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ABSTRACT: This study addresses the feasibility of downscaling SMAP Level 4 Root Zone Soil Moisture and its subsequent use in 
landslide slope stability analyses. This was conducted by; (1) Acquiring Level 4 soil moisture (L4_SM) data from the NASA SMAP 
satellite mission, (2) Downscaling the data from 9 km to 1 km resolution using MODIS and VIIRS 1 km data and the soil moisture 
and Soil Evaporative Efficiency (SEE) relationship, (3) Locally calibrating the downscaled data to that of ground-based data, and (4) 
Using the calibrated downscaled data to detect incipient failure conditions within slope stability models created based upon known 
landslide occurrences. The known landslide events used were the Mud Creek landslide in California USA, The Rattlesnake Hills 
landslide in Washington USA, and the Sierra Leone landslide near Freetown, Sierra Leone. It was observed that stability models 
constructed using downscaled L4_SM data detected strength weakening and incipient conditions well at the investigated sites. The 
intent of this study is to provide a downscaling and local calibration routine for SMAP L4_SM data as well as investigating the 
potential strength of utilizing downscaled L4_SM data in incipient landslide condition detection. 

RÉSUMÉ : Cette étude porte sur la faisabilité de réduire l’humidité du sol de la zone racinaire de niveau 4 SMAP et son utilisation 
ultérieure dans les analyses de stabilité des pentes de glissement de terrain. Cela a été mené par; (1) Acquisition des données d'humidité 
du sol de niveau 4 (L4_SM) de la mission satellite SMAP de la NASA, (2) Réduction d'échelle des données de 9 km à 1 km de résolution 
en utilisant les données MODIS et VIIRS 1 km et l'humidité du sol et l'efficacité d'évaporation du sol (SEE) relation, (3) étalonner 
localement les données à échelle réduite à celles des données au sol, et (4) utiliser les données étalonnées à échelle réduite pour détecter 
les conditions de défaillance naissantes dans les modèles de stabilité des pentes créés sur la base d'occurrences connues de glissements 
de terrain. Les événements de glissement de terrain connus utilisés étaient le glissement de terrain de Mud Creek en Californie aux États-
Unis, le glissement de terrain de Rattlesnake Hills à Washington aux États-Unis et le glissement de terrain en Sierra Leone près de 
Freetown, en Sierra Leone. Il a été observé que les modèles de stabilité construits à l'aide de données L4_SM à échelle réduite détectait 
bien un affaiblissement de la résistance et des conditions naissantes sur les sites étudiés. Le but de cette étude est de fournir une routine 
de réduction d'échelle et d'étalonnage local pour les données SMAP L4_SM ainsi que d'étudier la force potentielle de l'utilisation de 
données L4_SM à échelle réduite dans la détection de l'état de glissement de terrain naissant. 
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1  INTRODUCTION 

Landslides are geological phenomena known to cause significant 
loss of life and billions of dollars in damages each year (Terzis 
et al., 2006). The ability to accurately predict, monitor, and 
provide early warning for where and when a landslide is expected 
to occur is a resoundingly important task in the attempts to 
mitigate the damages and losses caused by these slides. 

Soil moisture (SM) is a predominant controlling factor of 
landslide occurrence (Hong et al., 2007). However, acquisition 
of SM at potential landslide sites can be a tedious and costly 
endeavor. Fortunately, remote sensing allows for a more readily 
means of SM acquisition. Due to its sensitivity to subsurface SM 
and relative insensitivity to vegetation, low-frequency passive 
microwave remote sensing has been established as the primary 
tool for retrievals of SM on a global scale. The research data 
presented in this paper makes use of the Level 4 Root Zone Soil 
Moisture (L4_SM) product (0-100 cm of the soil column) from 
the National Aeronautics and Space Administration (NASA) Soil 
Moisture Active Passive (SMAP) satellite mission. L4_SM is 
available in a 9 km gridded spatial resolution. While 9 km is not 
an overly coarse resolution, a finer resolution (e.g., 1 km) is 
desired for use in applications such as landslide slope stability 
analysis. Therefore, a means to downscale the L4_SM product 
from 9 km to a finer resolution such as 1 km is desired. The 
research presented herein exploits the assumed relationship 
between SM and Soil Evaporative Efficiency (SEE) (Merlin et 
al., 2008) to downscale the L4_SM data. The SEE was calculated 
using 1 km Land Surface Temperature (LST) and Normalized 
Difference Vegetation Index (NDVI) data as well as 9 km 

upscaled LST and NDVI data. After downscaling using the 
SM/SEE relationship, the downscaled L4_SM (9 km to 1 km) 
data was calibrated with ground-based data and then assimilated 
with easily obtained physical land surface data. The downscaled 
assimilated data was then used in conjunction with an infinite 
slope limit equilibrium stability model at known landslide sites 
to develop site specific stability models. Therefore, this research 
develops the framework upon which higher resolution remotely 
sensed SM can be retrieved via downscaling and then utilized for 
the application of landslide slope stability analysis. 

2  SATELLITE DATA ACQUISITION 

For this study, three parameters were retrieved via remotely 
sensed data; Root Zone Soil Moisture (L4_SM), Land Surface 
Temperature (LST), and Normalized Difference Vegetation 
Index (NDVI). L4_SM data were retrieved from the SMAP 
satellite mission while LST and NDVI were retrieved from the 
following missions: (1) Moderate Resolution Imaging 
Spectroradiometer (MODIS) aboard the Aqua and Terra Earth 
Observing System (EOS). (2) The Visible Infrared Imaging 
Radiometer Suite (VIIRS) aboard the Suomi National Polar-
Orbiting Partnership (NPP) satellite mission. 

2.1  Satellite-Based L4_SM Retrievals 

Level 4 (SMAP L4_SM) product is model-derived value-added 
product obtained by merging SMAP observations with estimates 
from a Catchment land surface model (LSM) in a data 
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assimilation system. The model-derived product produces 3-
hourly estimates of surface and root zone soil moistures (to a 
depth of 100 cm) at a 9 km gridded resolution, with a data 
availability latency of 7 to 14 days (Chan et al., 2016). The 
SMAP L4_SM product used for this current study was accessed 
and acquired using the Application for Extracting and Exploring 
Analysis Ready Samples (AppEEARS) tool.  

2.2  Satellite-Based LST and NDVI Retrievals 

The L3 daily MODIS Aqua, MODIS Terra, and VIIRS LST and 
16-day MODIS Aqua, MODIS Terra, and 8-day VIIRS NDVI 
product on the 1 km global grid was used in this study. Version 6 
of the MODIS products (LST: MOD11A1 and MYD11A1, 
NDVI: MOD13A2 and MYD13A2) and Version 1 of the VIIRS 
products (LST: VNP21A1D, NDVI: VNP13A2) were retrieved. 
The LST and NDVI data were resampled to impute missing daily 
observations. Once imputed, the 1 km data retrievals were 
upscaled to a 9 km grid to match the resolution of L4_SM for use 
in the SM/SEE relationship. Data imputation and upscaling 
methods used are discussed fully in following sections. As with 
L4_SM data, MODIS and VIIRS data were retrieved using the 
AppEEARS tool.  

3  LOCAL CALIBRATION AND LANDSLIDE STUDY 
SITES 

For the downscaling procedures discussed, the data was first 
downscaled using the SM/SEE relationship. The downscaled 
data was then locally calibrated to ground-based sensor data. 
Therefore, the 9 km L4_SM data was not only downscaled from 
9 km to 1 km but was also compared and calibrated to ground-
based data. For the stability analyses, three known landslide 
locations were investigated. The following information was 
known for each of the three investigated slides: the geographical 
location of the slide, the failure date of the slide (i.e., when the 
slide was reported to have occurred), and a relative description 
of the site after the slide occurred (i.e., damages, type of slide, 
extent of slide, etc.). These data were used in conjunction with 
the downscaled and calibrated SMAP L4_SM and ground 
surface data to evaluate the hydrologic conditions leading to the 
incipient failure conditions at each site. 

3.1  Ground-Based Calibration Sites 

This study made use of two sources of ground-based root zone 
soil moisture data: (1) The Soil Climate Analysis Network 
(SCAN) maintained by the National Resources Conservation 
Service (NRCS) and (2) The U.S. Climate Reference Network 
(USCRN) maintained by the National Oceanic and Atmospheric 
Administration (NOAA). The name and location of these 
ground-based data stations is given in Table 1. 
 
Table 1. Ground-Based Sensor Locations 

Network Station Name Latitude Longitude 
SCAN Cook Farm Field 46.78 -117.08 
SCAN Lind #1 47.00 -118.57 

USCRN Santa Barbara 34.41 -119.88 
USCRN Yosemite 37.76 -119.82 

 

3.2  Investigated Landslides 

Three known landslides were investigated during the slope 
stability analysis phase of this study. The landslides used in this 
study are as follows: (a) The Mud Creek Landslide, Big Sur, CA, 
(b) The Rattlesnake Hills Landslide, Union Gap, WA, and (c) 
The Sierra Leone Landslide near Freetown, Sierra Leone. Table 
2 shows the failure date, type of failure, location, as well as which 

ground-based station network was used for each slide. As a note, 
there were no ground-based stations readily available for use 
with the Sierra Leone landslide. Due to this, no downscaling or 
calibrations were able to be confidently conducted at this 
landslide location.  
 
Table 2. Information on Investigated Landslides 

Landslide Date Latitude Longitude Network 

Mud Creek 
May 20th 

2017 
35.87 -121.43 USCRN 

Rattlesnake 
Hills 

October 
2017 

46.52 -120.31 SCAN 

Sierra 
Leone 

August 14th 
2017 

8.43 -13.22 N/A 

 
Figure 1 shows the location of each investigated landslide as 

well as the ground-based stations in relation to the respective 
slide. The landslides are represented by the “star” symbol while 
ground-based stations are shown by the circular symbols. As 
discussed, Sierra Leone had no available ground-based stations, 
so only the landslide is shown in that instance.  
 

 
Figure 1. (A) California, USA Landslide & USCRN Locations, (B) 
Washington, USA Landslide and SCAN Locations, and (C) Freetown, 
Sierra Leone Landslide Location. 

4  DOWNSCALING AND LOCALIZED CALIBRATION OF 
SMAP L4_SM 

All the SMAP Level 2, Level 3, and Level 4 products, as well as 
the Radiometer Level 1C product, employ the Equal-Area 
Scalable Earth2.0 (EASE2.0) Grid (also referred to as the WGS 
1984 Cylindrical Equal Area) projection (Brodzik et al., 2012). 
Therefore, the L4_SM data is available in 9 km grids within the 
EASE2.0 projection. It is crucial to ensure that data retrieved 
from other satellite platforms (e.g., MODIS and VIIRS) align 
with these EASE2.0 grids for use in downscaling. The 
generalized procedure for the downscaling and calibration 
process is as follows: 

4.1  Determination of EASE2.0 Grid Center and Extents 

The National Snow and Ice Data Center (NSIDC) has created a 
tool which converts row/column coordinates of EASE2.0 grids 
(obtained from AppEEARS retrievals in this study) to the latitude 
and longitude at the center of the grid cell. The program, 
easeconv.pro, can be either ran in an Interactive Data Language 
(IDL), C code, or Fortran code and is readily available to the 
public from the NSIDC (https://nsidc.org/data/ease/tools). For 
this study, the EASE-Grid data tool easeconv.pro was ran in an 
IDL environment. To convert from column/row to 
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latitude/longitude, the following commands were used in the IDL 
environment: 
 
IDL>.run easeconv.pro                    (Command 1) 

 

status=ease_inverse('EASE2_M09km',col,row,lat,long)               
 (Command 2) 

 
Command 1 runs the overall program while Command 2 converts 
from column/row coordinates to latitude/longitude coordinates. 
In this case, the conversion was being conducted over the global 
EASE2.0 9 km grids (EASE2_M09km). However, the program 
can function with any of the EASE2.0 grids (Northern, Southern, 
Global, and varying sizes).  

To represent the extents of the EASE2.0 9 km grids, ArcGIS 
was utilized. The projection within ArcGIS was set to be that of 
WGS 1984 Cylindrical Equal Area. The center of each 9 km grid 
(found using easeconv.pro) was then input into ArcGIS and was 
used as the center point of a 9 km square buffer. To ensure the 9 
km buffer aligned correctly with the EASE2.0 grid, L4_SM from 
the same EASE2.0 grid was retrieved and overlain, with a perfect 
alignment occurring. Shapefiles of each created buffer were then 
created and later used to retrieve LST/NDVI data over each of 
the 9 km grids. Table 3 shows the location that each grid provides 
data for, the row/column, and latitude longitude coordinates of 
the center of the grids. It is necessary to note that the location is 
NOT at the center of the grid. The location simply falls within 
the 9 km grid. 
 
Table 3. Row/Columns of EASE2.0 Converted to Lat/Lon at Center of 
Each Grid 

Location Column Row Latitude Longitude 
Santa Barbara 643 352 34.435 -119.922 

Yosemite 644 314 37.741 -119.829 
Mud Creek 627 335 35.897 -121.416 

Cook Farm Field 673 219 46.758 -117.121 
Lind #1 657 217 46.963 -118.615 

Rattlesnake Hills 639 221 46.553 -120.296 
Sierra Leone 1786 693 8.397 -13.211 

 

4.2  Retrieving LST and NDVI Data 

The SM/SEE relationship used for the downscaling routine 
within this study requires both fine scale and coarse scale SEE 
(Colliander et al., 2017). Fine scale SEE refers to that of the 
intended downscaled resolution (i.e., 1 km). For fine SEE, native 
resolution (1 km) LST/NDVI data was able to be retrieved and 
averaged across the three platforms (MODIS Aqua, MODIS 
Terra, and VIIRS). However, it was seen that the daily LST data 
from all platforms was seen to have large gaps in the time series 
data. This was likely caused by excessively cloudy days and the 
fact that cloud cover is a common problem for visible and 
infrared sensing (i.e., LST sensing). To remedy these large gaps 
in the data, data imputation was utilized. To impute missing data, 
the daily LST data was plot as a scatterplot, a 6th order 
polynomial line of best fit was fit to the data, and the resulting 
best fit equation was used to fill in missing data. This imputation 
method was seen to match the pattern of the LST data well. 

4.3  Upscaling LST and NDVI Data 

Coarse SEE, in this case SEE with a spatial resolution of 9 km, 
implies the need for LST/NDVI data at a resolution of 9 km. 
However, 9 km LST/NDVI is not readily available. To remedy 
this lack of coarse data, 1 km LST/NDVI was upscaled to that of 
9 km. The 1 km rasters of LST and NDVI data are available from 
AppEEARS in Sinusoidal, Lambert, and Geographic projections. 
It was observed that rasters using the Geographic projection 
aligned well with that of the EASE2.0 grids. To conduct the 
upscaling process, the Geographic projection 1 km LST and 

NDVI rasters were first retrieved. This was done by using 
AppEEARS in conjunction with the 9 km shapefiles 
representative of the L4_SM EASE2.0 grids discussed 
previously. Effectively, AppEEARS retrieved 1 km rasters of 
data across the entire 9 km shapefiles for use in upscaling. 
ArcGIS was then used to average the 1 km rasters across each 
EASE2.0 grid. The output from this upscaling process was LST 
and NDVI data at a resolution of 9 km that could then be used to 
determine the coarse SEE. 

4.4  Downscaling and Locally Calibrating L4_SM Data 

The downscaled L4_SM is estimated using the difference 
between the fine SEE and the coarse SEE. This difference is then 
multiplied by the relationship between SM and SEE before 
adding the coarse scale L4_SM. The downscaling routine is as 
follows:                                    
 𝑆𝑆𝑀𝑀1𝑘𝑘𝑚𝑚 = 𝑆𝑆𝑀𝑀𝐿𝐿4_𝑆𝑆𝑆𝑆 +

𝜕𝜕𝑆𝑆𝑆𝑆𝜕𝜕𝑆𝑆𝜕𝜕𝜕𝜕 (𝑆𝑆𝑆𝑆𝑆𝑆1𝑘𝑘𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑆𝑆9𝑘𝑘𝑚𝑚)      (1) 

 
where 𝑆𝑆𝑀𝑀1𝑘𝑘𝑚𝑚  = downscaled L4_SM; 𝑆𝑆𝑀𝑀𝐿𝐿4_𝑆𝑆𝑆𝑆  = 9 km 
L4_SM; 𝜕𝜕𝑆𝑆𝑀𝑀 𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆⁄   = the approximation of the relationship 
between SM and SEE; 𝑆𝑆𝑆𝑆𝑆𝑆1𝑘𝑘𝑚𝑚 = fine resolution SEE from 1 
km LST/NDVI; and 𝑆𝑆𝑆𝑆𝑆𝑆9𝑘𝑘𝑚𝑚  = coarse resolution SEE from 
upscaled LST/NDVI. 
 

    𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚                             (2) 

 

    𝑇𝑇𝑠𝑠 =
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿−0.5∙𝑓𝑓𝑣𝑣(𝑇𝑇𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚+𝑇𝑇𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚)1−𝑓𝑓𝑣𝑣                      (3) 

 

    𝑓𝑓𝑣𝑣 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠                                (4) 

 

    𝑇𝑇𝑣𝑣,𝑚𝑚𝑎𝑎𝑚𝑚 = max (𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿−𝑇𝑇𝑠𝑠,max(1−𝑓𝑓𝑣𝑣)𝑓𝑓𝑣𝑣 )                 (5) 

 
where 𝑆𝑆𝑆𝑆𝑆𝑆 = either fine or coarse resolution SEE (depending 
on the resolution used); 𝑇𝑇𝑠𝑠 = soil skin temperature (K); 𝑇𝑇𝑠𝑠,𝑚𝑚𝑚𝑚𝑛𝑛 
= minimum of LST (K); 𝑇𝑇𝑠𝑠,𝑚𝑚𝑎𝑎𝑚𝑚 = maximum of LST (K); 𝑇𝑇𝑣𝑣,𝑚𝑚𝑚𝑚𝑛𝑛  
= minimum of LST (K); 𝑇𝑇𝐿𝐿𝑆𝑆𝑇𝑇  = daily LST; 𝑓𝑓𝑣𝑣  = fractional 
vegetation cover; 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼  = daily NDVI; 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑠𝑠  = soil cover 
fraction (user observed); and 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑣𝑣  = vegetation cover 
fraction (user observed). 

An important part of the downscaling algorithm is the 
estimation of the relationship between SM and SEE (Colliander 
et al., 2017). This estimation is as follows: 
 

    
𝜕𝜕𝑆𝑆𝑆𝑆𝜕𝜕𝑆𝑆𝜕𝜕𝜕𝜕 = 𝛼𝛼 ∙ 1𝑁𝑁∑ 𝑆𝑆𝑆𝑆𝐿𝐿4_𝐿𝐿𝑆𝑆,𝑚𝑚𝑆𝑆𝜕𝜕𝜕𝜕9𝑘𝑘𝑚𝑚,𝑚𝑚𝑁𝑁𝑚𝑚=1                         (6) 

 
where 𝛼𝛼  = experimental tuning parameter (observed to range 
between -1 and 1); and 𝑘𝑘 = number of days. 

The L4_SM data was not only downscaled from 9 km to 1 km 
but was also locally calibrated to that of ground-based data. The 
calibration method used during this study was the application of 
simple multiplicative and additive offset factors to that of the 
downscaled data. The application of these offset factors to the 
downscaled data is follows: 
 
    𝑆𝑆𝑀𝑀𝑐𝑐𝑎𝑎𝑐𝑐 = (𝑆𝑆𝑀𝑀1𝑘𝑘𝑚𝑚 ∙ 𝑀𝑀𝐹𝐹) + 𝐴𝐴𝐹𝐹                    (7) 
 
where 𝑆𝑆𝑀𝑀𝑐𝑐𝑎𝑎𝑐𝑐  = site specific calibrated SMAP L4_SM data; 𝑆𝑆𝑀𝑀1𝑘𝑘𝑚𝑚 = downscaled SM_L4 data; 𝑀𝑀𝐹𝐹 = multiplicative factor 
(ranging from 0.0 – 1.0); and 𝐴𝐴𝐹𝐹  = additive factor (ranging 
from -1.0 – 1.0). 

The calibration and downscaling routines were conducted in 
unison during this study. It was observed that the possible 
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variability in the determination of the 𝛼𝛼 , 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑠𝑠 , and 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑣𝑣 terms could lead to varying success during the 
downscaling routine when the downscaled data was compared to 
ground-based data. To conduct both routines in unison, a least 
squares optimization was conducted using the Microsoft Excel 
GRG nonlinear solver. This routine was carried out by the user 
first determining a range of 𝛼𝛼 , 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑠𝑠 , and 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑣𝑣  that 
yielded downscaled data that compared well with the ground-
based data. These ranges, as well as the ranges for the 𝑀𝑀𝐹𝐹 and 𝐴𝐴𝐹𝐹  discussed previously, were then used with the GRG 
nonlinear solver. The optimized downscaled and calibrated data 
was observed to follow the trend of the ground-based data better 
than that of the data obtained by the user generated ranges. Table 
4 shows the optimized values for downscaling data at the ground-
based sites. 
 
Table 4. Optimized Downscaling and Calibration Values 

Station 𝛼𝛼 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑠𝑠 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑣𝑣 𝑀𝑀𝐹𝐹 𝐴𝐴𝐹𝐹 R2 

Cook 
Farm 
Field 

-0.0061 0.0139 0.832 1.0 0.168 
 

0.912 

Lind #1 -0.0004 0.0092 0.95 0.398 -0.002 0.753 
Santa 

Barbara 
1.0 0.092 0.881 0.153 0.462 0.459 

Yosemite 0.261 0.051 0.758 0.770 -0.058 0.969 
 

The local calibration and downscaling efforts can be seen in 
the following figures (Figures 2-5). Figures 2A-5A represent the 
9 km L4_SM data taken over the calibration sites compared to 
that of the ground-based data taken from the in-situ sensor 
stations. Figures 2B-5B represent the calibration and 
downscaling efforts at each ground-based site. It is important to 
note that the plots labeled “RAW OS L4_SM” represent 9 km 
data solely calibrated using the multiplicative and additive 
offsets discussed in Equation 7. No downscaling efforts were 
conducted on data within these plots. Alternatively, “DS & OS 
L4_SM” plots represent downscaled (1 km) and locally 
calibrated L4_SM data. 

  

 
Figure 2. (A) 9 km L4_SM vs Ground Based RZSM and (B) Local 
Calibration using Downscaled (1 km) and Raw (9 km) L4_SM at the 
Santa Barbara USCRN Site 

The downscaled calibrated data was observed to perform 
marginally better in Figures 2B and 3B. For example, this can be 
observed in Figure 3B within the boxed region on the plot where 
the downscaled data is seen to better reflect the drying trend 
observed within the in-situ data. However, in Figures 4B and 5B 
the downscaled calibrated data was seen to perform significantly 
better than that of the calibrated raw data. In general, the 
downscaled and locally calibrated L4_SM data was observed to 
represent the in-situ data from all ground-based sites well. 

 
Figure 3. (A) 9 km L4_SM vs Ground Based RZSM and (B) Local 
Calibration using Downscaled (1 km) and Raw (9 km) L4_SM at the 
Yosemite USCRN Site 

 

 
Figure 4. (A) 9 km L4_SM vs Ground Based RZSM and (B) Local 
Calibration using Downscaled (1 km) and Raw (9 km) L4_SM at the 
Cook Farm Field SCAN Site 

 

 
Figure 5. (A) 9 km L4_SM vs Ground Based RZSM and (B) Local 
Calibration using Downscaled (1 km) and Raw (9 km) L4_SM at the Lind 
#1 SCAN Site 

For downscaling at the landslide sites, the averages of the data 
shown in Table 4 were applied to the corresponding landslide 
site. It is worth noting that the average of the tuning parameter 
(𝛼𝛼) returned poor results at the Mud Creek site and was replaced 
by a user chosen value. This implies that the tuning parameter 
may be a purely site-specific variable. Table 5 shows the values 
applied to the landslide sites as well as what network was used in 
the calibration process. It also must be again noted that Sierra 
Leone has no optimized values due to the lack of ground-based 
data. In the subsequent stability analysis discussions, raw L4_SM 
data was investigated at the Sierra Leone site. 
 
Table 5. Optimized Downscaling and Calibration Values at Landslide 
Sites 
Landslide Network 𝛼𝛼 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑠𝑠 𝑘𝑘𝑁𝑁𝑁𝑁𝐼𝐼𝑣𝑣 𝑀𝑀𝐹𝐹 𝐴𝐴𝐹𝐹 

Mud Creek USCRN 0.01 0.072 0.819 0.461 0.202 

Rattlesnake SCAN -0.003 0.012 0.891 0.699 0.083 

Sierra 
Leone 

N/A N/A N/A N/A N/A N/A 

 
It is understood that biases may be being introduced to the 

downscaled data due to being directly calibrated to ground-based 
data at individual locations. This possibility is why calibrations 
and downscaling variables are averaged over the calibration sites 
before being applied to their respective landslide sites. Future 
studies using the local calibration and downscaling routines will 
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make use of more local calibration sites to minimize potential site 
biases.  

5  GEOTECHNICAL AND LAND SURFACE DATA 

Due to the catastrophic failures of the Mud Creek and Sierra 
Leone landslides, and the threat posed by the Rattlesnake Hills 
creeping slide, many researchers (Machan et al., 2018; Norrish, 
2018) have conducted studies into the physical and geotechnical 
properties of said slides. Investigated geotechnical properties 
include slope angle, depth to slip surface, friction angle, and 
cohesion, 𝛽𝛽, 𝐻𝐻𝑠𝑠𝑠𝑠 , ′, and 𝑐𝑐′, respectively. In the case of the 
Mud Creek and Rattlesnake Hills slides, the soil compositions 
(i.e., % sand, % silt, and % clay) were unavailable from 
published research. To account for this lack of data, borehole 
information from either the California Geological Survey (CGS) 
or the Washington Department of Natural Resources (DNR) was 
utilized. The geotechnical and land surface data acquired from 
either published work, or the borehole information, is shown in 
Tables 6 and 7. Additionally, Table 7 presents the saturated and 
residual volumetric water content data, 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑟𝑟, respectively. 
These data are assumed to be representative of in-situ conditions 
at the onset of the investigated landslides. The saturated water 
content was obtained through analysis of the downscaled SMAP 
L4_SM data. The maximum volumetric water content value at 
each site over a two-year period (one-year prior to and one-year 
after the event) were assumed to be indicative of the saturated 
values. 
 
Table 6. Geotechnical Data for Three Investigated Landslide Events 

Landslide 
𝛽𝛽 

(deg) 
𝐻𝐻𝑠𝑠𝑠𝑠 
(m) 

′ 
(deg) 

𝑐𝑐′ 
(kPa) 

Mud Creek 36.5 35 34.5 0 

Rattlesnake 14.5 30 14 0 

Sierra 
Leone 

35 7.5 18 28 

 
Table 7. Land Surface Data for Three Investigated Landslide Events 

Landslide 
% 

Sand 
% 

Clay 
% 

Silt 
𝜃𝜃𝑠𝑠 

(cm3/cm3) 
𝜃𝜃𝑟𝑟 

(cm3/cm3) 

Mud Creek 65.2 17.4 17.4 0.410 0.0527 

Rattlesnake 96.5 1.75 1.75 0.273 0.0483 

Sierra 
Leone 

67 19 14 0.413 0.0564 

 
For the Sierra Leone landslide: (1) 9 km SMAP L4_SM (i.e., 

non-downscaled) data was used in the analysis due to lack of 
ground-based data. (2) Data such as ′  and 𝑐𝑐′  were not 
available at the site of the slide. However, Igwe (2018) conducted 
research on a nearby landslide in Nigeria. Due to the lack of 
borehole information and/or research data from the physical site, 
data from Igwe (2018) was substituted where needed.  

6  HYDROLOGIC BEHAVIOR VIA DOWNSCALED SMAP 
L4_SM 

For the associated stability analyses using the previously 
discussed locally calibrated downscaled SMAP L4_SM data, the 
Lu and Godt (2008) infinite slope stability equation was used. A 
more encompassing discussion of this equation and its results 
will follow in Section 7. However, a key variable for this 
equation is that of suction stress. Suction stress is given as: 
 
    𝜎𝜎𝑠𝑠 = 𝑆𝑆𝑒𝑒𝑠𝑠                                      (8) 
 
where 𝜎𝜎𝑠𝑠  = suction stress (kPa); 𝑆𝑆𝑒𝑒  = effective degree of 
saturation = (𝜃𝜃 − 𝜃𝜃𝑟𝑟) (𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟)⁄ ; 𝜃𝜃  = volumetric water 

content; 𝜃𝜃𝑟𝑟 = residual volumetric water content; 𝜃𝜃𝑠𝑠 = saturated 
volumetric water content; and 𝑠𝑠 = matric suction = (𝑢𝑢𝑎𝑎 − 𝑢𝑢𝑤𝑤); 𝑢𝑢𝑎𝑎 = pore air pressure; 𝑢𝑢𝑤𝑤 = pore water pressure. 

The effective degree of saturation is a variable that can be 
calculated via SMAP L4_SM data. However, data for matric 
suction, a function of the hydrologic behavior of the soil (i.e., the 
change in water content or degree of saturation due to suction), 
was not readily available at the landslide study sites. To remedy 
this lack of data, the soil water characteristic curve (SWCC) 
model established by van Genuchten was manipulated to yield 
matric suction and adopted for this study. The manipulated van 
Genuchten SWCC equation is given as: 
 

    𝑠𝑠 =
1𝛼𝛼 [( 1𝑆𝑆𝑒𝑒)1 𝑚𝑚⁄ − 1]1 𝑛𝑛⁄

                          (9) 

 
where 𝑠𝑠 = matric suction; 𝑆𝑆𝑒𝑒 = effective degree of saturation; 𝛼𝛼, 𝑛𝑛 and 𝑚𝑚 = fitting parameters reflecting the air entry value, 
the slope at the inflection point of the SWCC, and the curvature 
of the SWCC near the residual point, respectively. 

With the adoption and manipulation of the SWCC curve to 
output an equation yielding matric suction comes the 
requirement of the determination of the fitting parameters 𝛼𝛼, 𝑛𝑛 
and 𝑚𝑚. To obtain these fitting parameters, pedotransfer functions 
(PTFs) included in the Rosetta Lite software, embedded in the 
HYDRUS flow simulation software were used. The inputs for the 
PTFs are the % sand, % silt, % clay data presented in Table 7. 
The Rosetta output includes estimates of 𝜃𝜃𝑟𝑟, 𝜃𝜃𝑠𝑠 (however, the 
saturated value presented in Table 7 was used in the calculations), 𝛼𝛼, and 𝑛𝑛. The Rosetta PTFs use the approximation that states 𝑚𝑚 = 1− 1/𝑛𝑛. The van Genuchten fitting parameters used in this 
study are shown in Table 8. 
 
Table 8. Land Surface Data for Three Investigated Landslide Events 

Landslide 𝛼𝛼 𝑛𝑛 𝑚𝑚 
Mud Creek 0.028 1.373 0.2715 
Rattlesnake 0.0304 3.355 0.702 
Sierra Leone 0.027 1.371 0.271 

 

7  LANDSLIDE SLOPE STABILITY ANALYSIS WITH 
DOWNSCALED L4_SM DATA 

For this study, the known landslide locations were analyzed 
using an infinite slope stability equation derived by Lu and Godt 
(2008). The general form of the Lu and Godt (2008) infinite slope 
equation is as follows: 
 

    𝐹𝐹𝑆𝑆 =
tan (′)tan (𝛽𝛽)

+
2𝑐𝑐′𝛾𝛾𝐻𝐻𝑠𝑠𝑠𝑠sin (2𝛽𝛽)

+ 𝑟𝑟𝑢𝑢[tan(𝛽𝛽) +

   cot (𝛽𝛽)]tan (′)                            (10) 
 
where 𝐹𝐹𝑆𝑆  = factor of safety; ′  = soil friction angle; 𝑐𝑐′  = 
effective soil cohesion; 𝛽𝛽 = slope angle; 𝛾𝛾 = soil unit weight 
(assumed to be 17.28 𝑘𝑘𝑘𝑘/𝑚𝑚3 ); 𝐻𝐻𝑠𝑠𝑠𝑠  = depth to bedrock 
(meters); 𝑟𝑟𝑢𝑢  = pore pressure ratio = 𝜎𝜎𝑠𝑠 𝛾𝛾𝐻𝐻𝑠𝑠𝑠𝑠⁄  ; and 𝜎𝜎𝑠𝑠  = 
suction stress. 

The soil shear strength and slope parameters used for the 
calculation of the FS throughout this study are given in Table 6. 
The Mud Creek and Rattlesnake Hills landslides had no relevant 
cohesion (𝑐𝑐′ ) data and were therefore assumed to be purely 
frictional (i.e., 𝑐𝑐′  = 0 kPa) due to their composition being 
assumed predominantly sandy due to borehole data. 

The intention behind using downscaled satellite-based soil 
moisture (i.e., L4_SM) in slope stability analyses was to 
investigate the feasibility of remotely and accurately detecting 
incipient landslide conditions. As discussed, this study made use 
of downscaled and calibrated L4_SM at two landslide sites, and 
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raw L4_SM at a third. Figure 6 shows plots of calculated FOS 
using both downscaled and raw L4_SM at the Mud Creek and 
Rattlesnake Hills landslide sites. As seen in Figure 6A, the raw 
FOS (from 9 km L4_SM) is seen to be increasing at the time of 
failure. This implies that the soil in the slope was strengthening, 
rather than weakening, at failure. However, the downscaled FOS 
(from 1 km L4_SM) is seen to be at 1.0 at the time of failure, 
with an immediate strengthening of the soil shown after failure 
(i.e., by the FOS increasing after failure). Therefore, in the case 
of the Mud Creek site, the downscaled FOS functioned better in 
detecting incipient conditions than that of the raw FOS.  

However, this same trend is not observed when comparing 
raw and downscaled FOS at the Rattlesnake Hills site. As seen in 
Figure 6B, both raw and downscaled FOS follow the same trend 
of decreasing after the time referred to as failure (assumed to be 
10/20/2017 in this study). Although both datasets follow the 
trend of decreasing, it is the raw FOS that reaches a FOS of 1.0 
shortly after failure was reported. It is necessary to note that 
failure at the Rattlesnake site was not a catastrophic failure. The 
failure is instead a slow-moving failure that creeps at a constant 
velocity of two to three inches per day (Norrish, 2018). 
Additionally, surface fissures were reported by a pilot flying over 
the site near the time referred to as “failure” in this study. These 
fissures indicate the soil was moving. Therefore, incipient 
conditions were not reflected by either FOS at the time referred 
to as failure, but a weakening of the soil was occurring. This 
weakening was reflected by both raw and downscaled FOS 
datasets remaining near a FOS = 1.0, which is promising for the 
goal of detecting incipient conditions remotely.  

 

 
Figure 6. Factors of Safety Using Downscaled (DS) SMAP L4_SM for: 
(A) Mud Creek Landslide and (B) Rattlesnake Hills Creeping Landslide 

Figure 7 shows the raw FOS at the Sierra Leone landslide site. 
As discussed, no ground-based data was available for this site, so 
no downscaling was able to be conducted.    

 
Figure 7. Factor of Safety Using Raw SMAP L4_SM for Sierra Leone 
Landslide 

However, as can be seen in Figure 7, the raw FOS does 
indicate incipient conditions at the time of failure (i.e., FOS = 
1.0). It can also be seen that the FOS reached 1.0 approximately 
one month before the time of failure. This can likely be explained 
by the fact that Sierra Leone received approximately three times 
the usual amount of rainfall in the weeks leading up to the failure. 
However, why the landslide did not occur as soon as the FOS 
reached 1.0 (i.e., incipient conditions), is not clear. Further 
research is required to; (i) Better understand the hydrologic 
mechanisms at work during landslide occurrence to better answer 
this question and (ii) Determine if downscaling of L4_SM data 
is required for use in accurate landslide FOS analyses. 

8  CONCLUSIONS 

The goal behind this study was: First, to show the feasibility of 
downscaling and calibrating SMAP Rootzone Soil Moisture 
(L4_SM) to that of ground-based data. Second, to downscale and 
use L4_SM data at known landslide locations to determine if 
incipient conditions at failure can be detected by remotely sensed 
data (i.e., satellite-based soil moisture). From this study, it can be 
noted that downscaled L4_SM data can be both retrieved and 
used in slope stability analyses to detect incipient failure and/or 
strength weakening conditions at the analyzed landslide sites. 
This can be observed at the Mud Creek (incipient) and 
Rattlesnake (strength weakening) sites. However, it was also 
observed that raw (i.e., non-downscaled) L4_SM data functioned 
well in detecting these same conditions. The raw L4_SM was 
observed to detect strength weakening at Rattlesnake and 
incipient conditions at Sierra Leone. Additionally, further 
research is required to ascertain a better understanding of 
hydrologic mechanisms at work during landslide occurrence. 
This future research is expected to yield a better understanding 
as to why failure does not occur as soon as the FOS reaches 1.0 
(e.g., as seen at Mud Creek and Sierra Leone). In general, it is 
thought that this current study has laid a framework upon which 
higher resolution remotely sensed SM (1 km or finer in future 
studies) can be retrieved via downscaling and then utilized for 
the application of landslide slope stability analysis. 
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