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ABSTRACT: Evaluating the shear strength of mine waste rock containing particles of metre scale is a challenging task because 
commercial laboratory testing devices can only accommodate samples composed of particles a few centimetres in size. The shear 
strength empirical model of Barton & Kjærnsli (1981) is therefore frequently used to assess the nonlinear shear strength of very coarse 
granular material for stability assessment of mine waste dumps.  According to the model, the stress-dependent structural component 
of the shear strength is dictated by the uniaxial compression strength of the parental rock, the degree of roundness of the constitutive 
particles, D50 particle size and the porosity of the material.  This structural component is added to the basic friction angle determined 
on sawn surfaces of the rock to determine the material shear strength. In this article, we discuss practical methods for collecting the 
information required as input to the model.  We also show the implementation of a Bayesian approach for the inference of the model 
parameters using the results of large-scale direct shear testing and the improvement of the estimation by considering additional 
information on the material.  The approach allows for the customisation of the model parameters to consider a material characterised 
by high particle strength and a pronounced particle size-shape correlation, due to the sedimentary origin of the parental rock. 

RÉSUMÉ : L'évaluation de la résistance au cisaillement des stériles miniers contenant des particules à l'échelle métrique est une tâche 
difficile, car les appareils d'essai de laboratoire commerciaux ne peuvent accueillir que des échantillons composés de particules de 
quelques centimètres. Le modèle empirique de résistance au cisaillement de Barton et Kjærnsli (1981) est donc fréquemment utilisé pour 
évaluer la résistance au cisaillement non linéaire d'un matériau granulaire très grossier pour la conception de la stabilité des décharges 
de déchets miniers. Selon le modèle, la composante structurelle dépendante de la contrainte de la résistance au cisaillement est dictée 
par la résistance à la compression uniaxiale de la roche parentale, le degré de rondeur des particules constitutives et la taille des particules 
D50 et la porosité du matériau. Ce composant structurel est ajouté à l'angle de frottement de base déterminé sur les surfaces sciées de la 
roche pour déterminer la résistance au cisaillement du matériau. Dans cet article, nous discutons des méthodes pratiques pour collecter 
les informations nécessaires pour alimenter le modèle. Nous montrons également la mise en œuvre d'une approche bayésienne pour 
l'inférence des paramètres du modèle en utilisant les résultats d'essais de cisaillement direct à grande échelle et l'amélioration de 
l'estimation en considérant des informations supplémentaires sur le matériau. L'approche a permis de personnaliser les paramètres du 
modèle afin de considérer un matériau caractérisé par une résistance élevée des particules et une corrélation granulométrique-forme 
prononcée, en raison de l'origine sédimentaire de la roche parentale. 

KEYWORDS: Non-linear shear strength, very coarse granular material, Bayesian inference. 

 

1  INTRODUCTION 

Mine waste rock in open-pit mining are materials with non-
significant economic value that needs to be removed from the pit 
during mining production to gain access to the ore and that is 
transported to waste dumps for storage (Hartman & Mutmansky 
2002, Hawley 2017). The particle size distribution (PSD) and the 
maximum particle size (Dmax) of a waste rock material will be 
naturally variable due to spatial variation in the material 
properties and drill and blast practices. In large-scale mining, 
where miners increasingly opt for large capacity trucks, wastes 
with blocks up to 2 m in diameter are not unusual. Waste dumps 
may reach hundreds of metres in height (Linero et al. 2007, 
Palma et al. 2009). They are traditionally built in lifts by end-
dumping material over the dump face. Due to large dump 
deformations, the primary geotechnical parameter required for 
the stability design of waste dumps is the steady-state shear 
strength. 

Evaluating the steady-state shear strength of mine waste rock 
containing particles of metre scale is challenging because 
commercial laboratory testing devices can only accommodate 

samples composed of particles a few centimetres in size. To 
overcome testing limitations, the shear strength is frequently 
estimated using the shear strength empirical model of Barton & 
Kjærnsli (1981) (B-K criterion), which considers the nonlinearity 
of the shear strength envelope, characterising the behaviour of 
very coarse granular materials submitted to very high loads 
(Leps,1970). 

In the B-K criterion, a stress-dependent structural component 
of the shear strength is parametrised with the equivalent 
roughness R and equivalent strength S. The structural component 
is added to the basic friction angle (φb) of the parental rock to 
determine the shear strength of the waste rock material.  Barton 
modelled this criterion using R and S as equivalent to his joint 
roughness coefficient JRC and joint wall compression strength 
JCS in his shear strength criterion for rock joints (Barton 1973). 

The research presented in this paper explores the 
customisation of the parameters R and S of the B-K criterion, 
taking advantage of the availability of large scale testing results. 
A mine waste rock material composed of particles with a 
maximum diameter of 120 mm was investigated and high-
pressure large-scale direct shear testing (DST) was conducted. 

𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ = 𝜏𝜏𝑢𝑢,𝑅𝑅,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏𝑢𝑢,𝑅𝑅,𝑟𝑟𝑒𝑒𝑟𝑟
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Bayesian statistics was then implemented to explore the best R 
and S values to represent the behaviour of the material. The 
analysis was then enhanced to illustrate the potential of the 
method to consider other sources of material information. 

The Bayesian approach allowed, not only customisation of the 
parameters R and S for the specific material investigated, but also 
further insight into the performance of the model. 

2  MATERIAL CHARACTERISTICS  

The material evaluated, referred to as overburden, consists of 
Neogene alluvial and colluvial sediments that locally overlie 
channel iron deposits at the Solomon Iron Ore Mine in the central 
Hamersley Ranges within the Pilbara region of Western Australia. 
The sediments originated from weathering, erosion, and 
transportation of Precambrian banded iron formation rocks 
(Morris 1993). The sediments are mainly composed of gravel and 
sand-sized fragments, with cobbles of up to 120 mm in diameter, 
and less than 2% fines.  The D50 particle size range from 2 mm 
to 24 mm according to gradation information obtained through 
operational verification data. The overburden particles are sound 
and strong with losses in the Los Angeles test of 24.6%, and 
water absorption 1.9%. The specific gravity of the material is 
variable and was also found to be size-correlated. It is 3.82 for 
the fraction below 4.75 mm and 3.20 for the fraction between 
4.74 mm and 75 mm. The plastic limit for the fines is around 5% 
and the liquid limit varies between 19% and 27%. The as-
sampled natural moisture content was around 2%. The 
overburden particles are sub-angular to sub-rounded with shapes 
ranging from slabs to sub-equant blocks, with the peculiarity to 
be size-shape correlated. Hence, larger particles are flatter and 
platier than smaller particles, which tend to be more equant to 
rod-shaped in comparison. The results of the particle shape 
investigation are described by Linero et al. (2017). 

The shear strength of the material was investigated using a 
large-scale direct shear apparatus with a 720 mm square shear 
box. The characteristics of the equipment and sample 
construction are described by Linero et al. (2020). 

Samples with the prototype PSD and other four variants called 
M1, M2, M3, and MB were tested.  The samples were designed 
to examine the effect of gradation modifications on material 
behaviour as part of an investigation that will be described in a 
different paper. Particle size distributions of the samples tested 
are illustrated in Figure 1.  Testing conditions and friction 
angles at large displacement, for the different materials and 
normal stresses implemented, are summarised in Table 1. 
 

 
Figure 1. Particle size distribution of the prototype and the variant 
samples tested in the large-scale direct shear apparatus. 

3  BARTON-KJÆRNSLI STRENGTH MODEL 

The non-linear B-K criterion is represented by Eq. 1, where φ is 
the effective friction angle, φb is the basic friction angle of the 
rock, and R is the equivalent roughness and S is the size-
dependent equivalent strength of the waste particles. 

 𝜑𝜑 =  𝜑𝜑𝑏𝑏 + 𝑅𝑅 𝐿𝐿𝐿𝐿𝐿𝐿10 ( 𝑆𝑆𝜎𝜎𝑛𝑛) (1) 

 
Table 1. Summary of test conditions and results. 

PSD σn Dmax Gs γmax γmin n φ DST 

ID MPa mm    kN/m3 kN/m3 % (∘) 

Prot 0.5 100 3.32 24.6 20.1 38 38.7 

Prot 1.0 100 3.32 24.6 20.1 36 40.1 

Prot 2.0 100 3.32 24.6 20.1 38 37.5 
Prot 3.0 100 3.32 24.6 20.1 37 35.5 

M1 0.5 100 3.26 22.6 18.1 41 38.3 

M1 1.0 100 3.26 22.6 18.1 41 37.5 

M1 2.0 100 3.26 22.6 18.1 42 36.5 
M1 3.0 100 3.26 22.6 18.1 42 33.2 

M2 0.5 50 3.26 22.7 17.7 43 38.5 

M2 1.0 50 3.26 22.7 17.7 42 37.5 
M2 2.0 50 3.26 22.7 17.7 40 37.5 

M2 3.0 50 3.26 22.7 17.7 42 34.2 

M3 0.5 38 3.26 22.8 17.7 40 38.5 

M3 1.0 38 3.26 22.8 17.7 39 38.7 
M3 2.0 38 3.26 22.8 17.7 42 36.8 

M3 3.0 38 3.26 22.8 17.7 44 36.4 

MB 0.5 38 3.30 23.3 18.4 40 38.3 
MB 1.0 38 3.30 23.3 18.4 40 37.0 

MB 2.0 38 3.30 23.3 18.4 41 35.4 

MB 3.0 38 3.30 23.3 18.4 44 34.8 

σn = Normal stress γmax = Maximum density 

n = Initial porosity γmin = Minimum density 

Dmax = Maximum particle diameter Gs = Specific gravity 
φDST = Direct shear friction angle at large displacement 

3.1  Basic friction angle 

The φb can be estimated in tilting tests using dry, sawn surfaces 
of the parental rock (Barton & Kjærnsli 1981).  In the mining 
context, it is more often estimated from direct shear tests 
conducted on saw-cut samples selected from drill cores. This 
information is usually readily available in the geotechnical 
drillhole database, as it is also used for rock mass characterisation 
for pit design purposes. Because of the relative small size of the 
particles comprising the overburden, core samples for saw-cut 
testing were not available, so φb could not be explicitly 
investigated. It was known, nevertheless, that it probably varied 
between 20° and 40° as this was the range containing the values 
observed for all rock units investigated in the area from which 
the overburden developed. 

3.2  Stress dependent structural component of the shear 
strength  

The factor R can be determined from the empirical chart 
proposed by Barton & Kjærnsli (1981) as a function of the degree 
of particle roundness and the porosity (n) of the dumped waste 
rock material. It ranges between 0 and 15 for loose arrangements 
of rounded, very smooth particles to dense arrangements of very 
angular and rough particles, respectively. The parameter R 
captures the fact that the more angular, rough and well packable 
a material is, the higher its shear strength. In the current version 
of the model, R does not allow for differentiation based on the 
characteristic aspect ratio of the rock fragments, which is now 
known to play a significant role in material strength, due to its 
direct impact on particle rolling resistance/ability during 
shearing (Azéma et al. 2016, 2017, Linero et al. 2019).  For the 
overburden material R can be defined by Eq. 2 as a function of n.  
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The equation was obtained as the best fitting curve for this 
material on the B-K chart: 

     𝑅𝑅 = 20.2𝑒𝑒−4.1𝑛𝑛 (2) 

 

The porosity of dumped waste material can be estimated by 
reconciliation of the haul-weight and the volume of large-scale 
dumped piles, or actual waste dumps. In the latter case, LiDAR 
information from pre-mining and at-the-time-of-the evaluation 
topography are compared. Large-scale determination of porosity 
was not conducted in this study. Nevertheless, determinations of 
maximum and minimum density conducted in the laboratory, for 
the samples tested in the direct shear apparatus, suggested that 
porosity may range between 0.26 and 0.46 for the overburden. 

The factor S can be determined from the empirical chart 
proposed by Barton & Kjærnsli (1981) as a function of the 
unconfined compressive strength (UCS) of the parental rock and 
the characteristic particle size of the material, usually arbitrarily 
adopted as D50. The parameter S captures the fact that smaller 
particles tend to be more sound and crushing resistant than larger 
fragments (Silvani 2007, Zhang et al. 2015). Therefore, the 
curvature of the shear strength envelope is less pronounced in the 
case of finer, sand-size material, than in the case of materials 
containing coarser particles. In the current version of the method, 
the evaluation of S differentiates between triaxial and plain 
shearing because it has been observed that crushing of particles 
is more pronounced when the material is submitted to triaxial 
loading. Nevertheless, in practice, the estimation for the triaxial 
condition is usually adopted as a conservative precaution, as the 
loading conditions inside a dumped slope are certainly complex 
and variable along the potential failure surface. For the triaxial 
loading case, S is defined by Eq. 3, obtained as the best fitting 
curve of the B-K chart. 
     𝑆𝑆 = 0.70 𝑈𝑈𝑈𝑈𝑆𝑆(𝐷𝐷50)−0.24 (3) 

 

The UCS data are usually available in the geotechnical 
drillhole database of the mine. Additional data can be sourced by 
testing selected core samples representing the rock analysed, or 
by correlation with point load tests (PLTs) or Schmidt hammer 
test results. In this investigation, because of the small size of the 
particles, drill core samples for testing UCS were not available. 
The strength of the particles was investigated by conducting PLT 
and UCS tests on 25 mm high core samples (mini cylinders) 
drilled from exceptionally large fragments.  A correction (Turk 
& Dearman 1986) was used to standardise the results for a 
length-to-diameter ratio of 2 and 50 mm core diameter. The 
information from the mini-cylinders allowed the calibration for 
converting PLT values to UCS values.  The information 
collected is presented in the boxplot in Figure 2. 

In a boxplot, the lower and upper box boundary represents the 
25th and 75th percentile of the data respectively. The line inside 
the box represents the median. With this, the four quartiles Q1 to 
Q4 can be identified. The box illustrates the interquartile range 
IQR = Q3–Q2 where 50% of the data are located. The ‘minimum’ 
of the distribution is defined as Q1–1.5*IQR, and the ‘maximum’ 
is defined as Q3+1.5*IQR.  Values higher or lower are 
considered outliers. 

A representative particle size distribution needs to include 
fragments of the maximum particle size of the material evaluated. 
Consequently, the sampling procedure for material gradation 
determination needs to be defined according to the maximum 
particle size of the material. For coarse wastes with maximum 
particle sizes in the range of metres for example, samples of 
about 20 tonnes of material are required that are largely 
processed on-site with only the material below 75 mm being 
quartered and transported to the laboratory for assessment of the 

gradation of the finer fraction. In this case, the weight of the 
fragments larger than 0.30 m is determined from the 
measurements of the fragment’s dimensions. Another less precise 
but practical methodology is using an image processing 
algorithm. A calibration to access the potential discrepancies is 
recommended in this case as the method tends to overlook the 
finer material. 

The challenge at a feasibility level study stage is that there is 
typically no blasted waste rock available and hence PSD testing 
on actual waste rock is not possible. In these scenarios, blasting 
fragmentation empirical assessments and site benchmarking are 
required to be adopted with an appreciation of the associated 
limitations. During data collection, a representative number of 
samples are required to be collected and assessed to account for 
material variability. The reliability of the data source should be 
reflected in the values. Several data sources are typically 
considered to assess a representative D50 value; the adopted order 
of priority for the data source is: large scale bulk sampling and 
laboratory PSD ( i.e. sample size > 1 tonne); Spilt-Net analysis 
of waste rock dump, fill embankment and existing stockpile 
material if available; small-scale laboratory sampling with an 
estimate of oversize during sampling; blasting fragmentation 
empirical assessment based on known site-specific material 
properties and a typical blast design pattern; benchmark against 
a similar site (Dwumfour et al. 2020).  

 
Figure 2. Boxplot of the UCS data collected for the overburden. Filled 
circles represent the data points.  Outliers are identified with diamonds. 
The average value is represented by the empty circle. The jitter along the 
categorical axes is included to prevent the overlap of data points.  

Several methodologies have been implemented for the 
determination of the gradation of the overburden across the years, 
some linked with the utilisation of the material for the 
construction of engineered structures. They refer to Split-Net 
determinations and laboratory determinations on medium to 
large-scale samples. To determine the gradation of the prototype 
material tested in the direct shear test, for example, the material 
was machine-excavated from the deposit and direct packed into 
heavy-duty one-cubic-metre bags for transport to the laboratory, 
limiting re-handling and segregation. The sample in the 
laboratory was processed by hand following the philosophy 
described in standards. On another occasion, a rotary divider was 
also used in the laboratory for reducing the sample in a heavy-
duty bag into subsamples of about 20 kg each for manual 
processing. Both methodologies provided very similar results. 
The available D50 information collected across the years is 
summarised in the boxplot in Figure 3. 

 
Figure 3. Boxplot of the D50 data collected for the overburden. Filled 
circles represent the data points. The average value is represented by the 
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𝜑𝜑 =  𝜑𝜑𝑏𝑏 + 𝑅𝑅 𝐿𝐿𝐿𝐿𝐿𝐿10 ( 𝑆𝑆𝜎𝜎𝑛𝑛)
PSD σ    γ  γ  φ  

 Pa mm    N/m3 N/m3  ∘) 

rot .5 00 32 4.6 0.1 8 8.7 

rot .0 00 32 4.6 0.1 6 0.1 

rot .0 00 32 4.6 0.1 8 7.5 
rot .0 00 32 4.6 0.1 7 5.5 

M1 .5 00 26 2.6 8.1 1 8.3 

M1 .0 00 26 2.6 8.1 1 7.5 

M1 .0 00 26 2.6 8.1 2 6.5 
M1 .0 00 26 2.6 8.1 2 3.2 

M2 .5 0 26 2.7 7.7 3 8.5 

M2 .0 0 26 2.7 7.7 2 7.5 
M2 .0 0 26 2.7 7.7 0 7.5 

M2 .0 0 26 2.7 7.7 2 4.2 

M3 .5 8 26 2.8 7.7 0 8.5 

M3 .0 8 26 2.8 7.7 9 8.7 
M3 .0 8 26 2.8 7.7 2 6.8 

M3 .0 8 26 2.8 7.7 4 6.4 

MB .5 8 0 3.3 8.4 0 8.3 
MB .0 8 0 3.3 8.4 0 7.0 

MB .0 8 0 3.3 8.4 1 5.4 

MB .0 8 0 3.3 8.4 4 4.8 
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empty circle. The jitter along the categorical axes is included to prevent 
the overlap of data points. 

4  INFERENCE OF THE B-K PARAMETERS 

4.1  Bayesian approach using direct shear test results  

The advantages of the Bayesian approach for inference of 
parameters are described in detail by Contreras et al. (2018) in 
the context of intact rock strength. The Bayesian analysis enables 
the estimation of the more likely parameter values given three 
elements: (1) a model, (2) the data input to the model and (3) any 
prior information on the parameter values. The model 
corresponds to a mathematical function that represents the 
performance of a system of interest. The data correspond to 
measurements of the actual performance of the system that are 
compared with the model predictions to define errors. The prior 
information typically consists of valid ranges of credible values 
of the uncertain parameters to be inferred. These three elements 
(model, data and prior information) are combined in a 
probabilistic function that contains the set of parameters for 
inference. This function corresponds to a posterior probability 
distribution within the Bayesian concept and gives probability 
values for particular sets of parameters. The objective of the 
analysis is to define the sets of parameters that produce the 
highest probability values (minimum errors). Generally, the 
parameters are defined by evaluating the posterior function with 
a technique known as Markov chain Monte Carlo (MCMC) 
analysis (Kruschke 2015). 

A simplified representation of the Bayesian model for the 
strength characterisation of the overburden is shown in Figure 4. 

 

 
Figure 4. Conceptual Bayesian model for inference of the friction angle 
of overburden using only large-scale DST results. 

The model corresponds to the B-K strength model represented 
by Eq. 1. The data consist of the large-scale direct shear test 
results that include measurements of φ for particular values of σn, 
and the prior information consists of the known ranges of 
credible values for the uncertain parameters in the B-K equation. 

The construction of the posterior function uses the Bayes’ rule 
concept and involves the evaluation of the likelihood of the 
dataset, which is combined with the prior component to define 
the so called posterior function. This function includes the 
parameters for inference grouped in the vector θ in the diagram 
of Figure 4. The evaluation of the likelihood of the data entails 
the evaluation of errors defined as the differences between model 
predictions and data measurements. Figure 5 illustrates how 
errors are measured in the Bayesian analysis. 

A normal distribution is centred in the model prediction and 
is used to quantify the probability of each data point. In this way, 

small errors would have higher probability values and vice versa. 
The product of the probabilities of the data points gives the 
probability of the dataset for a particular selection of parameters. 
The objective of the method is to find the set of parameters (φb, 
R, S) that result in higher probability values of the dataset, i.e. 
smaller errors. For this search, the method should try normal 
distributions with different widths and for this reason, the 
standard deviation of the normal distribution used to quantify the 
errors of φ (σφ) is an additional parameter that needs to be 
investigated. 
 

 
Figure 5. Measurement of errors with a normal distribution centred in the 
model prediction. 

The specification of the prior distributions is based on the 
characteristics of the datasets and consists of setting up values 
sufficiently vague to avoid constraining the result. The vague 
priors were defined with uniform distributions with ranges from 
20° to 40° for φb, 2 to 15 for R, 1 MPa to 40 MPa for S and 0.01 
to 100 for σφ. The posterior probability distribution is evaluated 
by sampling the parameters with an MCMC algorithm. The 
methodology outlined in Figure 4 was implemented in the Python 
programming language (PSF, 2001). The analysis is carried out 
with the affine-invariant ensemble sampler algorithm 
implemented in the emcee Python package developed by 
Foreman-Mackey et al. (2013). 

The results of the analysis are summarised in the corner plot 
of Figure 6 and the envelope graph of Figure 7. 
 

 
Figure 6. Corner plot of inferred parameters with the Bayesian analysis 
of DST results. 
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The scatter plot shows the correlation between the inferred 
parameters, and the histograms define the ranges of likely values. 
These results suggest a strong negative correlation between φb 
and R and a moderate negative correlation between φb and S.  
The scatter plots also indicate that S appears to be unbounded as 
the prior used for this parameter is transferred to the result 
without a preferential value. This result suggests the need to 
support the estimation of S with data from UCS and D50 
determinations to avoid the bias caused by the prior in the current 
analysis. 

The sampled values of the parameters represented in the 
scatter plots produce a spread of the B-K envelopes around the 
mean fit as indicated in the graph of φ versus σn shown in Figure 
7. The graph includes the data points and the band of envelopes 
corresponding to the 95% highest density interval (HDI) of the 
parameters, which reflects their uncertainty. 
 

 
Figure 7. Uncertainty of the B-K envelopes represented by the 95% HDI 
of parameter values in Figure. 7. 

4.2  Improved strength estimation with additional data 

To define the parameter S aiming for greater definition on the 
shear strength results the Bayesian model was extended to 
include Equation 3 to calculate S from UCS and D50 data to 
prevent the bias caused by the assumed prior in the analysis. The 
additional data included the 34 UCS values and the 19 D50 
determinations presented in Figures 2 and 3. The conceptual 
model of the Bayesian analysis with the additional data inputs is 
shown in Figure 8.   

In this case, the parameters for inference have been expanded 
to include mean values of UCS and D50 and the standard 
deviations σUCS and σD50 to quantify the errors when the inferred 
parameters are compared with their respective values in the 
datasets. The prior information has also been updated based on 
the datasets by defining ranges sufficiently wide to avoid 
constraining the results. 

The results of the inference analysis considering the 
additional data are summarised in the simplified corner plot of 
Figure 9. This graph excludes the standard deviations of the 
errors, which are normally called the nuisance parameters, and 
replaces UCS and D50 with the respective calculated S values. 
The results show a sharp definition of the inferred parameters and 
also confirm the strong negative correlation between φb and R 
identified with the previous analysis. The negative correlation is 
purely a statistical condition imposed by the data points to ensure 
a good fit with the model. The value of S is now well defined 
above the range assumed in the previous analysis based on 
judgement. The new results also indicate a minor reduction of φb 
and confirm the value of R obtained initially. The variability of 
the inferred parameters is reflected in the uncertainty of the 
envelopes of φ as shown in Figure 10 with the band of envelopes 
for the 95% HDI of parameters. 

 

 
Figure 8. Conceptual Bayesian model for inference of the friction angle 
of overburden using large-scale DST results plus additional UCS and D50 
data. 

 

 
Figure 9. Corner plot of inferred parameters with the Bayesian analysis 
of DST, UCS and D50 results. 

 
Figure 10. Uncertainty of the B-K envelopes represented by the 95% HDI 
of parameter values in Figure. 9. 
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5  CONCLUSIONS 

Due to the variable nature inherent to mine waste rock materials, 
large-scale strength determinations in the laboratory can only 
represent the prototype sample tested. The implementation of a 
Bayesian approach allows the use of all the available information 
to characterise the material strength at project scale beside the 
direct strength determinations. 

The Barton-Kjaernsli (B-K) empirical criterion was used to 
represent the shear strength of the overburden material. The 
Bayesian approach of statistical analysis was used to estimate the 
more likely B-K parameter values, φb, R and S to represent the 
material, honouring all the information available.  

To show the benefits of including different sources of 
information in the analysis, a first evaluation was conducted 
using only the large-scale direct shear test results available. The 
evaluation was improved with a second analysis incorporating 
other sources of information, in this case, UCS and D50 
determinations. The main observations from these analyses are: 

• The Bayesian approach allowed the assessment of the 

quality of the information used for the evaluation. The first 

analysis suggested that the information used was 

insufficient to define adequately all the B-K parameters, and 

that additional data was necessary for a better definition of 

the parameter S. The second analysis showed a good 

definition of the model parameters and provided strength 

results with higher confidence. 

• The Bayesian analysis provided valuable information in 

terms of the variability and correlation of the B-K model 

parameters φb, R and S. A negative correlation between φb 

and R was observed for the overburden material, which is 

purely a statistical condition imposed by the data points to 

ensure a good fit with the model. 

• The analysis facilitates the identification of the more 

relevant factors requiring more investigation to improve the 

characterisation of the material strength. Once the 

additional information required is available the parameters 

can be updated and the reduction of their uncertainty can be 

verified. The results of the evaluation indicated that the 

shear strength in the B-K model is less sensitive to the 

parameter S suggesting that greater attention needs to be 

given to the evaluation of φb and R. 

• The analysis allowed the inference of the best set of 

parameters of the B-K criterion, to represent a material 

composed of size-shape correlated particles, for which the 

applicability of the standard B-K charts for estimation of 

parameters was unknown. 

• The Bayesian analysis indicated that the B-K parameters 

that best describe the overburden are φb = 29.3°,  R = 4.4 

and S = 76.4 MPa, The obtained value of R reflects 

adequately the ability of the material to pack well 

minimising void space, which is dictated by its particle 

shape characteristics, whatever these characteristics are. 
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