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ABSTRACT: A major challenge of most geotechnical engineering projects is soil data scarcity. This paper aims at extending prior 
knowledge on shear strength and compressibility of Glaciolacustrine sediments of Northern Germany. Based on triaxial, oedometer 
and complementary laboratory tests on specimens from 13 different locations, the inherent variability of shear strength and 
compressibility is analysed; typical ranges and coefficients of variation are established. Prior to variability analysis, k-means 
clustering, a simple machine learning algorithm, is applied to distinguish soil types by their descriptive properties. The procedure 
presented in this paper accounts for the multivariate character of soil and provides data on variability of strength and compressibility 
more accurately. It was found that plasticity index and clay content can be considered to distinguish different soil types. Moreover, 
it can be shown that mean and variability of shear strength and compressibility are clearly affected by the dominant soil type. 

RÉSUMÉ: Un défi majeur de la plupart des projets d'ingénierie géotechnique est le manque de données pédologiques. Cet article 
vise à enrichir les connaissances antérieures de la résistance au cisaillement et de la compressibilité des sédiments glaciolacustres 
d'Allemagne du Nord. Nous avons analysé la variabilité inhérente de la résistance au cisaillement et de la compressibilité sur la base 
de tests triaxiaux et oedométriques ainsi que de tests supplémentaires en laboratoire géotechnique d’éprouvettes de sédiments 
glaciolacustres collectées sur 13 sites différents. Nous avons ainsi établi des marges et coefficients typiques de variation. Avant 
d'analyser la variabilité, on applique le k-means clustering, un algorithme simple d’apprentissage automatique, pour distinguer 
différents types de sol par leurs propriétés descriptives. La procédure présentée tient compte du caractère multivarié des données 
podologiques et fournit des données plus précises de la variabilité des propriétés de résistance au cisaillement et de compressibilité. 
Les analyses ont permis de constater que, par exemple, l'indice de plasticité et la teneur en argile peuvent être considérés pour 
distinguer les différents types de sols. En plus, on peut démontrer que la moyenne et la variabilité de la résistance au cisaillement et 
de la compressibilité sont nettement affectées par le type de sol dominant. 
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1 INTRODUCTION 

According to the European standard (EC7) characteristic values 
are fundamental input data for geotechnical designs using a semi-
probabilistic design approach. They are “selected as a cautious 
estimate of the value affecting the occurrence of the limit state” 
(DIN EN 1997-1:2014-03). 

In this context, a major challenge of geotechnical engineering 
is soil data scarcity or the “the curse of small sample size” 
(Phoon, 2017) which does not allow to select characteristic 
values based on sophisticated statistical analyses. Commonly, 
this issue is tackled by experience, engineering judgement and 
local data repositories. But even with these resources, as outlined 
by Bond (2011), engineers may not be well trained at predicting 
the appropriate degree of caution needed to select the 
characteristic value of a geotechnical parameter. Thus, although 
still not integral part of everyday engineering practice, the 
advantages of more advanced methods such as Bayesian 
inference in conjunction with prior knowledge are increasingly 
recognized to account for uncertainty inherent to soil parameters 
(e.g., Phoon and Kulhawy 1999a, 1999b, Wang et al. 2016, 
Phoon 2017, Wang 2017). 

Despite their local uniqueness (Phoon 2019), point statistics, 
e. g. mean and standard deviation, of soils have been investigated 
by various authors, often for particular applications (e. g. Lumb 
1966, 1974, Phoon und Kulhawy 1999a, 1999b, Uzielli et al. 
2006, Löfman und Korkiala-Tanttu 2019) and summarised in 
standards (e. g. JCSS, 2006). Engineers may supplement their 
site-specific data by these values. However, as pointed out by 
Löfman and Korkiala-Tanttu (2019), typical ranges of soil 
parameters provided in literature can be improved by accounting  
 

for local characteristics such as the materials’ genesis. In the case 
of North German Glaciolacustrine sediments, few information on 
typical values have been published (Ehlers et al. 2011, Kausch 
2020), which, do not cover the materials’ inherent variability. 

The presented work focuses on the analysis of shear strength 
and compressibility of Glaciolacustrine sediments of Northern 
Germany. Based on triaxial, oedometer and complementary 
laboratory tests from 13 different locations the inherent 
variability of shear strength and compressibility is analysed; 
typical ranges and coefficients of variation are established. Prior 
to variability analysis, a simple machine learning algorithm is 
applied to distinguish different sediments on the basis of their 
classification properties.  

The paper is organised as follows: Firstly, the employed data 
and methods are introduced. Secondly, to provide data on the 
soils’ variability more accurately, the machine learning 
algorithm k-means clustering is applied to distinguish sediments 
based on their descriptive properties. Finally, after validation of 
the clusters, typical ranges and the variability of shear strength 
and compressibility are presented for each cluster. The paper 
closes with a brief recap of results as well as an outlook. 

2 DATA AND METHODOLOGY 

2.1 Characteristics of Glaciolacustrine sediments in Northern 
Germany 

Besides Marine clay and boulder clay, Glaciolacustrine 
sediments are typical soils of Northern Germany. They were 
deposited in reservoirs or lakes which have come from glaciers 
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Table 1. Classification properties of the studied sites (assessment of inherent variability). 

Site Depth No of specimens Clay content Organic content Water content wn Plasticity index IP 

-- in m -- in % in % in % -- 

Brunsbüttel 37 - 40 3 8.0 - 37.0 2.6 -5.6 18.3 - 24.3 0.12 - 0.31 

Zerben 6 - 13 2 4.0 - 52.0 5.0 26.2 - 35.9 0.16 - 0.48 

Levensau 8 / 37 - 42 4 4.0 - 50.0 1.9 - 4.2 19.2 - 20.3 0.13 - 0.32 

Kiel-Holtenau 15 - 19 2 25.0 - 70.0 2.2 - 3.8 18.6 - 21.3 0.31 - 0.32 

Kiel - Friedrichsort 17 / 32 - 33 3 14.0 - 26.0 2.4 - 2.5 32.2 0.13 

Hunte 5 - 14 2 64.0 - 76.0 7.3 - 7.7 32.2 - 34.3 0.43 - 0.51 

Steinhavel 4 - 10 / 21 3 13.0 - 38.0 1.3 - 7.9 24.5 - 29.7 0.16 - 0.53 

Ahse 6 2 31.0-36.0 4.0 - 5.1 21.9 - 28.0 0.22 - 0.31 

Lauenburg 5 - 45 42 5.0 - 65.0 1.0 - 10.4 27.5 - 34.8 0.06 - 58.2 

Niederfinow 2 - 25 17 3.0 - 27.0 2.1 – 5.3 18.5 - 27.5 0.04 - 0.33 

Witzeeze 10 - 30 5 11.0 - 36.0 4.2 - 6.2 19.6 - 24.7 0.09 - 0.22 

Ems 3 - 15 15 5.0 - 21.0 2.4 - 17.5 21.4 - 32.0 0.06 - 0.31 

Niederfinow 10 - 15 2 9.0 - 40.0 -- 21.6 - 24.7 0.66 

 
and which were either formed by glacier erosion or deposition or 
located at the margin of the ice sheet. In the area of Northern 
Germany three ice age periods are reliably identified: Elster ice 
age, Saale ice age, Weichsel ice age; the oldest glaciation, the 
Elsterian, reached furthest south. Only in the west, the ice of the 
second glaciation, the Saalian, advanced beyond the Elsterian 
limits. During the last glaciation, the Weichselian, the ice sheet 
did not cross the Elbe River (Ehlers et al. 2011). Accordingly, 
different stratigraphic units should be considered during soil 
testing and for the definition of characteristic values. 

In general, Glaciolacustrine sediments are cohesive soils. In 
terms of grain size analysis, they are classified as weakly sandy 
to sandy clays or silts according to DIN EN ISO 14688-1:2020-
11. According to DIN 18196:2011-05, they are soils of the 
classes CL, OL or ML. With a liquid limit wL ranging from 20 % 
to 90 % (on average 46 %), the plasticity of either clay and silt 
also ranges from low to high. Due to local lignite streaks and 
lenses, Glaciolacustrine sediments are weak to moderate organic; 
annealing losses between 1 % and 18 % (on average 4 %) are 
determined. 

2.2 Shear strength and compressibility properties 

This section briefly introduces the most important tests and 
parameters used for subsequent analyses. For a detailed 
description of the employed laboratory tests, it is referred to the 
respective standards (DIN EN ISO 17892-5:2017-08, 
DIN EN ISO 17892-9:2018-07). A summary of the employed 
test data is provided in Table 1. For few locations limited data 
are available emphasising the importance of prior knowledge for 
future engineering projects. 

The machine learning algorithm is first applied to selected 
descriptive soil parameters. The liquid limit wL is determined via 
the fall cone test. The plastic limit wP is determined by repeated 

rolling of an ellipsoidal-sized soil mass. Both procedures and the 
calculation of the plasticity index IP = wL- wP are defined in 
DIN EN ISO 17892-12:2018-10. The clay content is obtained 
from sieve and sedimentation tests (DIN EN ISO 17892-4:2016-
04) and the organic content results from tests with the loss-on-
ignition method (DIN 18128:2002-12). 

By means of oedometer tests, the axial compressibility and 
deformation of the soil is investigated. A cylindrical sample is 
deformed uniaxially. A metal ring prevents the specimen from 
deviating sideways. In the case of the presented investigations, a 

specimen was commonly tested against eight load levels which 
doubled after each step and ranged from 17.1 kN/m² to 
1021.1 kN/m². Subsequently, the load was relieved and, then, the 
specimen reloaded up to a maximum of 2040.4 kN/m. In total, 
results of 90 oedometer tests are available for analyses. From the 
first load cycle, the stress-dependent oedometer module Eoed is 
obtained as the ratio of change in stress and change in vertical 
deformation. In the same way, the stress-dependent oedometer 
module Es,r is obtained from the reloading cycle. 

Triaxial tests allow to investigate shear strength, stress-strain 
relationship and effective stress paths of a soil or rock specimen 
under compression. The presented data encompasses isotropic 
consolidated drained triaxial compression (CIDC) and isotropic 
consolidated undrained triaxial compression (CIUC) tests. In 
total 88 triaxial tests which three sub-specimens each were 
conducted; 33 tests of CIUC and 55 tests of CIDC. Both tests 
procedures allow to determine the effective shear parameters, 
effective cohesion c′ and effective friction angle φ′, which are of 
particular relevance for engineering practice. 

2.3 K-means clustering 

During field classification and laboratory tests, different 
sediment or soil types may not always be clearly distinguishable 
or it may not be clear which type dominates the specimen. 
However, this distinction may be important in order to provide 
reliable information on soil characteristics and variability. 
Machine learning tools can assist in classifying sediments based 
on a number of objective criteria. 

K-means clustering is one of the simplest and well-known 
unsupervised machine learning algorithms. It belongs to a family 
of algorithms which were developed independently by 
researchers from different disciplines (MacQueen 1967, 
Steinhaus 1956, Lloyd 1982). Main advantages are its simplicity 
as well as its scalability to different sample sizes. K-means 
clustering partitions n data points in k clusters based on their 
distance to the nearest mean, the cluster centroid. The algorithm 
minimizes the within-cluster variances which is commonly 
expressed via squared Euclidean distances.  

In simplified terms, the algorithm has three main steps: 
Firstly, the number of cluster centroids must be provided by the 
user. The learning process then starts with a group of randomly 
selected centroids. Subsequently, the algorithm changes the 

2262



effective cohesion c′ and effective friction angle φ′, 

 

 

positions of the centroids iteratively until either the difference 
between old and new centroids reaches a threshold or the defined 
number of iterations has been reached. The new centroids are 
computed as the mean value of all of the samples assigned to 
each previous centroid (Pedregosa et al. 2011).  

The presented k-means clustering analyses use Python with 
the machine learning tools provided by the package scikit-learn 
(Pedregosa et al. 2011). To account for the different scales of the 
soil characteristics, the data was normalised before running the 
analyses. For normalisation the L² vector normalisation scheme 
was employed, which is based on the distance of the vector 
coordinate from the origin of the vector space.  

3 PRIOR KNOWLEDGE ON COMPRESSIBILITY AND 
SHEAR STRENGTH 

3.1 Results of k-means clustering analyses 

Figure 2 visualises the results of the k-means clustering analyses. 
Based on normalised wL and normalised IP two clusters are 
identified. When using normalised clay content and normalised 
IP three clusters are found. In the case of the two-cluster solution 
one cluster features material of moderate wL and moderate IP, 
whereas the other group features material of high wL and high IP. 
The three-clusters result features clusters of low, moderate and 
high clay content and IP. Besides the above discussed clusters, 
the images show strong correlations between the wL, IP and clay 
content and IP, which corresponds to results in literature. 
 

 

 
Figure 2. Results of K-means clustering analyses. Descriptive properties 
of the Glaciolacustrine sediments are normalised. Subsequently, clusters 
are identified by their distance to two or three circular centroids. 

The clusters are validated using further characteristics of the data. 
It can be shown that the two-cluster solution corresponds well 
with the stratigraphic units of the Glaciolacustrine sediments 
(Figure 3). When plotting the data into Casagrande’s plasticity 

chart it can be observed that sediments that were deposited 
during Weichsel and Saale glaciation are classified as Group A; 
sediments deposited at the end of the Elster glaciation are 
classified as Group B. Weichselian and Saalian sediments cannot 
be clearly distinguished from each other in Casagrande’s 
plasticity chart. Additional parameter investigations did not 
provide a satisfactory differentiation either. Reasons for this may 
be, among other things, the material composition or perhaps 
uncertain data. 

 

 
Figure 3. Two-cluster solution plotted against Casagrande’s plasticity 
chart. The clusters seem to correspond with the stratigraphic layers. 

The presented k-means clustering analyses are showing 
promising results. Yet, it must be noted that at present available 
data of Elsterian sediments primarily contains specimens of the 
so-called Lauenburg clay, which is a rather distinct, often in 
literature mentioned clay with varying amounts of silt. In the case 
of the Saale and Weichsel sediments, the stratigraphic units 
cannot always be clearly determined from the available boring 
and geotechnical reports. For single specimens, no information 
on stratigraphy is available. Bedload analyses were only carried 
out in few cases, so that the existing classification is usually 
based on the judgement of senior engineers which are familiar 
with the regional geology. Still, this may result in erroneous 
categorisations. Additionally, it should be noted that k-means 
clustering is a rather simple algorithm. It assumes that data points 
belonging to a cluster are evenly distributed and located circular 
around the centroid. In fact, clusters may also have different 
shapes like an ellipse. The presented methodology may therefore 
benefit from the application of more advanced algorithms such 
as Mean-shift clustering or Gaussian Mixture Models. 

In summary, further investigations are certainly required to 
confirm the determined clusters. The result may be improved by 
adding further data. The differentiation into three clusters cannot 
be justified on the basis of the existing soil characteristics and 
metadata. This does not necessarily mean that this classification 
is not accurate, but, at present, the defining properties may not be 
traceable within the existing data. Additionally, measurement 
uncertainties may alter the results. Despite these drawbacks, 
subsequently, the variability of Glaciolacustrine sediments is 
analysed within the two identified clusters. Table 2 summarises 
the point statistics of few classification properties for each group. 

3.2 Typical ranges of mean and variability (COV) of 
compressibility properties 

Due to the geological history of origin, it can be assumed that the 

material was covered by a thick Pleistocene ice cover. With 

altitudes of 500 m to 1000 m the material is geologically 

preloaded and, thus, over-consolidated. Typical ranges of the 

reloading module Es,r are explored in Figure 4 and Figure 5 as a 

2263



 

 

Table 2. Summary of count and point statistics, mean, standard deviation 
(std) and coefficient of variance (COV), of classification properties for 
the two detected clusters. 

 

Clay 

content 

Organic 

content 
wL wP IP 

 in % in % in % in % in % 

Group A (Weichselian / Saalian sediments) 

count 61 43 61 53 53 

mean 16.44 3.84 37.38 21.18 18.98 

std 14.21 1.82 10.23 7.02 9.01 

COV 0.86 47.24 27.36 33.16 47.49 

Group B (Elsterian sediments) 

count 18 8 18 18 18 

mean 53.47 6.52 75.56 27.02 48.54 

std 14.72 2.65 7.90 5.25 5.61 

COV 0.28 40.64 10.45 19.43 11.55 

 

function of the mean soil stress σm. The quality of the tests was 

ensured by a review of laboratory reports. The water content of 

the test specimens at the start of the test ranged between 15 % 

and 40 %; the porosity between 30 % and 75 %.  

A linear least-squares regression was conducted to determine 

the stress-dependent Es,r.  Equations are provided in the top right 

corner of the figures. The R² value is used as a measure of how 

well observed outcomes are predicted by the model. In the 

presented studies, a moderate fit of equations to data is observed. 

Particularly Group B is characterised by uncertainty in slope and 

constant. Yet, due to physical considerations a negative slope, as 

it could be derived from the confidence intervals, must be 

rejected. 
On average, a large variability of Es,r is observed. Among 

other things, this may be due to inhomogeneous soil specimens, 
slightly modified test procedures or different test operators. 
However, the figures illustrate that the differentiation of 
stratigraphic units by means of cluster analyses results in more 
precise soil characteristics. In particular for the Elsterian 
sediments, the compressibility is much lower than for 
Weichselian / Saalian sediments. Without differentiation the 
characteristic compressibility of Elsterian sediments and its 
variability would likely be overestimated. In the case of 
Weichselian and Saalian sediments, on the other hand, the 
increase of Es,r is likely to be underestimated. 
 

 
Figure 4. Stress-dependent modulus Es,r (reloading) over mean soil stress 
σm for the complete data set. The grey shaded area visualises the 95 % 
confidence interval for the linear regression. 

 

 
Figure 5. Stress-dependent reloading modulus Es,r over mean soil stress 
σm for three data combinations. The top image shows the analysis with 
data points that were assigned to Group A; the bottom image shows 
Group B data points. The grey shaded area visualises the 95 % 
confidence interval of the linear regression. 

In order to determine the parameter range and COV of the 
regression parameters, subsequently, a bootstrapping approach 
was applied. Bootstrapping is a common non-parametric method 
for the assessment of errors in a statistical estimation problem. In 
simple terms, bootstrapping assigns measures of accuracy (bias, 
variance, confidence intervals, prediction error, etc.) to sample 
estimates in order to obtain a sample that complies with 
predefined statistics (Efron, 1982, 1993). In the case of the 
presented study, the Es,r values were re-sampled 50 times. In each 
sampling loop, ten samples were drawn with replacement for 
each mean stress level and, subsequently, a linear regression was 
conducted. The number of samples is supposed to ensure that the 
slope is maintained. However, this may not always be true, 
particularly in the case of Group B. Additionally, since the 
presented equations describe the stress-dependent mean Es,r, the 
equations may be shifted along the y-axis till they meet the 
desired safety level required for the definition of characteristic 
values. This could be, for instance, the 95 % prediction band. 
Prediction bands contain, with a pre-specified probability, a new 
observation from the same population from which the sample is 
drawn. The respective 95 % lower limit (LL) and upper limit (UL) 
band and a summary of regression statistics are given in Table 3. 

It can be observed that the variability expressed via the 
coefficient of variance (COV) of the slope a is higher in Group B 
(Elsterian sediments) than in Group A (Weichselian / Saalian 
sediments), whereas the variability of the constant b is higher in 
Group A. Larger R² values indicate that, on average, the linear 
regression in Group A reaches a better fit than in Group B. 
Special attention should be paid to the large standard 
deviation (std) of Group A (std = 8.52 kN/m²) which must be 
considered when trying to define a conservative Es,r.. The 
variability of a and b for the complete data set is comparable to 
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that of Group A. Naturally, the provided 95 % limits of the 
complete data are wider than in Group A or Group B. In addition, 
due to the large variability of test results, the 95 % prediction 
bands represent a rather conservative estimate of Es,r. 

 
Table 3. Summary of point statistics, mean, standard deviation (std), 
coefficient of variance (COV), 95 % lower limit (LL) and upper limit 
(UL), derived from bootstrapping analyses for linear regression of the 
form 𝐸𝐸𝑠𝑠,𝑟𝑟  [𝑘𝑘𝑘𝑘] = 𝑎𝑎 ⋅ 𝜎𝜎𝑚𝑚  + 𝑏𝑏.  

Parameter a b R2 

Complete data set 

mean 0.030 36.633 0.493 

std 0.006 8.829 0.188 

COV 0.186 0.241 0.382 

95 % band (LL/UL) 0.030/0.036 -59.380 / 133.066 -- 

Group A (Weichselian / Saalian sediments) 

mean 0.029 40.185 0.446 

std 0.005 8.522 0.171 

COV 0.180 0.212 0.383 

95 % band (LL/UL) 0.032 / 0.039 -61.004 / 142.260 -- 

Group B (Elsterian sediments) 

mean 0.003 21.773 0.105 

std 0.002 1.100 0.058 

COV  0.574 0.051 0.550 

995 % band (LL/UL) 0.006 / 0.010 -2.101 / 43.790 -- 

 

3.3 Typical ranges of mean and variability (COV) of shear 
strength 

Based on failure points obtained from triaxial tests, effective 
friction angle ϕ’ and effective cohesion c’ are determined with 
Eq. (1) and Eq. (2) via the p’-q’ - diagram where 𝑝𝑝′ =(𝜎𝜎1′ + 𝜎𝜎3′) 2⁄  and 𝑞𝑞′ = (𝜎𝜎1′ − 𝜎𝜎3′) 2⁄ . The quality of triaxial 
test results was ensured by a review of laboratory reports. The 
water content of the test specimens at the start of the test ranged 
between 18 % and 50 %; the porosity between 33 % and 50 %. 

     sin 𝜙𝜙′ = tan 𝛼𝛼′ (1) 
      𝑐𝑐′ =  𝑘𝑘 cos 𝜙𝜙′⁄  (2) 

 
As shown in Figure 6 (top) two different strength envelops are 

determined for Group A and Group B. Figure 6 (bottom) shows 
the linear regression with the complete data set. In contrast to the 
analysis of Es,r, the regression for the shear parameters can only 
be obtained by the analysis of a dependent parameter pair. Failure 
during triaxial tests always results from a specific constellation 
of 𝜎𝜎1′  and 𝜎𝜎3′  on a continuous scale. Therefore, the above 
used bootstrapping approach is not applicable to the evaluation 
of shear parameters. Table 4, thus, only includes the regression 
parameters, the corresponding shear parameters and the 95 % 
limits for the two groups and the complete data set. 

Table 4 immediately reveals a significant shortcoming: the 
linear regression results, on the one hand side, in negative and, 
on the other hand side, rather high values of c'. Negative c' values 
are physically wrong and should not be considered in a design. 
The discussed shortcomings may result from minor deficiencies 
during the test procedure, which are difficult to retrace 
retrospectively. Another reason for inaccurate estimates of ϕ’ and 
c’ is the regression model itself. Experimental data have shown 

that the strength envelops for soils are nonlinear. Nevertheless, 
the linear Mohr–Coulomb strength parameters are widely 
applied in engineering practice. Yet, at the same time it is pointed 
out that both regressions achieve high R2-values. A finer 
clustering may improve the estimates of ϕ’ and c’. 

 

 

 
Figure 6. Extended shear diagram of the triaxial tests. The top image 
shows the analysis with two groups, the bottom image uses the complete 
data set. The grey shaded area visualises the 95 % confidence interval for 
the linear regression. 

Table 4. Summary of point statistics, 95 % lower limit (LL) and upper 
limit (UL) derived from linear regression of the form 𝑦𝑦 = 𝑎𝑎 ⋅ 𝑥𝑥 + 𝑏𝑏  

Parameter a ϕ’ b c‘ R2 

Complete data set 

Regression 0.65 40.54 -31.71 (-41.73) 0.98 

95 % band 

(LL/UL) 

0.65 / 
0.65 

40.17 / 
40.47 

-120.16 / 
56.74 

(-157.23) / 
74.58 

-- 

Group A (Weichselian / Saalian sediments) 

Regression 0.64 39.80 -23.45 (-30.51) 0.98 

95 % band 

(LL/UL) 

0.64 / 
0.65 

39.87 / 
40.17 

(-111.45) 
/ 64.55 

(-145.20) / 
84.47 

-- 

Group B (Elsterian sediments) 

Regression 0.34 19.90 17.1 18.18 0.89 

95 % band 

(LL/UL) 

0.34 / 
0.35 

19.82 / 
20.18 

(-23.78) 
/ 57.98 

(-25.27) / 
61.77 

-- 

 
A closer review of the results in Table 4 indicates that the 

variability of ϕ’ and c’ expressed via the 95 % limits does not 
differ significantly between Group A (Weichselian / Saalian 
sediments) and Group B (Elsterian sediments). A larger 
variability can be observed for c’ due to the drawbacks discussed 
in the previous paragraph. The highest variability of c’ can be 
observed for the complete data set, whereas ϕ’ is affected 
moderately. Compared to Es,r, the variability of the test results 
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within the groups is small. Thus, the confidence intervals of both 
regressions are narrow. Moreover, it can be observed that Group 
A dominates the regression. This may be due to the fact that for 
group B only investigations at lower stress levels are available.  

Additional information on the variability of ϕ’ and c’ are 
derived from the analysis of each test series comprising of three 
specimens (see Table 5). Again, different material properties are 
observed within the two groups. The differentiation into clusters 
reduces the group-inherent variability. However, in contrast to 
the analysis in Table 4, c' only takes positive values. 

In summary, based on the currently available data it can be 
assumed that if not differentiated between the stratigraphic 
layers, the shear strength of Group B (Elsterian sediments) is 
overestimated; c’, on the other hand, is overestimated for 
Group A (Weichselian / Saalian sediments). 

 
Table 5. Summary of point statistics from analyses of each test series 

 
Complete data set  

Group A 
(Weichselian / 

Saalian sediments) 

Group B 
(Elsterian 
sediments) 

 ϕ’ c‘ ϕ’ c‘ ϕ’ c‘ 

 in ° in kN/m² in ° in kN/m² in ° in kN/m² 

mean 31.01 16.83 33.22 18.29 23.18 11.67 

std 7.85 20.5 6.77 21.79 6.36 14.54 

COV 0.25 1.22 0.20 1.19 0.27 1.25 

4 CONCLUSIONS AND OUTLOOK 

This paper presents a data-driven methodology for a 
differentiation of soil types that serves the multivariate character 
of soil data. With the aid of the machine learning algorithm k-
means clustering two soil types with different material properties 
are identified. Subsequently, point statistics of material 
properties such as compressibility and shear strength are 
determined for each soil type separately.  

The results of the statistical analyses show that a 
differentiation into soil types reduces the variability within a 
cluster and, thus, allows for a more precise estimate of 
characteristic values. Moreover, it can be shown that mean and 
COV are clearly affected by the dominant soil type. 

Further investigations should validate the clusters that have 
been identified. This can be done, for example, by applying more 
advanced cluster algorithms. Besides that, additional data or the 
consideration of different soil characteristics may assist in 
specifying clusters more accurately. Based on these 
supplementary studies, the determined mean and variability of 
the investigated soil types should be reviewed. 

On a broader basis, it is recommended to support generic 
databases which store data in a structured, machine readable 
manner. Only in this way, geotechnical engineering will benefit 
from recent and future developments in the field of data science. 
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