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ABSTRACT: The discrete element method (DEM) was used to simulate drained cyclic loading of cubical samples of spheres with a 
particle size distribution similar to Toyoura sand. The samples were compressed at a range of mean effective stresses and 
subsequently subjected to drained cyclic loading at different amplitudes maintaining a constant mean effective stress. The 
relationships between axial, volumetric shear and deviatoric strain during cyclic loading are explored. The evolution of both frictional 
and strain energy as well as the coordination number are considered.  

RÉSUMÉ : La méthode aux éléments discrets a été utilisée pour conduire des chargements cycliques drainés sur des échantillons 
cubiques de sphères avec une distribution granulométrique similaire à celui du sable de Toyoura. Les échantillons ont alors été 
compressés à une rangée de contraintes effectives moyenne. Ensuite, les échantillons ont été chargés cycliquement avec des 
amplitudes différentes tout en maintenant une contrainte effective moyenne constante. Les relations entre les déformations axiales, 
volumétriques, de cisaillement et déviatoriques découlant de charges cycliques sont étudiées. Le changement en énergie de friction 
et de déformation ainsi que le nombre de contacts par particule sont considérés. (contrainte effective moyenne constante, méthode 
aux éléments discrètes, chargement cyclique drainé, sable)   .    

KEYWORDS: constant mean effective stress, DEM, drained cyclic loading, sand  

1  INTRODUCTION 

 

 
 

 
Cyclic loading at low amplitudes is often observed adjacent to 
structures such as wind turbines with monopile foundations and 
integral bridge abutments. According to Wichtmann et al. (2005) 
these cyclic loads / deformations occur under drained conditions 
and have a strain amplitude 𝜀𝜀𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 < 10−3. Where there are a 
high number of load cycles there can be an accumulation of strain 
leading to settlement. This accumulation of strains is irreversible 
and also known as ratcheting. Kohadir (2009) assumed that 
ratcheting occurs because the soil has a softer response during 
reloading in comparison to the response during unloading and 
that this is associated with a change in soil fabric/a rearrangement 
of particles during unloading. Several constitutive models have 
been developed to predict ratcheting (these include viscoplastic 
models described in Chaboche and Nouailhas (1989) and the 
HARM model by Houlsby et al. (2017)). The evolution of fabric 
and particle rearrangements cannot be captured in the 
constitutive models used in FEM. DEM helps us to monitor these 
changes and examine the fundamental mechanism for ratcheting. 

Thornton (2000) showed that DEM can be used to carry out 
triaxial tests on granular materials such as sands and that their 
stress-strain behavior can be captured when using periodic 
boundaries. Huang et al. (2014) demonstrated that when using a 
representative soil grading with a representative number of 
particles, the position of the critical state line (CSL) can be 
determined.  

DEM simulations enable us to relate the macroscopic to the 
microscopic scale. The objectives of this study are to relate the 
macroscopic behavior during cyclic loading, i.e.  the evolution 
in volumetric strain, to the particle-scale behavior by considering 
appropriate metrics including the coordination number.  

2  TEST PROCEDURE AND RESULTS 

 

 
Figure 2: DEM sample with particles colored by radius 

 

Using the DEM code granular LAMMPS (Plimpton, 1995) a 
sample with the particle size distribution (PSD) of Toyoura sand 
was generated as shown in Figure 1. The sample of 19,463 
particles which is shown in Figure 2 was encased within periodic 
boundaries. The contact model that was used for these 

Figure 1: Toyoura sand PSD 
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Figure 4: Axial stress vs volumetric stress for  

p0’ = 100 (a), 200 (b) and 300kPa (c) at 𝜁𝜁 = 0.1 

simulations was the Hertz-Mindlin model (Hertz, 1981). This 
model captures the stress dependency of the stiffness of the 
contacts between particles that occur in physical systems. The 
simplified Hertz-Mindlin model implemented here has been used 
in prior soil mechanics studies; notably Huang et al. (2014) found 
quantitative agreement between simulations using this model and 
experimental data from Jefferies and Been (2006). O’Sullivan et 
al. (2008) directly compared DEM data with experiments on 
ideal spheres and showed that the cyclic response could be 
accurately captured.  

 For these simulations a shear modulus 𝐺𝐺’ of 29.17𝐺𝐺𝐺𝐺𝐺𝐺 and a 
Poisson’s ratio 𝜈𝜈 = 0.2 were used. The particles were assigned 
an interparticle friction coefficient of 0.25.  

Initially a non-contacting cloud of particles was generated 
using an in-house particle generation script that ensures 
homogeneity within the sample. Following generation, the 
sample was isotopically compressed using servo-controlled 
boundaries to mean effective stresses of 𝑝𝑝0′ equal to 100, 200 
or 300 kPa. Each sample was then subject to cyclic loading where 
the axial stress, 𝜎𝜎′𝑧𝑧𝑧𝑧 , varied according to the amplitude //- 𝜎𝜎′𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 .   During loading the mean effective stress 𝑝𝑝′ was 
maintained constant so that the lateral effective stresses 𝜎𝜎′𝑥𝑥𝑥𝑥 
and 𝜎𝜎′𝑦𝑦𝑦𝑦 varied. Representative stress data for a sample loaded 
at 𝑝𝑝’ = 200𝑘𝑘Pa and 𝜎𝜎′𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎=//-20kPa are shown in Figure 3.  

 

 

 
2.1 Effect of drained cyclic loading on volumetric strains  

Figure 4 presents data for three tests with 𝑝𝑝’ =  100, 200 and 
300kPa. In each case the axial stress is plotted against the 
volumetric strain 𝜀𝜀𝑣𝑣.  For all of these tests the ratio of load 
amplitude to 𝑝𝑝’, 𝜁𝜁 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎/𝑝𝑝′, is 0.1.  

Referring to Figure 4 (a), for the lowest 𝑝𝑝′ (=100kPa) it took 
8 cycles to reach 𝜀𝜀𝑣𝑣 =0.25%, whereas it took 18 and 23 cycles 
to reach 𝜀𝜀𝑣𝑣 = 0.25%, when 𝑝𝑝’ =  200kPa and 300kPa 
respectively (Figure 4 (b) and (c)). In all cases there is a decrease 
in the increment in volumetric strain over each cycle with 
increasing cycle number. The smallest increments are observed 
for the lowest mean effective stress. This accumulation in 
volumetric strain is permanent. 

This reduction in the per-cycle strain increment is related to 
the ratcheting phenomenon mentioned above. This softer 
response during reloading is apparent in our data sets especially 
as the number of cycles increase. The increase in 𝜀𝜀𝑣𝑣  is more 

significant as 𝜎𝜎′𝑧𝑧𝑧𝑧 increases from its minimum to its maximum 
value than the reduction in 𝜀𝜀𝑣𝑣  during unloading from the 
maximum 𝜎𝜎′𝑧𝑧𝑧𝑧 to the minimum 𝜎𝜎′𝑧𝑧𝑧𝑧. 

 

 

 

 

2.2 Effect of drained cyclic loading on axial strain amplitudes 

Figure 5: Axial strain at maxima’s against cycle number for p' = 
200kPa at different amplitudes 

 

Four test simulations were carried out at constant 𝑝𝑝’ values 
of both 200 kPa and 300 kPa where the applied stress amplitudes 
were between 10kPa ≤ 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎  ≤ 50kPa.  

Figure 3: Cyclic loading of sample 
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Figure 5: Axial strain at maxima’s against cycle number for p' = 
200kPa at different amplitudes 

 and Error! Reference source not found. consider the axial 
strain amplitude 𝜀𝜀𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎   by plotting the maximum 𝜀𝜀𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎   for 
each cycle against the cycle number. Where 𝑝𝑝’ =  200kPa 
(Figure 5), a marked decrease in 𝜀𝜀𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎  can be observed for the 
highest amplitude 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎  of 50 kPa over the initial cycles (N=5) 
followed by a slight increase. A similar trend was observed for 𝑝𝑝’ =  300kPa and 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎  =50 kPa (Figure 6); however, the 
decrease occurred only over the first two cycles and the 
subsequent increase in 𝜀𝜀𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎   was larger. For both 𝑝𝑝’ = 
200kPa and 𝑝𝑝’ =  300kPa an increase in 𝜀𝜀𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎   could already 
be observed after the first cycle for 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎=10, 20 and 30kPa. 
These observations are in accordance with Wichtmann et al. 
(2005, 2007).  

 

Figure 6: Axial strain amplitude at maxima against cycle number for 𝑝𝑝′ = 300kPa at different amplitudes 
 

Error! Reference source not found. considers the axial 
strain (𝜀𝜀𝑧𝑧𝑧𝑧) at three characteristic reference points during cyclic 
loading for 𝜁𝜁 = 0.1  and 𝑝𝑝0′  = 100, 200 & 300 kPa. The first 
point is where 𝑞𝑞 = 𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 before loading, which is at the start of 
each cycle. The two other points are at the local maxima 𝑞𝑞 =+ 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎   and the local minima 𝑞𝑞 =  −𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎.  

Figure 7: Axial strain vs cycle number N for different p’ for 𝜁𝜁 = 0.1 
 

An increase in axial strain can be noted at all key positions and 
the most noticeable increase can be observed for the lowest 𝑝𝑝’ 
of 100kPa. The magnitude of the increment decreases with 𝑝𝑝′ 
and the slope of the lines is roughly the same for the three loading 
positions. 

In Error! Reference source not found. the strain at the 
maxima over the first 10 cycles are plotted against the deviatoric 
stress amplitude 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 . The strains that are plotted are the axial 
strain 𝜀𝜀zz, the volumetric strain 𝜀𝜀𝑣𝑣 and the deviatoric strain 𝜀𝜀𝑞𝑞. 𝜀𝜀𝑣𝑣 and 𝜀𝜀𝑞𝑞 are defined as in Wood (1990): 
 𝜀𝜀𝑞𝑞 = 23 (𝜀𝜀𝑧𝑧𝑧𝑧 − 0.5(𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦))   (1) 𝜀𝜀𝑣𝑣 = 𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑧𝑧𝑧𝑧   (2) 

 

In Error! Reference source not found. an increase in 𝜀𝜀𝑧𝑧𝑧𝑧 ,𝜀𝜀𝑞𝑞 
and 𝜀𝜀𝑣𝑣  can be observed with increasing deviatoric stress 
amplitude. The increase in axial and volumetric strain is not 
linear rather it appears to triple when qampl is doubled. 𝜀𝜀𝑣𝑣  is 
increasing the fastest and 𝜀𝜀𝑞𝑞 the least which can be related to 
the nature of equation (1) and (2) where all total strains 
(𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑦𝑦𝑦𝑦 , 𝜀𝜀𝑧𝑧𝑧𝑧) are positive.  

  
Figure 8: Strain against the deviatoric stress amplitude qampl  

at p’ = 200kPa 
 

In Figure 9 the average strain at the maxima over the first 10 
cycles are plotted against the effective mean stress 𝑝𝑝’ at 𝜁𝜁 = 0.1 
meaning that for p’ of 100, 200 and 300 kPa qampl are 10, 20 and 
30 kPa respectively. Again, an increase in deviatoric strain can 

𝜁𝜁 = 0.1

 𝐺𝐺’ 29.17𝐺𝐺𝐺𝐺𝐺𝐺𝜈𝜈 = 0.2
𝑝𝑝0′𝜎𝜎′𝑧𝑧𝑧𝑧𝜎𝜎′𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 .  𝑝𝑝′ 𝜎𝜎′𝑥𝑥𝑥𝑥𝜎𝜎′𝑦𝑦𝑦𝑦𝑝𝑝’ = 200𝑘𝑘 𝜎𝜎′𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎

𝑝𝑝’ =𝜀𝜀𝑣𝑣.𝑝𝑝’ 𝜁𝜁 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎/𝑝𝑝′ 𝑝𝑝′𝜀𝜀𝑣𝑣 =𝜀𝜀𝑣𝑣 = 𝑝𝑝’ =

𝜀𝜀𝑣𝑣

𝜎𝜎′𝑧𝑧𝑧𝑧 𝜀𝜀𝑣𝑣𝜎𝜎′𝑧𝑧𝑧𝑧 𝜎𝜎′𝑧𝑧𝑧𝑧

p' = 

𝑝𝑝’≤ 𝑞𝑞𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎  ≤
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be observed similar to the data in Wichtmann et al. (2005) and 
(2007). Additionally, a clear decrease in axial and volumetric 
strain can be observed with increase in p’. This decrease can be 
explained by referring to  

Figure 5: Axial strain at maxima’s against cycle number for p' = 
200kPa at different amplitudes 

, as only 10 cycles are taken into account for each case the 
average of the sum of the first 10 peaks is much higher for a mean 
effective stress of 100kPa.  

 

 
 

Figure 9: Average strain at maxima over first 10 cycles against the 
average mean pressure p’ for 𝜁𝜁 =  0.1 

 
2.3 Effect of drained cyclic loading on coordination number 

The coordination number is the number of contacts per particle 
and therefore is a measure of packing density:  
 𝑍𝑍 = 2𝑁𝑁𝑐𝑐𝑁𝑁𝑝𝑝                 (3) 

where 𝑁𝑁𝑐𝑐 is the number of contacts and 𝑁𝑁𝑝𝑝 is the number 

of particles. As one contact is shared between two particles this 

number has to be multiplied by two. In Figure 10 the 

coordination number when 𝜀𝜀𝑧𝑧𝑧𝑧 is at the maxima for each cycle 

is plotted against cycle number for 𝜁𝜁 = 0.1. As can reasonably 

be expected  𝑍𝑍  increases with increasing 𝑝𝑝’. For 𝑝𝑝’=200 and 

300kPa 𝑍𝑍  at this characteristic point decreases very slightly 

with 𝑁𝑁; arguably evidence of a systematic reduction in Z is not 

at all clear for 𝑝𝑝’=200 kPa. There is an increase in Z with 𝑁𝑁 for 

the sample with 𝑝𝑝’=100 kPa. However, no clear trend can be 

deduced considering all three stress levels.  

 

 

 
 

2.4 Energy dissipation  

As the slope of the load deformation responses in loading and 
unloading differ there is clearly energy dissipation during the 
cyclic loading scenarios considered here. Using DEM the 
frictional energy 𝐸𝐸𝑓𝑓𝛽𝛽 dissipated in the system up to timestep 𝛽𝛽 
can be calculated. 𝐸𝐸𝑓𝑓𝛽𝛽is a cumulative sum ; at each timestep 𝛽𝛽 
the sum of the change in frictional energy at each contact ∑ 𝛿𝛿𝐸𝐸𝑓𝑓𝑗𝑗𝛽𝛽−1𝑁𝑁𝑐𝑐𝑗𝑗=𝑖𝑖   is added to the frictional energy at the previous 
timestep 𝐸𝐸𝑓𝑓𝛽𝛽−1

 (Keishing et al., 2020): 
 𝐸𝐸𝑓𝑓𝛽𝛽 =  𝐸𝐸𝑓𝑓𝛽𝛽−1 + ∑ 𝛿𝛿𝐸𝐸𝑓𝑓𝑗𝑗𝛽𝛽−1𝑁𝑁𝑐𝑐𝑗𝑗=𝑖𝑖                (4) 

 
In Figure 11 the frictional energy dissipated is plotted against 𝜀𝜀𝑧𝑧𝑧𝑧; cycles 𝑁𝑁= 1 and 20 are illustrated in gray and the data for 

these cycles are shown in more detail in the two subplots. The 
frictional energy always increases because it is calculated 
cumulatively and is irreversible. The frictional energy dissipated 
in cycle 1 is about 0.014 × 10−3 J. The amount of frictional 
energy dissipated in each cycle decreases with increasing cycle 
number. At cycle number 20, the increase in frictional energy is 0.004 × 10−3 J. Similar trends could be observed for all other 
data sets independent of mean effective stress or amplitude.  

 

Figure 10: Coordination number against cycle number for ζ = 0.1 
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Figure 12: Strain energy against axial strain  

p’ = 200kPa and ζ = 0.1 
 
The total normal and tangential strain energy are found by 
summation over all particle contacts Nc. The tangential 
component is calculated incrementally. In both cases these strain 
energies calculated by considering the area under the relevant 
force: displacement plot for each contact. 

Figure 12 considers the variation in total strain energy which 
is the sum of the normal and tangential strain energy with 𝜀𝜀𝑧𝑧𝑧𝑧, 
cycle 20 is indicated in gray and included in the subplot. The 
variation in strain energy in each cycle is consistently described 
by a butterfly-type shape after a about 10 cycles where the strain 
energy is non-dissipative.  

In Figure 13 the strain energy is plotted against the axial strain 
at p’=300 kPa. The effect of different ratios of loading amplitude 
is compared. For ζ <  0.1 there was an increase in strain 
following a similar trend to the frictional energy (Figure 13(a)). 
From Figure 13 (b) and (c) it can be observed that for a mean 
effective stress of 300kPa at ζ ≥  0.1 the strain energy loop 
followed the same path at cycle numbers that are higher than 5. 
However, the strain energy decreases for ζ > 0.1 until it seems to 
level off.  

(a) 

 (b) 

 (c) 
Figure 13: Strain energy against axial strain for p' = 300kPa where (a) 
ζ < 0.1 qampl = 10 kPa (b) ζ = 0.1  qampl = 30 kPa (c) ζ > 0.1 qampl 
= 50 kPa 

3  CONCLUSIONS 

This contribution has presented data from DEM simulations of 
drained stress-controlled cyclic triaxial simulations carried out at 

Figure 11: Frictional energy against axial strain  

p’ = 200kPa and ζ = 0.1  

p' = 

 the 𝜁𝜁 =  0.1

𝑍𝑍 = 2𝑁𝑁𝑐𝑐𝑁𝑁𝑝𝑝𝑁𝑁𝑐𝑐 𝑁𝑁𝑝𝑝
𝜀𝜀𝑧𝑧𝑧𝑧 𝜁𝜁 = 0.1 𝑍𝑍 𝑝𝑝’ 𝑝𝑝’𝑍𝑍𝑁𝑁 𝑝𝑝’ 𝑁𝑁𝑝𝑝’

𝐸𝐸𝑓𝑓𝛽𝛽 𝛽𝛽𝐸𝐸𝑓𝑓𝛽𝛽 𝛽𝛽∑ 𝛿𝛿𝐸𝐸𝑓𝑓𝑗𝑗𝛽𝛽−1𝑁𝑁𝑐𝑐𝑗𝑗=𝑖𝑖  𝐸𝐸𝑓𝑓𝛽𝛽−1
𝐸𝐸𝑓𝑓𝛽𝛽 =  𝐸𝐸𝑓𝑓𝛽𝛽−1 + ∑ 𝛿𝛿𝐸𝐸𝑓𝑓𝑗𝑗𝛽𝛽−1𝑁𝑁𝑐𝑐𝑗𝑗=𝑖𝑖  

𝜀𝜀𝑧𝑧𝑧𝑧 𝑁𝑁
0.014 × 10−3

0.004 × 10−3

ζ = 0.
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mean effective stresses 𝑝𝑝’  (100, 200 and 300kPa) and with 
deviatoric stress amplitudes of 10, 20, 30 and 50kPa. This paper 
demonstrates that: 
 

(1) DEM can capture key elements of response to drained 
cyclic loading, including the accumulation of 
permanent in volumetric strain. The ratcheting rate 
decreases as the confining pressure increases. 

(2) At higher amplitudes, an initial decrease in 𝜀𝜀𝑧𝑧𝑧𝑧 can be 
observed followed by an increase. This initial decrease 
is more significant at a smaller 𝑝𝑝’.  

(3) There was no significant variation in coordination 
number with cyclic loading. 

(4) An increase in frictional energy per cycle at a 
decreasing rate can be observed independent of the 
mean effective stress or the amplitude.  

(5) The pattern of strain energy variation depends on the 
loading amplitude ratio, ζ.       
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