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Abstract 

Based on an extensive series of variably flow computations of a representative engineering problem comprising infiltration into 
rather dry soils of wide range of soil texture the performance of a novel approach was assessed. Casulli’s scheme eliminates numerical 
problems intrinsically associated with the non-linear behavior of water retention characteristics via a remarkably simple 
decomposition into two monotonically increasing functions. Casulli’s scheme proved superior to established methods in respect to 
stability as it converged within rather large time steps. The identified robustness of the novel scheme comprises a certain loss in 
efficiency in terms of the execution rate. From the perspective of engineering practice, in which infiltration scenarios in rather coarse 
textured soils and dry initial conditions are quite frequent the compromise between robustness and execution duration is more than 
acceptable. In the context of coupled flow-deformation analyses the advantages of constant and rather large time steps offered by 
Casulli’s scheme will certainly prove as the method of choice. 

 

RÉSUMÉ  
Sur la base d'une vaste série de calculs à débit variable d'un problème d'ingénierie représentatif comprenant l'infiltration dans des sols 
plutôt secs d'une large gamme de textures de sol, les performances d'une nouvelle approche ont été évaluées. Le schéma de Casulli 
élimine les problèmes numériques intrinsèquement associés au comportement non linéaire des caractéristiques de rétention d'eau via une 
décomposition remarquablement simple en deux fonctions monotones croissantes. Le schéma de Casullis s'est avéré supérieur aux 
méthodes établies en ce qui concerne la stabilité car il a convergé dans des pas de temps assez grands. La robustesse identifiée du nouveau 
schéma comprend une certaine perte d'efficacité en termes de taux d'exécution. Du point de vue de la pratique de l'ingénierie, dans 
laquelle les scénarios d'infiltration dans des sols à texture assez grossière et des conditions initiales sèches sont assez fréquents, le 
compromis entre robustesse et durée d'exécution est plus qu'acceptable. Dans le contexte des analyses couplées flux-déformation, les 
avantages des pas de temps constants et assez grands offerts par le schéma de Casulli s'avéreront certainement comme la méthode de 
choix. 

KEYWORDS: 3D variably saturated flow, Finite volume method, coarse textured soils, infiltration into dry soils 

 
1  INTRODUCTION 

Fluid–structure interaction problems appear in many engineering 
applications, e.g., in the design of excavations, earthen dams and 
other geotechnical structures. In many problems it is necessary 
to predict hydromechanical behavior under consideration of 
variably saturated flow transitions from full to partial saturation. 
This work focusses on the assessment of two different 
approaches for the computation of variably saturated flow in 
terms of robustness and effectiveness considering the wide range 
of texture in soils and geomaterials as well as initial moisture 
conditions typically encountered in engineering practice. 

1.1  Non-linearity in variably saturated flow 

Variably saturated flow problems require iterative schemes due 
to the nonlinear character of the equation system to be solved. 
Although Newton’s method exhibits fast (typically quadratic) 
convergence, it’s sensitivity to initial solution estimates ensues a 
serious drawback. While the modified Picard algorithm proposed 
by Celia et al. (1990) is more robust it may exhibit rather slow 
convergence rates. Unfortunately, both methods tend to fail for 
problems common in geotechnical engineering, considering 
infiltration into rather dry soils. The considerably non-linear 
nature of hydraulic soil properties is generally considered as 
responsible for such problems. 

Casulli and Zanolli (2010) presented a scheme for which they 
revealed an enhanced monotonicity and superior robustness with 

an augmented convergence rate for any time step size. These 
qualities make this scheme very appealing particularly in the 
context of coupled models (flow-deformation, flow transport 
etc.). While the established Celia algorithm may yield equivalent 
results with a variable time stepping technique, in the context of 
coupled problems time step adaptation to the convergence 
behavior may involve superfluous solutions of the coupled 
processes involved. 

The remainder of this presentation is organized as follows. In 
section 2 the governing equations for variably saturated flow are 
presented and the focal aspects of Casulli’s scheme introduced. 
Next a representative problem from engineering practice which 
is known to produce severe numerical problems even under 
rather habitual circumstances is illustrated in section 3. The two 
approaches are compared in terms of efficiency and robustness in 
section 4. Finally hints and remarks on the implementation are 
summarized in section 5. 

2  GOVERNING EQUATIONS 

In the framework of variably saturated flow, fluid mass 
conservation is expressed by the so-called mixed form of 
Richards’ equation (1), where 

     p =  1𝛾𝛾𝑤𝑤 (𝑝𝑝𝑤𝑤 − 𝑝𝑝𝑎𝑎)                                (1) 
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is the pressure head with 𝛾𝛾𝑤𝑤 is the specific weight of water and 𝑝𝑝𝑎𝑎 , 𝑝𝑝𝑤𝑤  are the pore-air pressure and pore-water pressure, 
respectively. 

 𝜕𝜕𝑡𝑡 𝜃𝜃 (p) = ∇[𝐾𝐾(𝑥𝑥, 𝜃𝜃 (p))[∇(p + 𝑍𝑍)]] (1) 

 

θ(p) represents the water content, K denotes the hydraulic 

conductivity, which may vary with location x and water content. 

Z is the height against the gravitational direction in respect to an 

arbitrary reference level. The gas within the pore-space is 

consider to be under atmospheric pressure (p𝑎𝑎 ≡ 0) at all time. 

The water content θ(p) exhibits a nonlinear relation to pressure 

head (soil water characteristic curve or water retention curve). 

Since with decreasing water content, less pores are water filled 

and can participate in the conduction of water, the hydraulic 

conductivity is a (nonlinear) function of water content and 

therefore in pressure head as well. These functional relations are 

typically prescribed by constitutive models, of which the van 

Genuchten-Mualem Model (2) is the most prominent. 

 

𝜃𝜃 (p) = {  

𝜃𝜃𝑟𝑟  +  𝜃𝜃𝑠𝑠  −  𝜃𝜃𝑟𝑟[1 +  |𝛼𝛼p|𝑛𝑛]𝑚𝑚 for p ≤ 0 

(2a) 𝜃𝜃𝑠𝑠 for p > 0 

 𝐾𝐾 (x, 𝜃𝜃) =  𝐾𝐾 (x) ( 𝜃𝜃 − 𝜃𝜃𝑟𝑟𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟)12 (1 − [1 − ( 𝜃𝜃 − 𝜃𝜃𝑟𝑟𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) 1𝑚𝑚]𝑚𝑚)2
 (2b) 

  

 
Direct measurements are to be conducted for estimation of the 
hydraulic model parameters. 𝜃𝜃𝑟𝑟  and 𝜃𝜃𝑠𝑠  denote the residual 
( p → −∞ ) and the saturated ( p → 0 ) water content, 
respectively. The remaining parameters, namely 𝛼𝛼 , 𝑛𝑛  and 𝑚𝑚 
are parameters determining the exact shape of the relations of the 
saturation and the hydraulic conductivity with pressure head. 

In this contribution, cell centered finite volumes is used to 

discretize (1) in space and the Euler backwards scheme for time 

discretization. Nonetheless, the following derivation hold 

independently of the specific discretization preferred. The 

discretized form of (1) is a system of nonlinear equations: 

 𝜽𝜽 (p𝑡𝑡) + 𝚽𝚽(p𝑡𝑡) p𝑡𝑡 = 𝐑𝐑( p𝑡𝑡−1) (2) 

 

The Matrix 𝜽𝜽 (p𝑡𝑡) contains the water contents of the 

discretization elements (Mass Matrix), 𝚽𝚽(p𝑡𝑡) is the (Darcian) 

Flux Matrix owing to pressure gradients and the right-hand side 

(𝐑𝐑) contains the discretized fluxes due to gravitation and water 

content values θ (p𝑡𝑡−1) from the previous timestep. 
The Newton method, as stated earlier, is the quasi-standard 

method for the linearization of strongly nonlinear systems. The 
nonlinearity in the case of system (2) resides in the terms in the 
matrices 𝜽𝜽 (p𝑡𝑡) and 𝚽𝚽(p𝑡𝑡). However, since Newton’s Method 
demands an initial approximate quite close to the desired 
solution, the approach becomes impractical for general usage. 

Many variations and adaptations of Newton’s methods (e.g. 
Celia et al. 1990, List & Radu 2016) have been proposed and, to 
a degree, been employed with great success. However, high 
nonlinearities in the constitutive relations for coarse, rather dry 
materials still seem to be a major problem for most schemes. The 
general framework for the successful linearization of system (2) 
stems from Celia et al. (1990) in which the hydraulic 
conductivity term is linearized by a Picard fixed-point iteration 
while the water content is linearized by a linear Taylor-Series 
expansion similar to Newton’s method. 

With p𝑡𝑡,0 =  p𝑡𝑡−1 as initial guess, this leads to the linearized 
system of equation with t and n denoting the time and iteration 
index respectively: 

 𝜽𝜽 (p𝑡𝑡,𝑛𝑛−1) + 𝑪𝑪(p𝑡𝑡,𝑛𝑛−1)(p𝑡𝑡,𝑛𝑛 − p𝑡𝑡,𝑛𝑛−1) +𝚽𝚽(p𝑡𝑡,𝑛𝑛−1) ψ𝑡𝑡,𝑛𝑛 = 𝐑𝐑( p𝑡𝑡−1) (3) 

 
Figure 1. Decomposition of the water content θ (p)  (left) and water 
capacity C(p) (right) in two nondecreasing functions of pressure head p.  

Most linearization schemes differ in the approximation of the 

Jacobian 𝑪𝑪(p)  =  𝝏𝝏p𝜽𝜽(p). It is called soil water capacity and 

represents the water storage and release capabilities of a soil. 
To remedy convergence of the linearization scheme (3) even for 
very dry and coarse materials, Casulli and Zanolli (2010) 
proposed an extension to the treatment of the water capacity 
term. The peak in the water capacity function 𝑪𝑪(p) has been 
identified as cause for convergence problems of algorithm (3) 
and Jordan decomposition of C(p) into two monotonic increasing 
functions 𝑪𝑪(p) =  P(p) −  Q(p)  was suggested as shown in 
Figure 1. Consequently, through independent integration (see 
(4)) of the decomposed water capacity subfunctions, the water 
retention curve is decomposed as well into two water contents 𝜽𝜽 =  𝜽𝜽𝟏𝟏 − 𝜽𝜽𝟐𝟐 (s. Figure 1). 𝜽𝜽𝟏𝟏 (p) =  𝜃𝜃𝒓𝒓 + ∫ 𝑷𝑷p−∞ (p̂) 𝑑𝑑p̂ (4a) 𝜽𝜽𝟐𝟐 (p) =  ∫ 𝑸𝑸p−∞ (p̂) 𝑑𝑑p̂ (4b) 

 

After decomposition of 𝜽𝜽 the system of equations becomes 

 𝜽𝜽𝟏𝟏 (p𝑡𝑡,𝑛𝑛) − 𝜽𝜽𝟐𝟐 (p𝑡𝑡,𝑛𝑛) + 𝚽𝚽(p𝑡𝑡,𝑛𝑛−1) p𝑡𝑡 = 𝐑𝐑( p𝑡𝑡−1)  (5a) 

 

Q being the Jacobian for 𝜽𝜽𝟐𝟐, Newton’s method applied only to 

the second term and, for the sake of readability, omitting the time 

and iteration indices (t, n) (5a) is expressed with the outer Casulli 

iterates {ψ𝑘𝑘} = {ψ𝑡𝑡,𝑛𝑛,𝑘𝑘} as: 

 𝜽𝜽𝟏𝟏 (p𝑘𝑘) − 𝜽𝜽𝟐𝟐 (p𝑘𝑘−1) − 𝑸𝑸(p𝑘𝑘−1)(p𝑘𝑘 − p𝑘𝑘−1) + 𝚽𝚽 p𝑘𝑘 = 𝐑𝐑  (5b) 

 

The initial guess p0 =  p𝑛𝑛−1  is the solution of the previous 

Picard iteration. Linearizing the first term accordingly yields a 

nested Newton-type algorithm with inner iterates {p𝑘𝑘,𝑙𝑙} ={p𝑡𝑡,𝑛𝑛,𝑘𝑘,𝑙𝑙}: 

 𝜽𝜽𝟏𝟏 (p𝑘𝑘,𝑙𝑙−1) + 𝑷𝑷(p𝑘𝑘,𝑙𝑙−1)(p𝑘𝑘,𝑙𝑙 − p𝑘𝑘,𝑙𝑙−1) − 𝜽𝜽𝟐𝟐 (p𝑘𝑘−1) −𝑸𝑸(p𝑘𝑘−1)(p𝑘𝑘,𝑙𝑙 − p𝑘𝑘−1) + 𝚽𝚽 p𝑘𝑘,𝑙𝑙 = 𝐑𝐑  (5c) 

 

Again, with the solution of the previous outer iteration p𝑘𝑘,0 = p𝑘𝑘−1  as the initial guess for (5c). This linearization has the 

advantage that P and Q are monotonic increasing over the whole 

range.  
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Figure 2. Model problem geometry and boundary conditions. 

3  TEST CASE  

In order to assess the Casulli scheme (5), a nontrivial 2D test-
case from geotechnical engineering practice was set up. The 
problem concerns with infiltration during 72 hours of 
precipitation into the backfill along the foundation of a building. 
The aim of the analysis is to predict the occurrence and duration 
of saturated zones during or following the extreme rainfall event, 
and to analyze if waterproofing the structure will be necessary. 
The geometry and boundary conditions are displayed in Figure 
2. The backfill is a coarse-grained sand placed in the excavated 
gap between the structure and the fine-grained in-situ soil. The 
unstructured triangular finite volume elements form the 
calculation mesh with an adequate resolution to represent the 
hydraulic gradients expected (Figure 2).  

3.1 Hydraulic properties 

A series of calculations were performed with backfill materials 
of varying hydraulic properties covering the typical span width 
of textures for this rather coarse-grained material. The 
corresponding van Genuchten-Mualem parameters are displayed 
in Table 1. A plot visualizing the parametric curves over pressure 
head / matric suction for the examined backfill soils is presented 
in Figure 3 for comparison. 

The initial condition represents the antecedent moisture 
content and represents an important issue in the analysis of 
infiltration dynamics. Furthermore, due to the non-linearity of 
the soil hydraulic functions the initial water content of both 
backfill and in-situ was expected to affect the solver 
performance. Hence, the initial condition was set according to 
the steady-state solution of six different ground-water recharge 
intensities listed in Table 2. This choice considers antecedent 
moisture conditions I the range from very dry to very wet. 

 
Figure 3. Van Genuchten water content and Mualem relative hydraulic 

conductivity as functions of pressure head with parameters according to 
Table 1. 

 
Table 1. Hydraulic properties of the backfill material according the van 
Genuchten – Mualem parametrization. 

 θs [-] θr [-] α [m-1] n [-] k[m/s] 

In-situ soil 0.40 0.10 0.6 3.1 10-7 

backfill 1 0.35 0.03 1.8 3.1 10-3 

backfill 2 0.35 0.03 2.4 3.1 10-3 

backfill 3 0.35 0.03 3.0 3.1 10-3 

backfill 4 0.35 0.03 4.0 3.1 10-3 

backfill 5 0.35 0.03 6.0 3.1 10-3 

 
Table 2. Recharge intensities for the steady-state computations of the 
initial moisture distribution.  

case 1 2 3 4 5 6 

qinit 

[mm/year] 

0 80 160 240 
320 

400 

3.2 Choice of solver parameters 

Extensive preliminarily testing was carried out to find adequate 
solver parameters and to allow a fair comparison. For both 
algorithms, convergence is accepted, if at the end of the Picard 
iteration step the following conditions are met 

 𝑟𝑟𝑡𝑡,𝑛𝑛 = ‖𝜽𝜽 (p̃𝑡𝑡,𝑛𝑛) + 𝚽𝚽(p̃𝑡𝑡,𝑛𝑛) p̃𝑡𝑡,𝑛𝑛 − 𝐑𝐑( p𝑡𝑡−1)‖2 ≤ 𝜀𝜀 (3) 

 

where, r is the L2 norm of the residuals of equation (2) with the 

current solution approximation p̃𝑡𝑡,𝑛𝑛  and 𝜀𝜀  is the solution 

tolerance. We found 𝜀𝜀 = 10−5 to be acceptable for the studied 

test case restraining mass balance errors below 5% in each time-

step without restricting the convergence. The total of nonlinear 

iterations was not restricted.  

𝛾𝛾𝑤𝑤𝑝𝑝𝑎𝑎 𝑝𝑝𝑤𝑤
𝜕𝜕𝑡𝑡 𝜃𝜃 (p) = ∇[𝐾𝐾(𝑥𝑥, 𝜃𝜃 (p))[∇(p + 𝑍𝑍)]]

θ(

p𝑎𝑎 ≡ 0)
θ(

𝜃𝜃 (p) = { 𝜃𝜃𝑟𝑟  +  𝜃𝜃𝑠𝑠  −  𝜃𝜃𝑟𝑟[1 +  |𝛼𝛼p|𝑛𝑛]𝑚𝑚 for p ≤ 0𝜃𝜃𝑠𝑠 for p > 0
𝐾𝐾 (x, 𝜃𝜃) =  𝐾𝐾 (x) ( 𝜃𝜃 − 𝜃𝜃𝑟𝑟𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟)12 (1 − [1 − ( 𝜃𝜃 − 𝜃𝜃𝑟𝑟𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) 1𝑚𝑚]𝑚𝑚)2

𝜃𝜃𝑟𝑟 𝜃𝜃𝑠𝑠p → −∞ p → 0 𝛼𝛼  𝑛𝑛 𝑚𝑚

𝜽𝜽 (p𝑡𝑡) + 𝚽𝚽(p𝑡𝑡) p𝑡𝑡 = 𝐑𝐑( p𝑡𝑡−1)𝜽𝜽 (p𝑡𝑡) 𝚽𝚽(p𝑡𝑡)𝐑𝐑 θ (p𝑡𝑡−1) 
𝜽𝜽 (p𝑡𝑡) 𝚽𝚽(p𝑡𝑡).

Many variations and adaptations of Newton’s methods (

p𝑡𝑡,0 =  p𝑡𝑡−1

𝜽𝜽 (p𝑡𝑡,𝑛𝑛−1) + 𝑪𝑪(p𝑡𝑡,𝑛𝑛−1)(p𝑡𝑡,𝑛𝑛 − p𝑡𝑡,𝑛𝑛−1) +𝚽𝚽(p𝑡𝑡,𝑛𝑛−1) ψ𝑡𝑡,𝑛𝑛 = 𝐑𝐑( p𝑡𝑡−1)

θ (p)
𝑪𝑪(p)  =  𝝏𝝏p𝜽𝜽(p)

 𝑪𝑪(p)
𝑪𝑪(p) =  P(p) −  Q(p)

𝜽𝜽 =  𝜽𝜽𝟏𝟏 − 𝜽𝜽𝟐𝟐𝜽𝜽𝟏𝟏 (p) =  𝜃𝜃𝒓𝒓 + ∫ 𝑷𝑷p−∞ (p̂) 𝑑𝑑p̂𝜽𝜽𝟐𝟐 (p) =  ∫ 𝑸𝑸p−∞ (p̂) 𝑑𝑑p̂𝜽𝜽𝜽𝜽𝟏𝟏 (p𝑡𝑡,𝑛𝑛) − 𝜽𝜽𝟐𝟐 (p𝑡𝑡,𝑛𝑛) + 𝚽𝚽(p𝑡𝑡,𝑛𝑛−1) p𝑡𝑡 = 𝐑𝐑( p𝑡𝑡−1)𝜽𝜽𝟐𝟐,

{ψ𝑘𝑘} = {ψ𝑡𝑡,𝑛𝑛,𝑘𝑘}𝜽𝜽𝟏𝟏 (p𝑘𝑘) − 𝜽𝜽𝟐𝟐 (p𝑘𝑘−1) − 𝑸𝑸(p𝑘𝑘−1)(p𝑘𝑘 − p𝑘𝑘−1) + 𝚽𝚽 p𝑘𝑘= 𝐑𝐑 p0 =  p𝑛𝑛−1 {p𝑘𝑘,𝑙𝑙} ={p𝑡𝑡,𝑛𝑛,𝑘𝑘,𝑙𝑙}𝜽𝜽𝟏𝟏 (p𝑘𝑘,𝑙𝑙−1) + 𝑷𝑷(p𝑘𝑘,𝑙𝑙−1)(p𝑘𝑘,𝑙𝑙 − p𝑘𝑘,𝑙𝑙−1) − 𝜽𝜽𝟐𝟐 (p𝑘𝑘−1) −𝑸𝑸(p𝑘𝑘−1)(p𝑘𝑘,𝑙𝑙 − p𝑘𝑘−1) + 𝚽𝚽 p𝑘𝑘,𝑙𝑙 = 𝐑𝐑 p𝑘𝑘,0 = p𝑘𝑘−1
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Generally, the linearized system describing variably saturated 
flow exhibits a superior condition for smaller timesteps. Casulli’s 
Scheme was therefore tested with a rather large timestep size of 
1 h and another timestep size of ¼ h to assess the solvers 
behavior.  

4  RESULTS 

4.1 Evaluation of test case results 

Infiltration dynamics are controlled by the soil hydraulic 
properties, boundary conditions and the initial water content 
distribution which is prescribed in this study by the antecedent 
rainfall intensity.  

 Three different scenarios are displayed in Figure 4 to 
illustrate the impact of soil properties and initial conditions on 
the infiltration dynamics. First, in 4A the calculation started 
assuming a hydrostatic pressure distribution corresponding to no 
antecedent infiltration rate. In comparison to 4B, with an 
antecedent precipitation rate of 400 mm/a, the initial conditions 
are considerably dryer and thus the infiltration front progresses 
more compressed and at a slower rate in both the in-situ soil and 
backfill material. The distributions of the specific discharge 
reveal that in both cases the infiltration front is concentrated at 
the interface between backfill material and in-situ soil. This 
results from the lower saturated hydraulic conductivity of the 
sloped in situ soil. Hence, the moisture content at the interface 
increases augmenting the unsaturated hydraulic conductivity in 
this region. In 4C the soil texture of the backfill material is 
substantially coarser in comparison to 4B as indicated by the 
contrast of the air entry α parameter of 1.8 to 6.0 [1/m]. The 
infiltration dynamics particularly in the backfill material display 
a different characteristic. The infiltration front in the coarser 
back-fill material is concentrated in the upper part of the interface 
to the in-situ soil while exhibiting a less pronounced infiltration 
depth. Interestingly, the infiltration front penetrates the coarser 
backfill material in a sharper fashion compared to the other two 
cases, which is best visualized by the pressure head variation 
with time at point P (see fig.4A) in figure 5. 

 
Figure 4. Saturation distribution, isobars (top), potential lines and 
specific discharge rate q (bottom) for three sets of initial conditions and 
soil texture at 42 h after the beginning of rainfall. A: qinit = 0 mm/a, α = 
1.8 1/m; B: qinit = 400 mm/a, α = 1.8 1/m; C: qinit = 400 mm/a, α = 6 1/m. 

 
Figure 5. Time variation curve of pressure head ψ at point P (see fig. 4A). 

A: q init = 0mm/a, α = 1.8 1/m; B: q init = 400mm/a, α = 1.8 1/m; C: 
q init = 400mm/a, α = 6 1/m 

A lower antecedent water content essentially delays the 
infiltration front. Soil properties corresponding to a coarser soil 
(increased air entry parameter α) slow down the infiltration front 
as well due to the rapid drop in unsaturated conductivity at the 
wetting edge of the front. Consequently, the infiltration front 
becomes sharper eventually creating sort of a breakthrough zone 
and a substantially increased peak pressure.  

4.2 Remarks on solver performance 

Unsaturated flow computations in rather coarse soils and at low 
water contents are rather frequent in engineering practice. In the 
unsaturated flow analysis these circumstances turn out to be quite 
demanding due to the non-linearity comprised with large 
variations in storage and unsaturated conductivity with small 
changes in moisture. In this study solver performance is 
evaluated in respect to soil texture (expressed through the air 
entry parameter α) and antecedent moisture conditions, 
respectively. Figure 6 shows mean execution times over initial 
conditions against the air-entry parameter α, representing coarser 
soil texture with higher α-values. The Celia-Scheme mentioned 
above was considered used as the reference “standard”-solver, 
due to its numerous implementations in commercial software. 
The same convergence criterion (3) is set for both schemes to 
ensure a fair comparison. For Celia’s scheme a time step size of 
¼ h had to be applied, since larger timesteps proved as non-
convergent in the vast majority of test runs. 

 
Figure 6. Top: Execution (run) times for Casulli’s scheme with 1 h and 
¼ h timestep and a standard scheme (Celia) against the air entry 

parameter α. Bottom: Success rations for the same solvers in respect to 

the air entry parameter α. 

Casulli’s scheme required essentially the same execution time 
independent of the soil texture for the studied parameter sets. 
Comparing the 1 h time step scheme to the ¼ h time step in the 
standard scheme, execution speeds are comparable. Reducing the 
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timestep with the Casulli scheme, however, is costly as execution 
times increases considerably. The curves at the bottom of figure 
6 display the success ratios of each scheme with respect to soil 
texture. The success ratio is defined here as the amount of 
calculations that finished (converged) divided by the total sum of 
calculations with the same air-entry parameter. The success 
ratios in figure 5 display the benefits of allowing longer 
execution times. While comparably slow, the Casulli Scheme 
with ¼ h time step delivers a convergence to 100% of the test 
cases. On the other hand, the Casulli Scheme with 1 h timestep 
fails for just one case and that is the one with the coarsest texture. 
The decline of the success ratios for the standard scheme reveals 
that higher α-values tend to be more demanding for that solver. 
Analogous conclusions can be drawn examining the runs in 
respect to antecedent moisture, as displayed in figure 7. 

 
Figure 7. Top: Execution (run) times for Casulli’s scheme with 1 h and 
¼ h timestep and a standard scheme (Celia) against the air entry 
parameter α. Bottom: Success rations for the same solvers in respect to 

the air entry parameter α. 
 
While the run times curves related to initial infiltration rate 

(antecedent soil moisture) yield similar results as in the case of 
texture displayed above, the success ratios show that dryer 
antecedent moisture conditions tend to be more challenging for 
both schemes. Again, the slower Casulli’s scheme with ¼ h time 
step yields convergence for all runs and at 1 h timestep converges 
flawlessly for all but the driest case, both time step variants 
remaining at a competitive execution speed. On the other hand, 
the standard solver struggles with dryer conditions shown by the 
clear decline of the success ratio from wet to dry antecedent 
moisture conditions. 

6  CONCLUSIONS 

In a series of model runs of a representative engineering problem 
comprising varying soil textures and initial soil moisture 
conditions the performance of a novel approach proposed by 
Casulli was assessed. Casulli’s scheme eliminates notorious 
numerical problems associated with the non-linear behavior of 
the soil water characteristic curve through a decomposition into 
two monotonically increasing functions.  

Casulli’s method proved to be astonishingly stable, 
converging for all but the driest initial conditions and coarsest 
soil textures tested with rather large time steps (1 h). Reducing 
the timestep size to ¼ h allowed convergence where the 1h 
scheme failed, however at the cost of computational time.  

Providing such benefits particularly in cases considering 
rather dry initial conditions and coarse textured soils and 
geomaterials, Casulli’s scheme is promising for situations in 
which convergence is crucial. In the context of coupled 

hydromechanical flow-deformation analyses the advantages of 
constant, rather large time steps and the remarkable robustness 
offered by Casulli’s scheme will certainly prove as the method 
of choice. 
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α parameter of

= 0 mm/a, α = 
= 400 mm/a, α = 1.8 1/m; C: q = 400 mm/a, α = 6 1/m

Time variation curve of pressure head ψ at point P (see fig. 
A: q init = 0mm/a, α = 1.8 1/m; B: q init = 400mm/a, α = 1.8 1/m; C:
q init = 400mm/a, α = 6 1/m

α) 

α

parameter α, representing coarser 
α

“standard”

a fair comparison. For Celia’s scheme a time step size of 

Execution (run) times for Casulli’s scheme with 1 h and 

α. 
α.

Casulli’s scheme 
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