan model, Drucker-Prager model, and 
an elasto-viscoplastic model based on super-subloading yield surface, respectively. The model preformation with constant mean 
effective stress, i.e. on the π plane is observed. The results show: 1) the failure curve on the π plane of the principal stress space can 
be correctly obtained by the proposed method, and the shape is consistent with the theoretical results of the above models; 2) the 
method has shown a stable convergence and high precision; 3) the method provides a practical way for verifying strain hardening, 
strain softening, elastoplastic, elasto-viscoplastic, and other complex models. 

RÉSUMÉ : La mise en œuvre numérique de modèles constitutifs du sol est une tâche difficile, où une étape fondamentale et critique est 
la vérification du code numérique en observant la préformation en montrant la surface de rendement sur le plan du module et d’autres 
trajectoires de contraintes spécifiées.  Malheureusement, cela reste aussi difficile que la plupart des programmes actuellement 
disponibles ne fournissent pas directement cette fonctionnalité.  Le présent document fournit une méthodologie simple pour réaliser cet 
objectif, basée sur le progiciel commercial ABAQUS.  Le sous-programme utilisateur URDFIL est utilisé pour extraire l’information 
sur les contraintes et les déformations des éléments et le sous-programme DLOAD est utilisé pour contrôler la charge (contrainte) en 
fonction du chemin de contrainte requis.  L’échange de données entre les deux sous-programmes utilisateurs est réalisé par deux sous-
programmes utilitaires, POSFIL et DBFILE.  Un «ressort de libération» est introduit pour garantir que les données complètes peuvent 
être obtenues au cours de l’analyse.  Cette méthode a été testée en utilisant respectivement le modèle de Mohr-Coulomb, le modèle de 
Matsuoka-Nakai, le modèle de Lade-Duncan, le modèle de Drucker-Prager et un modèle élasto-viscoplastique basé sur la supersous-
charge de surface de rendement.  On observe la préformation du modèle avec une contrainte effective moyenne constante, c’est-à-dire 
sur le plan droit.  Les résultats montrent:  2) la méthode a montré une convergence stable et une grande précision;  3) la méthode 
fournit un moyen pratique de vérifier l’écrouissage, l’adoucissement, l’élastoplastique, l’élasto-viscoplastique et d’autres modèles 
complexes. 

KEYWORDS: Numerical implementation; stress path; constant mean effective stress; π plane; strain softening. 

1  INTRODUCTION 

Soil constitutive models (such as Hashiguchi et al.,1998; 
Wheeler et al., 2003; Tasiopoulou et al., 2016) with different 
yield criteria are employed to characterize experimental 
observation. The shape of classical yield criteria such as Tresca, 
von Mises, Drucker-Prager, Mohr-Coulomb, Matsuoka-Nakai, 
and Lade–Duncan on the π plane (namely, the deviatoric section) 
has been well defined (Lagioia et al., 2016), especially with the 
envelope of yield locus on the π plane. Experimentally, true 
triaxial tests and triaxial constant mean principal stress tests can 
be carried out to observe and obtain the yield locus of soil 
constitutive model on the π plane by showing the shear behavior 
of soil samples along the loading paths of different Lodes angles, 
such as Nakai (1986). Unfortunately and surprisingly, carrying 
out this numerical constant mean effective stress triaxial test and 
thus verifying the yield surface on the π plane does not seem to 
be straightforward work in most of the currently available 
programs of finite element package. This paper provides a simple 
methodology to realize this by showing the yield surface on the 

π plane and other any specified stress paths, based on the 
commercial package, ABAQUS. 

This is demonstrated by showing a finite element model to 
simulate triaxial constant mean effective stress test, where User 
Subroutine URDFIL is used to extract the element stress and 
strain information and Subroutine DLOAD is used to control the 
load (stress) according to the required stress path. The yield locus 
of any soil constitutive model can thus be observed on the π 
plane. 

2  SIMULATION OF TRUE TRIAXIAL CONSTANT 
MEAN EFFECTIVE STRESS TEST 

2.1  Basic concept of the π plane 

The stress-strain relationship of soil can be described by the 
principal stresses σ1, σ2, and σ3 (σ1≥σ2≥σ3) in the principal stress 
space as shown in Figure 1.  
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(a) Spatial graphic           (b) Planar projection 

Figure 1. Schematic diagram of the deviatoric section (π-plane) in the 
principal stress space. 

The point P in this space represents a stress state, and the line
OP represents a stress path, where the π plane is defined as a 
special plane perpendicular to the trisectrix OS in the principal 
stress space. The angle between line QP and QR is defined as 
Lode’s angle θ, and it is agreed to be positive with counter-
clockwise rotation from line QP to QR. The modules of lines PQ 
and OQ, as well as Lode’s angle θ of the stress state point P, can 
also be given as follow: 

1 2 3 1

1
OQ ( ) 3

3
I  = + + =  (1) 

2 2 2

1 2 2 3 3 1

2

( ) ( ) ( ) 2
PQ 2 =
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3( ) 3
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 
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Where I1 is the first invariants of the effective stress tensor; J2 is 

the second invariant of the deviatoric stress tensor; q is the 

deviatoric stress; μσ is the Lode’s coefficient. 

2.2  Specified stress paths of constant mean effective stress 

To determine the yield locus of the soil sample on the π 
plane, a true triaxial constant mean effective stress test needs to 
be performed along a specified stress path as seen in Figure 2. 
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(a) Triaxial tension        (b) Triaxial compression 

Figure 2. Loading schematic diagram of true triaxial element test 
along the specified stress paths 

Firstly, the soil sample is isotopically consolidated to the mean 
effective stress σm, namely 

1 2 3 m= =   =  (4) 

Secondly, under the condition that the mean effective stress σm 

remains unchanged, the soil samples are subjected to triaxial 

tension or triaxial compression along the specified loading stress 

path. The increment sizes of the three principal stresses must 

meet the following equation 

1 2 3+ + 0     =  (5) 
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During the triaxial compression 
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Substitute Eq. (6) or (7) into Eq. (5), It can be found that B1+ 

B2=-1 on the conditions of both triaxial tension and triaxial 

compression. Once the values of B1 and B2 are determined, 

Lode’s angle θ can be calculated according to Eq. (3) combined 

with Eq (6) or (7), and the relationship among Lode's angle θ, 

B1, and B2 along the specified loading stress paths is given in 

Table 1.  

Table 1. Relationship among Lode's angle θ, B1 and B2 along the specified 
loading stress paths 

Lode's angle θ 
B1 B2 

Tension Compression 

30 -30 -0.5 -0.5 

25 -25 -0.575767405 -0.424232595 

20 -20 -0.652703645 -0.347296355 

15 -15 -0.732050808 -0.267949192 

10 -10 -0.815207469 -0.184792531 

5 -5 -0.903834278 -0.096165722 

0 0 -1 0 

Table 1 shows that the confining pressure increment Δσ2 and 
Δσ3 decreases as the axial stress increment Δσ1 increases during 
triaxial compression, but the confining pressure increment Δσ1 
and Δσ2 increases as the axial stress increment Δσ3 decreases 
during triaxial tension. When the deviatoric stress q of the soil 
sample reaches its yield strength in the triaxial compression (or 
tension), the axial stress increment Δσz=0. It’s challenging for the 
soil element to be further loaded and deformed after its deviatoric 
stress reaches its yield strength. 

2.3  Numerical implementation of the triaxial constant mean 
effective stress test 

To overcome the above problem, a so-called slow-release 
spring is employed to balance the axial stress increment after the 
deviatoric stress of the soil sample reaches its yield strength, as 
shown in Figure 3. The elastic coefficient of the slow-release 
spring is Es, and its length is h. The length of the soil sample is 
H. During the triaxial compression (or tension) with constant 
mean effective stress, the surface EFGH is fixed and the surface 
EFGH under loading stress Pz can be moved down (or up) along 
the z-axis, where this displacement is defined as uz, and its 
positive direction is the same as the positive direction of the 
coordinate axes z.  
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(a) Triaxial tension        (b) Triaxial compression 

Figure 3. Schematic diagram of numerical implementation of the triaxial 
constant mean effective stress test 

The soil sample’s strain εz1 and the slow-release spring’s strain 
εz2 are calculated, respectively, as follows: 

1 2 2 1, , -z z z z z zu H u h H h   = − = =  (8) 
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where the strain εz1 and εz2 are positive under compression and 
negative under tension. The stress σs of the slow-release spring is 
given as 

2s zE =  (9) 

The z-axial stress increment Δσz of the soil sample can be 
expressed as 

3

1

= for triaxial tension

= for triaxial compression

s z

z

s z

P

P

 


 
 −

 =  +
 (10) 

where the z-axial loading stress 0= ( )zP P f t . P0 is a given constant 
and ( )=f t t T is a linear function of run time t, ranging from 0 to 
1. T is the total time of an analysis step of the finite element 
model. When the analysis step is completed, t=T. 

Referring to Figure 3, a finite element model is proposed to 
simulate the triaxial constant mean effective stress test by 
ABAQUS, as shown in Figure 4, where a slow-release elastic 
body is instead of the previous slow-release spring to facilitate 
modeling and improve the convergence of the finite element 
model, and this elastic body is orthotropic with the modulus of 
elasticity along the z-direction being Es=1000kPa, and that one 
along the x and y direction both being 0.001kPa. The elastic body 
is a cube with its height h =1 being one standard unit, and the 
soil sample is a cuboid with its height H=2 being two standard 
units.  

 

     
(a) Triaxial tension        (b) Triaxial compression 

Figure 4. Finite element model of true triaxial constant mean effective 
stress test. 

The displacement and load boundary conditions of the finite 
element model can also be seen in Figure 4. The initial confining 
pressure of the soil sample adopts a constant pressure, i.e, 
σx=σy=σz=σm. The z-axial stress Pz is set as a linear increase in 
compressive stress from 0 to P0. The setting of confining pressure 
increment Δσx and Δσy is the key to simulate the triaxial constant 
mean effective stress test, where User Subroutine DLOAD is 
employed to control the confining pressure increment according 
to Eq. (6) or (7) in each increment of the analysis step. In the User 
Subroutine DLOAD, an external file (for example, the file is 
named ‘P3.dat’ ) needs to be specified to provide the strain ( 1)
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When n=1, (0)

1 =0z , (0) 0zu = ; (0) (0) (0)

m= = =x y z    . According to 
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The return values ( )n

x and ( )n

y  of User Subroutine 
DLOAD can be determined by Eq. (12), and these return values 
will be used in the finite element calculation of the nth increment. 
When the calculation of the nth increment is completed, User 
Subroutine URDFIL is used to extract the element stress and 
strain information in this increment, and then the strain ( )

1

n

z and 
stress ( )n

x , ( )n

y , and ( )n

z of the soil sample in the current 
increment will be written to the previous external file by two 
Utility Subroutines, POSFIL, and DBFILE. In the next 
increment, the updated strain ( )

1

n

z and ( )n

x , ( )n

y , and ( )n

z of the 

soil sample in the external file is used again by User Subroutine 
DLOAD, and so on. 

The finite element simulation based on ABAQUS adopts two 
analysis steps: (1) the GeoStatic analysis step is used to simulate 
the initial geo stress equilibrium and isostatic consolidation; (2) 
the General Static analysis step with 1000 fixed increments is 
used to simulate triaxial compression or triaxial tension with 
constant mean effective stress.  

3  DEMONSTRATION EXAMPLES 

3.1  Mohr-Coulomb model 

To verify the reliability of the above method in the simulation of 
true triaxial constant mean effective stress test of a soil sample, 
the Mohr-Coulomb model is adopted to observe its preformation 
by showing its yield surface on the π plane and other specified 
stress paths. Material parameters of the Mohr-Coulomb model 
are shown in Table 2, where E is elasticity modulus, ν is Poisson's 
ratio, φ is internal friction angle, and Ψ is dilatancy angle. During 
the simulation of true triaxial constant mean effective stress test, 
the initial confining pressure σm= 200kPa; the corresponding 
P0=800kPa for triaxial tension, and P0=300kPa for triaxial 
compression. 

Table 2. Material parameters of Mohr-Coulomb model 

Material 
parameters 

E 
(MPa) 

ν 
φ 

(°) 
Ψ 
(°) 

c 

(kPa) 

Soil sample 80 0.35 45 45 0 

Each set of B1 and B2 selected from Table 1 will ensure that 
the soil samples are loaded along the specified stress paths of 
thirteen kinds of Lode's angles, respectively, which are adopted 
in the finite element model of true triaxial constant mean 
effective stress test. So thirteen groups of stress-strain and 
volume variation curves of soil samples can be calculated 
according to the specified Lode's angle. However, only six 
groups of curves corresponding to six kinds of Lode's angles are 
plotted to make the figure clearer in Figure 5 (a) and (c).  

0.0

0.5

1.0

1.5

2.0

10.0

7.5

5.0

2.5

0.5 1.0 1.5 2.0
triaxial tension

triaxial compression

Lode's angle

 =0°  =-15°  =-30°

 =0°  =15°   =30°

q
/

m

=45，=45

 

 v
 /

%

/ %z

m =200kPa

  
(a) stress ratio & volumetric strain 

0.5

1.0

1.5

2.0

2.
5

0.5

1.0

1.5

2.0

2.5

2.5

2.0

1 .5

1 .0

0 .5


m
=200kPa

y

x

z

 x
/ m

 

 
y /

m

 
z/

m

P
30

-30 S
R

Q
o

C
B

 Theoretical result

 Calculated result

A

 
(b) π-plane 

Soil sample 
Slow-release 
elastic body Soil sample 

Slow-release 
elastic body 

Pz Pz 

the deviatoric section (π

OP the π plane is 

θ

θ

  = + + =

     − + − + −
= =

   
 
− −

= =
−

μσ

soil sample on the π

σ Δσσ Δσ

σ Δσ

σ Δσ

σ Δσ

σ Δσ

σ Δσσ Δσ

σ Δσ

σ Δσ

σ Δσ

σ Δσ

σ
   =

σ

     =

 
 

  
  

 
 

  
  

 
 

  
  

 
 

  
  

θ
θ

θ

θ

Δσ
Δσ Δσ

Δσ
Δσ Δσ

Δσ

   

 

 

 

 

P

   

 

 
 

 

P

ε
ε

H h   = − = =







A

B

C

R

1015



 

 

1.0 1.2 1.4 1.6 1.8 2.0
-1.0

-0.5

0.5

1.0

 E
rr

o
r 

v
a
lu

e
 /

k
P

a


m
=200kPa

Time of the second analysis step /t

   Mohr-Coulomb Model  

          =45°   =45°

 = -30°   = 30°

 = -15°   = 15°

 = -5°     = 5°
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Figure 5. Verification of true triaxial mean effective stress numerical 
simulation by using the Mohr-Coulomb model. 

Figure 5 (a) shows that the complete stress ratio q/σm-axial 
strain εz curves and the volumetric strain εv-εz curves of soil 
samples can all be obtained from true triaxial mean effective 
stress numerical simulation even after the deviatoric stress q of 
the soil samples reach their yield strength. According to the 
specified Lode's angle, the stress point P(σx, σy, σz) of the soil 
sample, which is at the state of its deviatoric stress q reaching to 
the yield strength, can be employed to obtain the yield surface on 
π plane as shown in Figure 5 (b). In this figure, Points P, R, and 
A represent the three yield state stress points of the Mohr-
Coulomb model on π plane with Lode's angle θ=30˚, 0˚, and -30˚, 
respectively. There are eleven other similar calculated data 
points between Points P and A, which are all obtained from the 
simulation of true triaxial mean effective stress test of a soil 
sample loaded along the specified stress paths of different Lode's 
angles. Since these yield state stress points on the π plane are 
axisymmetrically distributed along with six 60-degree phase 
angles, the spatial positions of 72 yield state stress points can also 
be determined to plot the complete yield surface of the Mohr-
Coulomb model. It can be found that the yield surface obtained 
by the FEM calculation is in perfect agreement with the 
theoretical result of the Mohr-Coulomb model. During the 
simulation of the true triaxial constant mean effective stress test, 
the error value between the mean effective stress and the 
specified value of 200kPa in each increment is shown in Figure 
5 (c). It shows that the error stress is controlled within 1kPa, and 
the proposed calculation method is stable and reliable. 

3.2  Other classical yield criteria model 

To verify the applicability of the proposed method to other 
classical yield criterion models, the Matsuoka-Nakai model, 
Lade-Duncan model, and Drucker-Prager model are adopted in 
the finite element model of true triaxial constant mean effective 
stress test, respectively. The yield criteria function of these three 
classical models are given as follow: 
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Figure 6. Yield surface of classical yield criteria model on π plane by true 
triaxial mean effective stress numerical simulation 

Where I2 and I3 are the second and third invariants of the 
effective stress tensor, respectively. When the material 
parameters of these three classical models are the same as the 
Mohr-Coulomb model, their yield surface on the π plane can also 
be obtained by the proposed calculation method in Figure 6. It 
shows that these yield surfaces obtained by the FEM calculation 
are also in perfect agreement with the theoretical curves 
according to Eq. (13). 

3.3  Strain-softening model 

To verify the applicability of the proposed method to the strain-
softening model, an elasto-viscoplastic model (Wang et al., 
2016) based on super-subloading yield surface is also adopted in 
the simulation of true triaxial constant mean effective stress test. 
Material parameters of this model are shown in Table 3, where ν 
is also Poisson's ratio; e0 is the initial void ratio; M is the critical 
state stress ratio =6sin (3 sin ) − ; λ and κ are compression index 
and swelling index; c0 and m are the coefficients of correlation 
with the viscosity; α, β, ξ, and ω are the coefficients of structural 
properties and overconsolidation of soil. The result of the 
numerical simulation is given in Figure 7. It shows that the yield 
surface of the strain-softening model from peak strength to 
residual strength can all be correctly calculated to obtain their 
yield locus on the π plane. 
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Figure 7. Verification of true triaxial mean effective stress numerical 
simulation by Strain softening model. 

Table 3. Material parameters of an elasto-viscoplastic model based on 
super-subloading yield surface 

ν e0 M λ κ c0 m α β ξ ω 

0.3 0.72 1.85 0.05 0.0041 1.96×109 28.8 0.5 5.0 1.0 1.8 

4  CONCLUSIONS 

Based on ABAQUS, a simple method is proposed to realize the 
FEM simulation of a true triaxial constant mean effective stress 
test by two User Subroutine  DLOAD, and URDFILas well as 
two Utility Subroutines, POSFIL, and DBFILE. 

This new method has been tested to observe the performance 
of five kinds of soil models on the π plane, which yield surfaces 
obtained by the FEM calculation are in perfect agreement with 
the theoretical results. 
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The new method has shown a stable convergence and high 
precision and provides a practical way for strain hardening, strain 
softening, elastoplastic, elasto-viscoplastic, and other complex 
models. 
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