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Particle-scale simulation of drained cyclic loading of sand at a constant mean
effective stress

Effets de chargements cycliques drainés avec une contrainte effective moyenne constante sur le
sable.

Tara Sassel & Catherine O’Sullivan
Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ London, UK,
tara.sassel17@ic.ac.uk

ABSTRACT: The discrete element method (DEM) was used to simulate drained cyclic loading of cubical samples of spheres with a
particle size distribution similar to Toyoura sand. The samples were compressed at a range of mean effective stresses and
subsequently subjected to drained cyclic loading at different amplitudes maintaining a constant mean effective stress. The
relationships between axial, volumetric shear and deviatoric strain during cyclic loading are explored. The evolution of both frictional
and strain energy as well as the coordination number are considered.

RESUME : La méthode aux éléments discrets a été utilisée pour conduire des chargements cycliques drainés sur des échantillons
cubiques de sphéres avec une distribution granulométrique similaire a celui du sable de Toyoura. Les échantillons ont alors été
compressés a une rangée de contraintes effectives moyenne. Ensuite, les échantillons ont été chargés cycliquement avec des
amplitudes différentes tout en maintenant une contrainte effective moyenne constante. Les relations entre les déformations axiales,
volumétriques, de cisaillement et déviatoriques découlant de charges cycliques sont étudiées. Le changement en énergie de friction
et de déformation ainsi que le nombre de contacts par particule sont considérés. (contrainte effective moyenne constante, méthode
aux ¢éléments discrétes, chargement cyclique drainé, sable)
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1 INTRODUCTION Thornton (2000) showed that DEM can be used to carry out
triaxial tests on granular materials such as sands and that their
stress-strain behavior can be captured when using periodic

A0 boundaries. Huang et al. (2014) demonstrated that when using a
representative soil grading with a representative number of
T 80 particles, the position of the critical state line (CSL) can be
S determined.
g - DEM simulations enable us to relate the macroscopic to the
S microscopic scale. The objectives of this study are to relate the
S macroscopic behavior during cyclic loading, i.e. the evolution
’; 40 i in volumetric strain, to the particle-scale behavior by considering
£ appropriate metrics including the coordination number.
2 TEST PROCEDURE AND RESULTS
0
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Figure 1: Toyoura sand PSD

Cyclic loading at low amplitudes is often observed adjacent to
structures such as wind turbines with monopile foundations and
integral bridge abutments. According to Wichtmann et al. (2005)
these cyclic loads / deformations occur under drained conditions
and have a strain amplitude £*™P! < 1073, Where there are a
high number of load cycles there can be an accumulation of strain
leading to settlement. This accumulation of strains is irreversible
and also known as ratcheting. Kohadir (2009) assumed that
ratcheting occurs because the soil has a softer response during
reloading in comparison to the response during unloading and
that this is associated with a change in soil fabric/a rearrangement
of particles during unloading. Several constitutive models have
been developed to predict ratcheting (these include viscoplastic
models described in Chaboche and Nouailhas (1989) and the Using the DEM code granular LAMMPS (Plimpton, 1995) a
HARM model by Houlsby et al. (2017)). The evolution of fabric sample with the particle size distribution (PSD) of Toyoura sand

and particle rearrangements cannot be captured in the was generated as shown in Figure 1. The sample of 19,463
constitutive models used in FEM. DEM helps us to monitor these particles which is shown in Figure 2 was encased within periodic

changes and examine the fundamental mechanism for ratcheting. boundaries. The contact model that was used for these

Radius in mm

0.0599

Figure 2: DEM sample with particles colored by radius

1353



simulations was the Hertz-Mindlin model (Hertz, 1981). This
model captures the stress dependency of the stiffness of the
contacts between particles that occur in physical systems. The
simplified Hertz-Mindlin model implemented here has been used
in prior soil mechanics studies; notably Huang et al. (2014) found
quantitative agreement between simulations using this model and
experimental data from Jefferies and Been (2006). O’Sullivan et
al. (2008) directly compared DEM data with experiments on
ideal spheres and showed that the cyclic response could be
accurately captured.

For these simulations a shear modulus G’ of 29.17GPa and a
Poisson’s ratio v = 0.2 were used. The particles were assigned
an interparticle friction coefficient of 0.25.

Initially a non-contacting cloud of particles was generated
using an in-house particle generation script that ensures
homogeneity within the sample. Following generation, the
sample was isotopically compressed using servo-controlled
boundaries to mean effective stresses of p,’ equal to 100, 200
or 300 kPa. Each sample was then subject to cyclic loading where
the axial stress, o’,,, varied according to the amplitude +/-
o'l During loading the mean effective stress p’ was
maintained constant so that the lateral effective stresses o'y,
and o'y, varied. Representative stress data for a sample loaded
at p’ = 200kPa and ¢'®™P!=+/-20kPa are shown in Figure 3.
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Figure 3: Cyclic loading of sample

2.1 Effect of drained cyclic loading on volumetric strains

Figure 4 presents data for three tests with p’ = 100, 200 and
300kPa. In each case the axial stress is plotted against the
volumetric strain &,. For all of these tests the ratio of load
amplitude to p’, { = q*™P!/p’,is 0.1.

Referring to Figure 4 (a), for the lowest p’ (=100kPa) it took
8 cycles to reach &, =0.25%, whereas it took 18 and 23 cycles
to reach ¢, = 0.25%, when p’ = 200kPa and 300kPa
respectively (Figure 4 (b) and (c)). In all cases there is a decrease
in the increment in volumetric strain over each cycle with
increasing cycle number. The smallest increments are observed
for the lowest mean effective stress. This accumulation in
volumetric strain is permanent.

This reduction in the per-cycle strain increment is related to
the ratcheting phenomenon mentioned above. This softer
response during reloading is apparent in our data sets especially
as the number of cycles increase. The increase in &, is more

significant as @',, increases from its minimum to its maximum
value than the reduction in &, during unloading from the
maximum a',, to the minimum o',,.
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Figure 4: Axial stress vs volumetric stress for
po’ =100 (a), 200 (b) and 300kPa (c) at { = 0.1

2.2 Effect of drained cyclic loading on axial strain amplitudes
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Figure 5: Axial strain at maxima’s against cycle number for p’'=
200kPa at different amplitudes

Four test simulations were carried out at constant p’ values
of both 200 kPa and 300 kPa where the applied stress amplitudes
were between 10kPa < q*™P! < 50kPa.
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Figure 5: Axial strain at maxima’s against cycle number for p’'=
200kPa at different amplitudes

and Error! Reference source not found. consider the axial
strain amplitude gy vt by plotting the maximum &,,°*" for
each cycle against the cycle number. Where p’ = 200kPa
(Figure 5), a marked decrease in &g, P! can be observed for the
highest amplitude g®™P! of 50 kPa over the initial cycles (N=5)
followed by a slight increase. A similar trend was observed for
p’ = 300kPa and q%™!=50 kPa (Figure 6); however, the
decrease occurred only over the first two cycles and the
. . ampl y

subsequent increase in &,, was larger. For both p’ =
200kPa and p’ = 300kPa an increase in &y, Pl could already
be observed after the first cycle for g®™P!=10, 20 and 30kPa.
These observations are in accordance with Wichtmann et al.

(2005, 2007).
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Figure 6: Axial strain amplitude at maxima against cycle number for
p’ =300kPa at different amplitudes

Error! Reference source not found. considers the axial
strain (&,,) at three characteristic reference points during cyclic
loading for ¢ =0.1 and p," = 100, 200 & 300 kPa. The first
point is where q = ¢, before loading, which is at the start of
each cycle. The two other points are at the local maxima q =
+ q®P!  and the local minima q = —q®™PL,
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Figure 7: Axial strain vs cycle number N for different p’ for { = 0.1

An increase in axial strain can be noted at all key positions and
the most noticeable increase can be observed for the lowest p’
of 100kPa. The magnitude of the increment decreases with p’
and the slope of the lines is roughly the same for the three loading
positions.

In Error! Reference source not found. the strain at the
maxima over the first 10 cycles are plotted against the deviatoric
stress amplitude q*™P!. The strains that are plotted are the axial
strain &z, the volumetric strain &, and the deviatoric strain &.
&, and g, are defined as in Wood (1990):

& = g(ezz - 0.5(£xx + eyy))

& = Exx t &y + &y

(M
@

In Error! Reference source not found. an increase in &, ,&4
and &, can be observed with increasing deviatoric stress
amplitude. The increase in axial and volumetric strain is not
linear rather it appears to triple when q*'is doubled. &, is
increasing the fastest and ¢, the least which can be related to
the nature of equation (1) and (2) where all total strains
(Exx» Eyy, €27) are positive.
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Figure 8: Strain against the deviatoric stress amplitude g™
at p’=200kPa

In Figure 9 the average strain at the maxima over the first 10
cycles are plotted against the effective mean stress p’at { = 0.1
meaning that for p’ of 100, 200 and 300 kPa q*™' are 10, 20 and
30 kPa respectively. Again, an increase in deviatoric strain can
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be observed similar to the data in Wichtmann et al. (2005) and
(2007). Additionally, a clear decrease in axial and volumetric
strain can be observed with increase in p’. This decrease can be
explained by referring to
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Figure 5: Axial strain at maxima’s against cycle number for p’'=
200kPa at different amplitudes

, as only 10 cycles are taken into account for each case the
average of the sum of the first 10 peaks is much higher for a mean
effective stress of 100kPa.
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Figure 9: Average strain at maxima over first 10 cycles against the

average mean pressure p’ for { = 0.1

2.3 Effect of drained cyclic loading on coordination number

The coordination number is the number of contacts per particle
and therefore is a measure of packing density:

2N,
N

Z= 3)

P

where N, is the number of contacts and N,, is the number
of particles. As one contact is shared between two particles this
number has to be multiplied by two. In Figure 10 the
coordination number when ¢,, is at the maxima for each cycle
is plotted against cycle number for ¢ = 0.1. As can reasonably
be expected Z increases with increasing p’. For p’=200 and
300kPa Z at this characteristic point decreases very slightly
with N; arguably evidence of a systematic reduction in Z is not
at all clear for p’=200 kPa. There is an increase in Z with N for
the sample with p’=100 kPa. However, no clear trend can be
deduced considering all three stress levels.
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Figure 10: Coordination number against cycle number for { = 0.1

2.4 Energy dissipation

As the slope of the load deformation responses in loading and
unloading differ there is clearly energy dissipation during the
cyclic loading scenarios considered here. Using DEM the
frictional energy E B dissipated in the system up to timestep S
can be calculated. EZis a cumulative sum ; at each timestep f3
the sum of the change in frictional energy at each contact

Z?’;i 5Ef '~ is added to the frictional energy at the previous
timestep ]Elf ~! (Keishing et al., 2020):
B _ pB-1 Ne opB-1
By = B+ 22 0F, “)

In Figure 11 the frictional energy dissipated is plotted against
&,,; cycles N=1 and 20 are illustrated in gray and the data for
these cycles are shown in more detail in the two subplots. The
frictional energy always increases because it is calculated
cumulatively and is irreversible. The frictional energy dissipated
in cycle 1 is about 0.014 X 10~3 J. The amount of frictional
energy dissipated in each cycle decreases with increasing cycle
number. At cycle number 20, the increase in frictional energy is
0.004 x 1073 J. Similar trends could be observed for all other
data sets independent of mean effective stress or amplitude.
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The total normal and tangential strain energy are found by
summation over all particle contacts Nc. The tangential
component is calculated incrementally. In both cases these strain
energies calculated by considering the area under the relevant
force: displacement plot for each contact.

Figure 12 considers the variation in total strain energy which
is the sum of the normal and tangential strain energy with &,,,
cycle 20 is indicated in gray and included in the subplot. The
variation in strain energy in each cycle is consistently described
by a butterfly-type shape after a about 10 cycles where the strain
energy is non-dissipative.

In Figure 13 the strain energy is plotted against the axial strain
at p’=300 kPa. The effect of different ratios of loading amplitude
is compared. For { < 0.1 there was an increase in strain
following a similar trend to the frictional energy (Figure 13(a)).
From Figure 13 (b) and (c) it can be observed that for a mean
effective stress of 300kPa at { = 0.1 the strain energy loop
followed the same path at cycle numbers that are higher than 5.
However, the strain energy decreases for { > 0.1 until it seems to
level off.
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3 CONCLUSIONS

This contribution has presented data from DEM simulations of
drained stress-controlled cyclic triaxial simulations carried out at



mean effective stresses p’ (100, 200 and 300kPa) and with
deviatoric stress amplitudes of 10, 20, 30 and 50kPa. This paper
demonstrates that:

(1) DEM can capture key elements of response to drained
cyclic loading, including the accumulation of
permanent in volumetric strain. The ratcheting rate
decreases as the confining pressure increases.

(2) At higher amplitudes, an initial decrease in &,, can be
observed followed by an increase. This initial decrease
is more significant at a smaller p’.

(3) There was no significant variation in coordination
number with cyclic loading.

(4) An increase in frictional energy per cycle at a
decreasing rate can be observed independent of the
mean effective stress or the amplitude.

(5) The pattern of strain energy variation depends on the
loading amplitude ratio, {
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