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ABSTRACT: Soil being a particulate material, its mechanical behaviour depends on the size and shape of its particles, and how they 
are arranged, i.e. on its fabric. In the last decades, several studies tried to find a link between the soil microstructure and its behaviour 
at the macroscopic scale. In the case of fine-grained materials, the soil fabric was often investigated by means of Scanning Electron 
Microscopy (SEM) micrographs. However, due to the lack of automatized digital tools, most of these studies present only a 
qualitative interpretation of the particles orientation. The absence of quantifiable parameters hinders the development of an objective 
constitutive model connecting the micro- and macroscopic behaviour of soil. In this study, the latest developments in computer vision 
are employed to validate a code quantifying the orientation patterns of the clay particles, together with the main characteristics of 
their porosity. The aim of this work is to perform a sensitivity study on a custom-made numerical code, showing the effect of the 
parameters choice on the final results and suggesting effective strategies for their choice. 

 
RÉSUMÉ : Le sol étant un matériau particulaire, son comportement mécanique dépend de la taille et de la forme de ses particules, 
ainsi que de la façon dont elles sont disposées, c'est-à-dire de son tissu. Au cours des dernières décennies, plusieurs études ont tenté 
de trouver un lien entre la microstructure du sol et son comportement à l'échelle macroscopique. Dans le cas de matériaux à grains 
fins, le tissu du sol a souvent été étudié au moyen de micrographies par microscopie électronique à balayage (MEB). Cependant, en 
raison du manque d'outils numériques automatisés, la plupart de ces études ne présentent qu'une interprétation qualitative de 
l'orientation des particules. L'absence de paramètres quantifiables entrave le développement d'un modèle constitutif objectif reliant 
le comportement micro- et macroscopique du sol. Dans cette étude, les derniers développements en matière de vision par ordinateur 
sont utilisés pour valider un code quantifiant les modèles d'orientation des particules d'argile, ainsi que les principales caractéristiques 
de leur porosité. L'objectif de ce travail est de réaliser une étude de sensibilité sur un code numérique sur mesure, en montrant l'effet 
du choix des paramètres sur les résultats finaux et en suggérant des stratégies efficaces pour leur choix. 
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1  INTRODUCTION  

It has been early recognised that microstructure developed in 
clays because of geological history and physico-chemical 
interactions greatly influences the observed mechanical 
behaviour. On the other hand, Skempton (1969) found that 
regardless of the soil mineralogical content, on a void ratio to 
effective stress plot, all the curves tend to converge to a unique 
pattern, by analysing the effect of the sedimentation process on 
one dimensional behaviour. The research efforts addressing these 
issues intensified since the seventies, with several studies 
associating the compressibility and shear strength behaviour with 
the microstructure characteristics. In one of the pioneering 
studies on this field, Burland (1990) introduced the notion of 
intrinsic properties for the mechanical behaviour of reconstituted 
soils, as a reference state to identify effects of structure in 
sedimented natural clays. Later on, it was shown that the degree 
of de structure may depend on the applied reconstitution method 
(Fearon and Coop, 2000), while in the same study Scanning 
Electron Microscope (SEM) images illustrated clearly the effect 
of the remoulding process on the soil microstructure. 

SEM micrographs are commonly used in geotechnical studies 
for the investigation of the soil microstructure. Cotecchia and 
Chandler (1997) investigated the effect of the microstructure on 
the pre-failure behaviour of natural clays, by quantifying the clay 
particles orientation at different stress levels using SEM. The 
analysis was performed by manually drawing the lines that the 
authors considered relevant for the problem analysis and, 
afterwards, calculating their main direction. Great effort was 
placed in quantitatively correlating the effect of the clay 
microstructure to its mechanical behaviour, however the absence 
of an automatic and systematic set of parameters selecting the 

lines, introduces a degree of subjectivity that influences the final 
results. A significant step forward in the quantification process 
of clay microstructure was achieved by Martinez-Nistal et al. 
(1999), who introduced a computer vision based code, able to 
automatically analyse the clay particles orientation. 
Nevertheless, using this tool it is not possible to compare 
different images, ranking them from the more to the less ordered, 
as there had not yet defined relevant parameters that would allow 
for such operations. Finally, Hattab et al. (2010) performed a 
series of studies aiming to quantify kaolinite SEM micrographs 
particles orientations using the software ImageJ. For their 
analysis, they produce a segmented image of the micrograph and 
extrapolate the particles inclination compared to the horizontal 
axis, to build a 360° orientation diagram. However, the edge 
recognition and the segment identification is not customizable, 
and therefore, the user does not have a sufficient degree of 
control over the image analysis.  

A custom-made numerical code, able to analyse the clay 
particles orientation and porosity has been developed, 
extensively described and validated by Di Remigio et al. (2021). 
The code allows the user to customize a wide set of parameters, 
which correct definition is at the base of a high quality set of 
results. For this work, a sensitivity study is performed, 
investigating the effect of the settings variation on the final 
results. 

2  METHODOLOGY 

Hereafter, the structure and main functions of the image analysis 
custom-made code MiCA, are introduced briefly. All details 
regarding the code can be found in Di Remigio et al. (2021). The 
code flowchart and the image settings are presented in Figure 1 
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in the blue and yellow column respectively. Once all the 
parameters and the image dataset are defined, each image is 
singularly filtered and analysed, first characterizing its 
orientation and then its porosity. To illustrate the different steps 
within the code a smectitic clay micrograph is selected (Figure 
2). During the Image Filtering step, the original image (Figure 
2.a) is turned into black and white (Figure 2.b), its colour and 
contrast are balanced, and then it is smoothened, aiming to 
reduce the background noise, by means of a Gauss Filter (GF), 
having customizable size and strength (Figure 2.c). Then, the 
smoothened image is convoluted with a vertical and a horizontal 
Sobel filter and processed to find the pixel, normalized gradient 
as per Sobel (1968). Afterwards, a Threshold for Edge 
Recognition (TEd) is applied, so that the pixels having a gradient 
greater than the upper bound of TEd are considered as Edges, 
while those which values are below the lower bound of TEd are 
discarded from the edge recognition process (Figure 2.d). The 
total amount of pixels detected as edges as per Figure 2.d are 
counted and divided over the total amount of pixels in the image, 
to be multiplied time 100, in order to obtain the Ed% parameter.  
 

Figure 1. MiCA code flow chart. The yellow column shows the inputs, 
while the blue column shows the different phases of the image analysis. 

This value provides information on the amount of detected edges 
and it can be used to evaluate the sample density and aggregation 
level. Then, the Pixel Analysis is performed. For this purpose, 
the orientation of each pixel recognized as belonging to the 
particles edges is defined (Sobel, 1968) to create the Orientation 
Map (OM, Figure 2.e), collected and its distribution plotted in a 
histogram, which angle interval is user defined (). Based on 
these data, a first set of Full Width at Half Height (FWHM_%) 
values, based on the scatter among the distribution of the 
particles percentage distribution, is calculated. Specifically, 
FWHM_% is calculated as: 
 

FHWM_%=2*(2*log10(2))*                                           () 

Figure 2. Image Analysis steps. The original image (a) is turned into a 
black and white image (b) and then smoothened using a Gauss Filter (c). 
Then, the image edges are recognized (d), the image pixels (e) and 
segments (g). Orientation Maps are built, together with their histogram 
of pixels orientation (f). Finally, the porosity of the image is studied (h) 
and (i).  

where σ is the standard deviation of the histogram distribution 
(Figure 2.f). This is then fitted with a customizable number of 
Gauss curves (Gmax), until the goal R2 value, defined by the user, 
is reached (Figure 2.f). The curves characteristics are then 
analysed and FWHM of each of them stored as output as 
FWHM_. In order to avoid overfitting, it is possible to apply a 
Moving Average (MA) to the histogram, in order to smooth the 
local peaks. At this stage, the number of preferential orientations 
is found, based on the number of independent Gauss curves 
fitted. However, due to the presence of background curves, the 
number of Gauss curves fitted is generally greater than the actual 
number of particles orientations observed. To avoid data 
misinterpretations, the curves having a shared area greater than 
the percentage input (Over%), are excluded from the number of 
main orientations. Based on these parameters, the Number of 
Main Orientations (Nmo) is defined. By combining FWHM_% 
and Nmo, it is possible to characterize the degree of orientation of 
different images, ranking them from the more to the less oriented. 
Specifically, samples with low Nmo values show a higher 
orientation degree, while samples with low FWHM_% values for 
the same Nmo are obtained for figures for which all the angles 
have a similar amount of pixels orientated in that direction, so 
that the image shows a low degree of orientation.The Segment 
Analysis (Figure 2.g) follows the same steps of the Pixel 
Analysis, but instead of characterizing the orientation of all the 
pixels, only those with lengths in the interval between the 
Maximum and the Minimum Segment Length (SLmax and SLmin) 
are selected and analysed. Contrarily to the Pixel Analysis, the 
Segment Analysis allows the user to exclude cracks and non-clay 
elements from the image analysis, together with any short 
elements that were not removed during the Image Filtering 
phase, responsible for background noise in the histogram 
analysis (Figure 2.f). The Segment Analysis provides the same 
outputs as the Pixel Analysis, but based on the pixels laying in 
the length interval of interest, together with the number of the 
detected segments and their average length. 
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Finally, the Porosity of the sample is analysed. First, the black 

and white image colour and contrast is equalized and a weak 

Gauss Filter is applied. Then, the image is further filtered with a 

H-minima transform, in order to find the pores as regional 

minima, excluding all those which depth is less than the Colour 

Threshold (TPo), and generating a pores map (Figure 2.h). 

Afterwards, the dark elements are detected, and their shape and 

extension characterized. As for the Segment Analysis, it is 

possible to create different pores sizes distributions according to 

their perimeter length, or to exclude the elements whose number 

of pixels fall below the Minimum Pore Perimeter length (PPmin) 

parameter. Moreover, the pores are divided in two populations, 

according to whether their perimeter length is larger or smaller 

than the Maximum Pore Perimeter length (PPmax) parameter. 

Therefore, three different sets of output are generated: that 

referring to all the pores, that with the small porosity and that 

with the large one. For each of these families, the following 

information are gathered: void ratio, total and mean pores area 

and perimeter, together with the main equivalent diameter and 

the number of detected pores.  

3  SENSITIVITY STUDY 

A sensitivity study showing the effect of different customizable 

parameters on the final results, is hereby performed. In particular, 

the effect of GF, TEd,  R2, MA, Over%, SLmin, TPo, PPmax and 

PPmin are investigated. The analysis is performed on two 

micrographs, one obtained from an iso-oriented smectitic clay 

sample (Figure 3.a), and one from a honeycomb-like kaolinite 

structure (Figure 3.b). Both the micrographs were obtained at a 

magnification of 7000x, with a voltage of 15 and a working 

distance of 7-8 mm. 

 

Figure 3. Micrographs of a smectitic iso-oriented (a) and a honeycomb-

like kaolinitic (b) structure. 

3.1  Gauss Filter (GF) 

The Gauss Filter is used to decrease the background noise of the 
image and smoothen it, therefore, if the value applied is too 
strong, too much information is averaged and lost, while with a 
weak GF, non relevant elements would be detected as belonging 
to the particles edges. GF has two main parameters that can be 
controlled, namely its size and strength. As a rule of thumb, the 
size of the square GF, should be equal to the greatest odd number 
obtained by multiplying the filter strength by 6. 

Figure 4 shows the effect of GF on the edge detection, when 
TEd is kept constantly equal to [0.1-0.11]. Specifically, a 49x49 
with strength equal to 8 GF was applied to Figures 4.a and b, 
while a 19x19 with strength equal to 3, to Figures 4.c and d. The 
analysis was performed on the upper left 500x1000 pixels of 
Figure 3. The application of a strong GF to Figures 4.a and b 
resulted in a loss of information and to a consequent 
misinterpretation of the data. The lines are rounded and isolated, 
as a consequence of the image averaging performed by the filter 
and this results in a scattered distribution of the pixels orientation 
as shown in the histograms below the images. On the contrary, 

Figure 4.c and d show a large amount of lines, describing the 
image in more detail, and allowing the code to better capture the 
pixel orientation distribution. When using the code for image 
analysis, it is therefore, recommended to start applying a weak 
filter, increasing its strength gradually until only the relevant 
pixels are visible. 

Figure 4 – The effect of GF on the edge detection. 49x49 GF applied to 

(a) Figure 3a and (b) Figure 3b, 19x19 GF applied to (c) Figure 3a and 

(d) Figure 3b. The corresponding histograms of pixels orientation is also 
shown. 

3.2  Thresholds for Edges Recognition (TEd) 

The Thresholds for Edges Recognition (TEd) is an interval 

composed of an upper (UpTEd) and a lower (LowTEd) value, 

and it is used to detect the pixels belonging to the clay particle 

edges. The UpTEd and LowTEd values range between 1 and 0, 

specifically, when the UpTEd is equal to 1, pixels are not 

detected as belonging to the edges, while when it is equal to 0, 

all of them do. 

 
Figure 5 – The effect of TEd on the edge detection on Figures 3a and b, 
with TEd [0.1-0.5] in (a) and (b), [0.1-0.25] in (c) and (d)and  [0.2-0.25] 
in (e) and (f).  
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Figure 5 shows the effect of TEd on the edges detection when 
the GF size is kept constantly equal to 19x19 on the micrographs 
of Figure 3.Three threshold intervals were used, [0.1-0.5] 
(Figures 5.a-b), [0.1-0.25] (Figures 5.c-d) and [0.2-0.25] (Figures 
5.e-f). Again the analysis was performed on the upper left 
500x1000 pixels. Figures 5.a-b show a low amount of lines, 
insufficient to describe adequately the clay pattern, due to the 
high UpTEd. This value is decreased to 0.25 for Figures 5.c-d, 
obtaining a better edge characterization of the analysed 
micrographs. Finally, in Figures 5.e-f LowEd was increased from 
0.1 to 0.2, resulting in a significant loss of information, but still 
allowing for a meaningful analysis. As for GF, also TEd 
influences the edges definition. However, GF averages the 
surrounding areas, and therefore not only it decreases the amount 
of detected lines, but it also deforms them, something that does 
not happen in Figure 5. When modifying TEd, the amount of 
pixels selected changes but not their position. Therefore, if the 
user aims to reduce the background noise, the use of a higher 
LowTEd should be preferred to the application of a strong GF. 

3.3  The Iterative Gauss Fitting Parameters 

In order to find the number of main orientations in a micrograph, 
it is necessary to find the number of peaks contained in its 
histogram distribution. However, it is not sufficient to find the 
number of maximum values within the distribution, due to the 
high number of scattered, single points. Therefore, an iterative 
Gauss curves fitting is performed. The code allows the user to 
costumize different parameters, namely the histogram interval , 
Gmax, R2, MA, Over%, which effect on the final orientation 
pattern is hereby discussed except for the effects of Gmax that are 
self explanatory. 

3.3.1   Theta 

When generating the histogram describing the pixels orientation 
distribution (Figure 2.f), the user must set the angle interval (). 
This parameter strongly influences the Gauss curves fitting 
process, as shown in Figure 6. A  of 0.5, 2 and 10 was used, 
respectively, on Figure 3.a for Figures 6.a-c and on Figure 3.b for 
Figures 6.d-f. The analysis was performed with a GF mask of 
19x19, and TEd of [0.1-0.25]. 

Figure 6 – The effect of  on the edge detection. A  of 0.5, 2 and 10 was 

used, respectively, on Figure 3.a for a-c and on Figure 3.b for d-f. 

 

Figure 6 indicates that small  values (Figures 6.a and d) show 
a poor data fitting together with a small y variation, leading to a 
reduced set of FWHM_% values. For the purpose of image 
comparison, it is important to have a good sensitivity of this 
parameter, therefore, a greater scatter on the y axis is 
recommended. However, using large  values (Figures 6.c and f) 
leads to a reduced amount of points that lowers the quality of the 
FWHM_% value. Figures 6.b and e, which show the distributions 
obtained for =2, offer both y scatter greater than the unit and a 
large amount of data points (90). It is therefore recommended to 

start from a low  and increase it until at least a unit value is 
obtained for FWHM_%.   

3.3.2   R2 

The coefficient of determination R2 defines how well the data are 
fitted to a regression line; the closer this value is to 1, the better 
is the fitting. The custom-made image analysis code is structured 
so that, starting from one Gauss curve, more are added to the 
pattern in order to reach the goal R2 value. Figures 7.a-c were 
obtained applying, respectively, a R2 value of 0.95, 0.97 and 
0.99; while Figures 7.d-f were obtained with R2 values of 0.5, 
0.97 and 0.99. The graphs obtained analysing Figure 3.b having 
R2 values between 0.5 and 0.97 are not reported here, as no 
significant variation compared to Figure 7.e were observed. The 
analysis is performed with a GF mask of 19x19, Ted=[0.1-0.25], 
Gmax=8 and =2. By looking at Figures 7.a-c it is evident that 
using higher R2 values does not necessarily lead to better quality 
fitting. The presence of the two local minimum and maximum at 
about 0 degrees forces the code to fit a higher number of curves, 
in order to reach R2=0.97 and 0.99. However, the fitting showed 
in Figure 7.a is already more than sufficient to describe the iso 
orientation of the sample. For Figure 3.b, R2=0.5 is sufficient to 
give a satisfactory fitting of the curves, while an overfitting 
similar to that observed for Figure 7.c was found for R2 values 
greater than 0.98. Also in this case a maximum value of 0.95 is 
recommended. 
 

Figure 7 - R2 value of 0.95, 0.97 and 0.99 applied on Figure 3.a is shown 
in (a)-(c), respectively; while R2 values of 0.5, 0.97 and 0.99 applied on 
Figure 3.b is shown in (d)-(f), respectively. 

3.3.3   Moving Average 

The third iterative Gauss Parameter is MA. As the presence of 
local maxima can affect the quality of the final fitting, it is 
possible to apply a smoothening parameter by performing a 
Moving Average on the histogram distribution, before fitting it 
with the Gauss curves. If averaging is not necessary, a unit MA 
value can be inserted. Figures 8 a-f were obtained by applying 
MA=1, 2 and 3, respectively, to Figures 3.a and b. The analysis 
was performed with a GF mask of 19x19, Ted=[0.1-0.25], 
Gmax=8, =2 and R2=0.99. As expected, increasing MA shows 
results similar to that obtained by lowering R2 or . However, it 
should be considered that one of the code main outcomes is 
FWHM_% and that reducing the number of points used for its 
defintion, the sensitivity of this parameter drops consequently. 
Therefore, using MA>1 or R2<0.97 instead of a greater  value, 
allows for a higher precision in the data fitting, without losing 
the information necessary for a good diversification of 
FWHM_%. 
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Figure 8 – Effect of moving average. MA=1, 2 and 3 were applied to 
Figures 3.a and b, and shown in (a) – (f) respectively.   

3.3.4  Gauss Curves Overlap 

Finally, Over% is discussed, based on the results of Figure 7. By 
setting Over%=40%, the plots of Figures 7.a and b show the 
presence of a unique main orientation detected, while 2 are found 
for Figure 7.c. Moreover, for Figures 7.d-f Nmo=2, 2 and 3, 
respectively, was obtained. It may be noted that even though 3 
Gauss curves were fitted, the detected curve peaking at values 
smaller than -90°, is the same culminating at about 70°, so that 
the two curves represent the same main orientation, and thus only 
one of them should be considered for the Nmo counting. On the 
contrary, the presence of two curves peaking at about 0° in Figure 
7.f causes the detection of 3 different orientations. If a greater 
value of Over% was used, only one of the two directions would 
be detected. 

3.4  Minimum and Maximum Segment Length 

The effect of the Minimum and Maximum Segment Length 
(SLmin and SLmax) is hereby discussed. Figures 9.a-d were 
obtained by applying SLmin=3 μm and SLmax=10 μm on Figures 
3.a and b, respectively. The analysis was preformed with a GF 
mask of 19x19, Ted=[0.1-0.11], Gmax=8, =2 and R2=0.90 and 
MA=1.  

 
Figure 9 – Comparison of the Pixel Analysis (first column) and the 
Segment Analysis (second column) results, (a) and (b) were obtained 
from Figure 3.a, while (c) and (d) from Figure 3.b.  

 

   In this case, SLmin and SLmax were chosen to show visible 

differences in the Edge maps and not to isolate particular 

elements in the images. In this case, the removal of a selected set 

of edges does not alter the orientation patterns, as the removed 

lines did not represent extra elements or cracks, otherwise 

altering the order pattern. If the user aims to remove external 

elements, it is recommended to first run a segment analysis with 

a SLmin value equal to ¼ the average expected length and no 

SLmax. The obtained average segment length should then be 

multiplied by 5, and this value used as a reference SLmax.   

3.5  Pores Threshold  

The Pores Threshold (TPo) is the most important parameter for 
the pores detection. A greater TPo value increases the area of the 
detected pores, as the local minima are disregarded, and the 
regional minima basin is extended. This effect is evident in 
Figure 10. The different graphs are obtained by applying a TPo 
of 5, 15, 30 and 50 to Figure 3.b, obtaining, respectively, Figures 
11.a-d. As forecasted, Figure 10.a shows a high number of small, 
scattered pores. These progressively disappear or aggregate into 
bigger pores increasing the TPo value, so that Figure 10.d shows 
a small number of large pores. It is evident that the use of 5 
(Figure 10.a) gives a description of the porosity that does not 
match that expected, as the larger pores are disregarded. 
Increasing the value to 15 (Figure 10.b), the pore detection is 
improved, however several large pores are still ignored. Figure 
11.c seems to detect adequately most of the pores, while the small 
porosity is completely lost for Figure 11.d. The choice of the 
appropriate TPo value should be based on a visual inspection, 
with a process similar to that performed for the Thresholds for 
Edges Recognition. 

Figure 10 – Effect of TPo in the pores detection. A TPo of 5, 15, 30 and 
50 are applied to Figure 3.b, generating (a) - (d). 

 
Also in this case, it is recommended to perform a sensitivity 

study on a reference clay image, increasing TPo until the pores 
are satisfactorily recognized. Afterwards, the TPo value selected 
should be doubled, and progressively decreased to find the 
optimal value. As the choice of large TPo values leads to a 
decrease of the amount of the small pores, the same image can 
be analysed twice, with a high and a low value of the parameter.  

3.6  Minimum and Maximum Pores Length 

As for the Segment analysis, in the Pores Analysis it is possible 
to differentiate the detected elements according to their length. 
Therefore, by changing the Maximum and the Minimum Pores 
Length, the grouping families are altered as well. Figure 11 
shows the effect of PPmin and PPmax on Figure 3.b, with Figure 
11.a and b having a PPmin of 5 and 100 pixels and a PPmax of 200; 
and Figures 10.c and d having a PPmin of 5 and a PPmax of 50 and 
300. Specifically, the green elements are those which perimeter 
is smaller than PPmax, while the red elements are the large 
perimeter pores. Increasing PPmin a reduced amount of pores are 
detected, so that all the micro-pores of Figure 11.a are not 
detected in Figure 11.b, and by means of PPmin, the meso-pores 
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are divided into a small and a large population. By changing 
PPmax, Figures 11.c and d are generated. If PPmin selects the 
relevant pores, PPmax differentiates the small and the large 
elements so that they can be characterized separately. By looking 
at the code outcome, the small pores area of Figure 11.d is 5.2 
times greater than that of Figure 11.a, while the detected 
Equivalent diameter is 90% smaller. The choice of these 
parameters solely depends on the porosity targeted by the user. 
However, it is strongly recommended the use of a PPmin greater 
than 3 pixels, in order to avoid the detection of single points 
linked to the image noise. 

Figure 11 – Effect of PPmin and PPmax on the pore detection and on the 

population grouping of Figure 3.b. PPmin=5 and 100, respectively, with 

PPmax=200 was applied to Figure 11.a and b, while for Figures 11.c and 
d PPmin=5, and PPmax=50 and 300, respectively. 

4  CONCLUSIONS 

The clay samples mechanical behaviour is expected to bestrongly 
influenced by the particles orientation and the porosity 
characteristics. Due to the lack of modern, automated tools 
designed to quantify these features, an algorithm based on the 
latest Image Analysis advances was developed. The choice of the 
input parameters strongly influence the final results, therefore the 
need for a systematic sensitivity study is evident. The single 
inputs variability and effect were evaluated on the micrograph of 
an iso-oriented, dispersed smectitic sample and on a multi-
directional, aggregated kaolinite sample. Specific instructions 
were given on how to choose the appropriate values for the 
parameters, depending on the micrographs analysed. However, 
for first time users, it is recommended to run a first simulation 
with the parameters obtained from the sensitivity study 
performed for this work, and then adjust all the parameters to fit 
the user needs, following the order outlined here.  

Therefore, the first Orientation analysis should be performed 
with GF=19x19 having a strength 3, Ted=[0.25-0.10], Gmax =8, 
=2, R2=0.95, MA=3, Over%=40 and SLmin=1/4 the average 
expected length, SLmax =105. Alternatively, GF can be set with a 
unity stength. SLmax should be defined once all the other 
parameters are defined, and its initial value should be set equal 
to 5 times the average length value obtained from the Segment 
Analysis. Moving to the pores analysis, PPmin and PPmax should 
be defined considering the porosity interval of interest. 
Regarding TPo, an initial value of 5 should be used, and it should 
be increased until all the significant large pores are detected. 
Afterwards the value should be doubled, and slowly decreased, 
to incorporate the significant small pores.  

It should be taken into consideration that except for some 
indication on the minimum recommended values, only the 
strategy for the parameter choice is recommended here, as the 
algorithm was designed to give the user the greatest possible 
flexibility.  
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