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ABSTRACT: Evaluating the shear strength of mine waste rock containing particles of metre scale is a challenging task because
commercial laboratory testing devices can only accommodate samples composed of particles a few centimetres in size. The shear
strength empirical model of Barton & Kjaernsli (1981) is therefore frequently used to assess the nonlinear shear strength of very coarse
granular material for stability assessment of mine waste dumps. According to the model, the stress-dependent structural component
of the shear strength is dictated by the uniaxial compression strength of the parental rock, the degree of roundness of the constitutive
particles, Dso particle size and the porosity of the material.  This structural component is added to the basic friction angle determined
on sawn surfaces of the rock to determine the material shear strength. In this article, we discuss practical methods for collecting the
information required as input to the model. We also show the implementation of a Bayesian approach for the inference of the model
parameters using the results of large-scale direct shear testing and the improvement of the estimation by considering additional
information on the material. The approach allows for the customisation of the model parameters to consider a material characterised
by high particle strength and a pronounced particle size-shape correlation, due to the sedimentary origin of the parental rock.

RESUME : L'évaluation de la résistance au cisaillement des stériles miniers contenant des particules a I'échelle métrique est une tiche
difficile, car les appareils d'essai de laboratoire commerciaux ne peuvent accueillir que des échantillons composés de particules de
quelques centimétres. Le modéle empirique de résistance au cisaillement de Barton et Kjaernsli (1981) est donc fréquemment utilisé pour
évaluer la résistance au cisaillement non linéaire d'un matériau granulaire trés grossier pour la conception de la stabilité des décharges
de déchets miniers. Selon le modele, la composante structurelle dépendante de la contrainte de la résistance au cisaillement est dictée
par la résistance a la compression uniaxiale de la roche parentale, le degré de rondeur des particules constitutives et la taille des particules
Dso et la porosité du matériau. Ce composant structurel est ajouté a 'angle de frottement de base déterminé sur les surfaces sciées de la
roche pour déterminer la résistance au cisaillement du matériau. Dans cet article, nous discutons des méthodes pratiques pour collecter
les informations nécessaires pour alimenter le modéle. Nous montrons également la mise en ceuvre d'une approche bayésienne pour
l'inférence des paramétres du modeéle en utilisant les résultats d'essais de cisaillement direct a grande échelle et I'amélioration de
I'estimation en considérant des informations supplémentaires sur le matériau. L'approche a permis de personnaliser les paramétres du
modele afin de considérer un matériau caractérisé par une résistance €levée des particules et une corrélation granulométrique-forme
prononcée, en raison de l'origine sédimentaire de la roche parentale.

KEYWORDS: Non-linear shear strength, very coarse granular material, Bayesian inference.

1 INTRODUCTION samples composed of particles a few centimetres in size. To

Mine waste rock in open-pit mining are materials with non-
significant economic value that needs to be removed from the pit
during mining production to gain access to the ore and that is
transported to waste dumps for storage (Hartman & Mutmansky
2002, Hawley 2017). The particle size distribution (PSD) and the
maximum particle size (Dmax) of a waste rock material will be
naturally variable due to spatial variation in the material
properties and drill and blast practices. In large-scale mining,
where miners increasingly opt for large capacity trucks, wastes
with blocks up to 2 m in diameter are not unusual. Waste dumps
may reach hundreds of metres in height (Linero et al. 2007,
Palma et al. 2009). They are traditionally built in lifts by end-
dumping material over the dump face. Due to large dump
deformations, the primary geotechnical parameter required for
the stability design of waste dumps is the steady-state shear
strength.

Evaluating the steady-state shear strength of mine waste rock
containing particles of metre scale is challenging because
commercial laboratory testing devices can only accommodate
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overcome testing limitations, the shear strength is frequently
estimated using the shear strength empirical model of Barton &
Kjernsli (1981) (B-K criterion), which considers the nonlinearity
of the shear strength envelope, characterising the behaviour of
very coarse granular materials submitted to very high loads
(Leps,1970).

In the B-K criterion, a stress-dependent structural component
of the shear strength is parametrised with the equivalent
roughness R and equivalent strength S. The structural component
is added to the basic friction angle (¢») of the parental rock to
determine the shear strength of the waste rock material. Barton
modelled this criterion using R and S as equivalent to his joint
roughness coefficient JRC and joint wall compression strength
JCS in his shear strength criterion for rock joints (Barton 1973).

The research presented in this paper explores the
customisation of the parameters R and S of the B-K criterion,
taking advantage of the availability of large scale testing results.
A mine waste rock material composed of particles with a
maximum diameter of 120 mm was investigated and high-
pressure large-scale direct shear testing (DST) was conducted.



Bayesian statistics was then implemented to explore the best R
and S values to represent the behaviour of the material. The
analysis was then enhanced to illustrate the potential of the
method to consider other sources of material information.

The Bayesian approach allowed, not only customisation of the
parameters R and S for the specific material investigated, but also
further insight into the performance of the model.

2 MATERIAL CHARACTERISTICS
The material evaluated, referred to as overburden, consists of

Neogene alluvial and colluvial sediments that locally overlie
channel iron deposits at the Solomon Iron Ore Mine in the central

Hamersley Ranges within the Pilbara region of Western Australia.

The sediments originated from weathering, erosion, and
transportation of Precambrian banded iron formation rocks
(Morris 1993). The sediments are mainly composed of gravel and
sand-sized fragments, with cobbles of up to 120 mm in diameter,
and less than 2% fines. The Dso particle size range from 2 mm
to 24 mm according to gradation information obtained through
operational verification data. The overburden particles are sound
and strong with losses in the Los Angeles test of 24.6%, and
water absorption 1.9%. The specific gravity of the material is
variable and was also found to be size-correlated. It is 3.82 for
the fraction below 4.75 mm and 3.20 for the fraction between
4.74 mm and 75 mm. The plastic limit for the fines is around 5%
and the liquid limit varies between 19% and 27%. The as-
sampled natural moisture content was around 2%. The
overburden particles are sub-angular to sub-rounded with shapes
ranging from slabs to sub-equant blocks, with the peculiarity to
be size-shape correlated. Hence, larger particles are flatter and
platier than smaller particles, which tend to be more equant to
rod-shaped in comparison. The results of the particle shape
investigation are described by Linero et al. (2017).

The shear strength of the material was investigated using a
large-scale direct shear apparatus with a 720 mm square shear
box. The characteristics of the equipment and sample
construction are described by Linero et al. (2020).

Samples with the prototype PSD and other four variants called
M1, M2, M3, and MB were tested. The samples were designed
to examine the effect of gradation modifications on material
behaviour as part of an investigation that will be described in a
different paper. Particle size distributions of the samples tested
are illustrated in Figure 1. Testing conditions and friction
angles at large displacement, for the different materials and
normal stresses implemented, are summarised in Table 1.
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Figure 1. Particle size distribution of the prototype and the variant
samples tested in the large-scale direct shear apparatus.
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3  BARTON-KJZARNSLI STRENGTH MODEL

The non-linear B-K criterion is represented by Eq. 1, where ¢ is
the effective friction angle, ¢» is the basic friction angle of the
rock, and R is the equivalent roughness and S is the size-
dependent equivalent strength of the waste particles.

9= ¢ +RLogy (3) ()

Table 1. Summary of test conditions and results.

PSD Gn Dmax Gs Ymax Ymin n @ pst
1D MPa mm kKN/m* kN/m® % (°)

Prot 0.5 100 332 24.6 20.1 38 38.7
Prot 1.0 100 332 24.6 20.1 36 40.1
Prot 2.0 100 332 24.6 20.1 38 37.5
Prot 3.0 100 3.32 24.6 20.1 37 355

M1 0.5 100 3.26 22.6 18.1 41 383
M1 1.0 100 3.26 22.6 18.1 41 37.5
M1 2.0 100 3.26 22.6 18.1 42 36.5
M1 3.0 100 3.26 22.6 18.1 42 332

0.5 50 3.26 22.7 17.7 43 38.5
1.0 50 3.26 22.7 17.7 42 37.5
2.0 50 3.26 22.7 17.7 40 37.5
3.0 50 3.26 22.7 17.7 42 34.2
0.5 38 3.26 22.8 17.7 40 38.5
1.0 38 3.26 22.8 17.7 39 38.7
2.0 38 3.26 22.8 17.7 42 36.8
3.0 38 3.26 22.8 17.7 44 36.4
0.5 38 3.30 23.3 18.4 40 38.3
1.0 38 3.30 23.3 18.4 40 37.0
2.0 38 3.30 23.3 18.4 41 35.4
3.0 38 3.30 23.3 18.4 44 34.8
o, = Normal stress Ymax = Maximum density
n = Initial porosity Ymin= Minimum density
Dinax = Maximum particle diameter Gs= Specific gravity
¢pst = Direct shear friction angle at large displacement

3.1 Basic friction angle

The ¢» can be estimated in tilting tests using dry, sawn surfaces
of the parental rock (Barton & Kjernsli 1981). In the mining
context, it is more often estimated from direct shear tests
conducted on saw-cut samples selected from drill cores. This
information is usually readily available in the geotechnical
drillhole database, as it is also used for rock mass characterisation
for pit design purposes. Because of the relative small size of the
particles comprising the overburden, core samples for saw-cut
testing were not available, so ¢» could not be explicitly
investigated. It was known, nevertheless, that it probably varied
between 20° and 40° as this was the range containing the values
observed for all rock units investigated in the area from which
the overburden developed.

3.2 Stress dependent structural component of the shear
strength

The factor R can be determined from the empirical chart
proposed by Barton & Kjamsli (1981) as a function of the degree
of particle roundness and the porosity (n) of the dumped waste
rock material. It ranges between 0 and 15 for loose arrangements
of rounded, very smooth particles to dense arrangements of very
angular and rough particles, respectively. The parameter R
captures the fact that the more angular, rough and well packable
a material is, the higher its shear strength. In the current version
of the model, R does not allow for differentiation based on the
characteristic aspect ratio of the rock fragments, which is now
known to play a significant role in material strength, due to its
direct impact on particle rolling resistance/ability during
shearing (Azéma et al. 2016, 2017, Linero et al. 2019).  For the
overburden material R can be defined by Eq. 2 as a function of n.



The equation was obtained as the best fitting curve for this
material on the B-K chart:

R =202e*n ©)

The porosity of dumped waste material can be estimated by
reconciliation of the haul-weight and the volume of large-scale
dumped piles, or actual waste dumps. In the latter case, LIDAR
information from pre-mining and at-the-time-of-the evaluation
topography are compared. Large-scale determination of porosity
was not conducted in this study. Nevertheless, determinations of
maximum and minimum density conducted in the laboratory, for
the samples tested in the direct shear apparatus, suggested that
porosity may range between 0.26 and 0.46 for the overburden.

The factor S can be determined from the empirical chart
proposed by Barton & Kjernsli (1981) as a function of the
unconfined compressive strength (UCS) of the parental rock and
the characteristic particle size of the material, usually arbitrarily
adopted as Dso. The parameter S captures the fact that smaller
particles tend to be more sound and crushing resistant than larger
fragments (Silvani 2007, Zhang et al. 2015). Therefore, the
curvature of the shear strength envelope is less pronounced in the
case of finer, sand-size material, than in the case of materials
containing coarser particles. In the current version of the method,
the evaluation of S differentiates between triaxial and plain
shearing because it has been observed that crushing of particles
is more pronounced when the material is submitted to triaxial
loading. Nevertheless, in practice, the estimation for the triaxial
condition is usually adopted as a conservative precaution, as the
loading conditions inside a dumped slope are certainly complex
and variable along the potential failure surface. For the triaxial
loading case, S is defined by Eq. 3, obtained as the best fitting
curve of the B-K chart.

S = 0.70 UCS(Dsy) 024 3)

The UCS data are usually available in the geotechnical
drillhole database of the mine. Additional data can be sourced by
testing selected core samples representing the rock analysed, or
by correlation with point load tests (PLTs) or Schmidt hammer
test results. In this investigation, because of the small size of the
particles, drill core samples for testing UCS were not available.
The strength of the particles was investigated by conducting PLT
and UCS tests on 25 mm high core samples (mini cylinders)
drilled from exceptionally large fragments. A correction (Turk
& Dearman 1986) was used to standardise the results for a
length-to-diameter ratio of 2 and 50 mm core diameter. The
information from the mini-cylinders allowed the calibration for
converting PLT values to UCS values. The information
collected is presented in the boxplot in Figure 2.

In a boxplot, the lower and upper box boundary represents the
25th and 75th percentile of the data respectively. The line inside
the box represents the median. With this, the four quartiles Q1 to
Q4 can be identified. The box illustrates the interquartile range
IQR =Q3-Q2 where 50% of the data are located. The ‘minimum’
of the distribution is defined as Q1-1.5*IQR, and the ‘maximum’
is defined as Q3+1.5*IQR.  Values higher or lower are
considered outliers.

A representative particle size distribution needs to include

fragments of the maximum particle size of the material evaluated.

Consequently, the sampling procedure for material gradation
determination needs to be defined according to the maximum
particle size of the material. For coarse wastes with maximum
particle sizes in the range of metres for example, samples of
about 20 tonnes of material are required that are largely
processed on-site with only the material below 75 mm being
quartered and transported to the laboratory for assessment of the
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gradation of the finer fraction. In this case, the weight of the
fragments larger than 0.30 m is determined from the
measurements of the fragment’s dimensions. Another less precise
but practical methodology is using an image processing
algorithm. A calibration to access the potential discrepancies is
recommended in this case as the method tends to overlook the
finer material.

The challenge at a feasibility level study stage is that there is
typically no blasted waste rock available and hence PSD testing
on actual waste rock is not possible. In these scenarios, blasting
fragmentation empirical assessments and site benchmarking are
required to be adopted with an appreciation of the associated
limitations. During data collection, a representative number of
samples are required to be collected and assessed to account for
material variability. The reliability of the data source should be
reflected in the values. Several data sources are typically
considered to assess a representative Dso value; the adopted order
of priority for the data source is: large scale bulk sampling and
laboratory PSD ( i.e. sample size > 1 tonne); Spilt-Net analysis
of waste rock dump, fill embankment and existing stockpile
material if available; small-scale laboratory sampling with an
estimate of oversize during sampling; blasting fragmentation
empirical assessment based on known site-specific material
properties and a typical blast design pattern; benchmark against
a similar site (Dwumfour et al. 2020).

= UCS from PLT
UCS from mini-cores

#%é“r.fl °‘—‘$**o—i ¢ e

n= 34

100 200 300 400 500 600
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Figure 2. Boxplot of the UCS data collected for the overburden. Filled
circles represent the data points.  Outliers are identified with diamonds.
The average value is represented by the empty circle. The jitter along the
categorical axes is included to prevent the overlap of data points.

Several methodologies have been implemented for the
determination of the gradation of the overburden across the years,
some linked with the utilisation of the material for the
construction of engineered structures. They refer to Split-Net
determinations and laboratory determinations on medium to
large-scale samples. To determine the gradation of the prototype
material tested in the direct shear test, for example, the material
was machine-excavated from the deposit and direct packed into
heavy-duty one-cubic-metre bags for transport to the laboratory,
limiting re-handling and segregation. The sample in the
laboratory was processed by hand following the philosophy
described in standards. On another occasion, a rotary divider was
also used in the laboratory for reducing the sample in a heavy-
duty bag into subsamples of about 20 kg each for manual
processing. Both methodologies provided very similar results.
The available Dso information collected across the years is
summarised in the boxplot in Figure 3.

ﬁio:’ o 9"‘"'4+T
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Figure 3. Boxplot of the Ds, data collected for the overburden. Filled
circles represent the data points. The average value is represented by the




empty circle. The jitter along the categorical axes is included to prevent
the overlap of data points.

4 INFERENCE OF THE B-K PARAMETERS

4.1 Bayesian approach using direct shear test results

The advantages of the Bayesian approach for inference of
parameters are described in detail by Contreras et al. (2018) in
the context of intact rock strength. The Bayesian analysis enables
the estimation of the more likely parameter values given three
elements: (1) a model, (2) the data input to the model and (3) any
prior information on the parameter values. The model
corresponds to a mathematical function that represents the
performance of a system of interest. The data correspond to
measurements of the actual performance of the system that are
compared with the model predictions to define errors. The prior
information typically consists of valid ranges of credible values
of the uncertain parameters to be inferred. These three elements
(model, data and prior information) are combined in a
probabilistic function that contains the set of parameters for
inference. This function corresponds to a posterior probability
distribution within the Bayesian concept and gives probability
values for particular sets of parameters. The objective of the
analysis is to define the sets of parameters that produce the
highest probability values (minimum errors). Generally, the
parameters are defined by evaluating the posterior function with
a technique known as Markov chain Monte Carlo (MCMC)
analysis (Kruschke 2015).

A simplified representation of the Bayesian model for the
strength characterisation of the overburden is shown in Figure 4.

Prior information Model
20" <4, <40° L
®= 0;+RLo, —
| 3 on win (3 Qm(a“
1 <§ <40MPa
0.01<0, <100

Data
20 o, € ¢ pairs from DSTs

Parameters for inference
@=[dy R 5 0p]

Posterior function
p=fie, o)

Probability value
P

Figure 4. Conceptual Bayesian model for inference of the friction angle
of overburden using only large-scale DST results.

The model corresponds to the B-K strength model represented
by Eq. 1. The data consist of the large-scale direct shear test
results that include measurements of ¢ for particular values of on,
and the prior information consists of the known ranges of
credible values for the uncertain parameters in the B-K equation.

The construction of the posterior function uses the Bayes’ rule
concept and involves the evaluation of the likelihood of the
dataset, which is combined with the prior component to define
the so called posterior function. This function includes the
parameters for inference grouped in the vector 0 in the diagram
of Figure 4. The evaluation of the likelihood of the data entails
the evaluation of errors defined as the differences between model
predictions and data measurements. Figure 5 illustrates how
errors are measured in the Bayesian analysis.

A normal distribution is centred in the model prediction and
is used to quantify the probability of each data point. In this way,
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small errors would have higher probability values and vice versa.
The product of the probabilities of the data points gives the
probability of the dataset for a particular selection of parameters.
The objective of the method is to find the set of parameters (¢,
R, S) that result in higher probability values of the dataset, i.e.
smaller errors. For this search, the method should try normal
distributions with different widths and for this reason, the
standard deviation of the normal distribution used to quantify the
errors of ¢ (oy) is an additional parameter that needs to be
investigated.
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Figure 5. Measurement of errors with a normal distribution centred in the
model prediction.

The specification of the prior distributions is based on the
characteristics of the datasets and consists of setting up values
sufficiently vague to avoid constraining the result. The vague
priors were defined with uniform distributions with ranges from
20° to 40° for ¢», 2 to 15 for R, 1 MPa to 40 MPa for S and 0.01
to 100 for oy. The posterior probability distribution is evaluated
by sampling the parameters with an MCMC algorithm. The
methodology outlined in Figure 4 was implemented in the Python
programming language (PSF, 2001). The analysis is carried out
with the affine-invariant ensemble sampler algorithm
implemented in the emcee Python package developed by
Foreman-Mackey et al. (2013).

The results of the analysis are summarised in the corner plot
of Figure 6 and the envelope graph of Figure 7.
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Figure 6. Corner plot of inferred parameters with the Bayesian analysis
of DST results.



The scatter plot shows the correlation between the inferred
parameters, and the histograms define the ranges of likely values.
These results suggest a strong negative correlation between ¢
and R and a moderate negative correlation between ¢» and S.
The scatter plots also indicate that S appears to be unbounded as
the prior used for this parameter is transferred to the result
without a preferential value. This result suggests the need to
support the estimation of § with data from UCS and Dso
determinations to avoid the bias caused by the prior in the current
analysis.

The sampled values of the parameters represented in the
scatter plots produce a spread of the B-K envelopes around the
mean fit as indicated in the graph of ¢ versus o, shown in Figure
7. The graph includes the data points and the band of envelopes
corresponding to the 95% highest density interval (HDI) of the
parameters, which reflects their uncertainty.
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Mean fit:
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25 . . - -
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o, (MPa)

Figure 7. Uncertainty of the B-K envelopes represented by the 95% HDI
of parameter values in Figure. 7.

4.2 Improved strength estimation with additional data

To define the parameter S aiming for greater definition on the
shear strength results the Bayesian model was extended to
include Equation 3 to calculate S from UCS and Dso data to
prevent the bias caused by the assumed prior in the analysis. The
additional data included the 34 UCS values and the 19 Dso
determinations presented in Figures 2 and 3. The conceptual
model of the Bayesian analysis with the additional data inputs is
shown in Figure 8.

In this case, the parameters for inference have been expanded
to include mean values of UCS and Dso and the standard
deviations oucs and opso to quantify the errors when the inferred
parameters are compared with their respective values in the
datasets. The prior information has also been updated based on
the datasets by defining ranges sufficiently wide to avoid
constraining the results.

The results of the inference analysis considering the
additional data are summarised in the simplified corner plot of
Figure 9. This graph excludes the standard deviations of the
errors, which are normally called the nuisance parameters, and
replaces UCS and Dsop with the respective calculated S values.
The results show a sharp definition of the inferred parameters and
also confirm the strong negative correlation between ¢» and R
identified with the previous analysis. The negative correlation is
purely a statistical condition imposed by the data points to ensure
a good fit with the model. The value of S is now well defined
above the range assumed in the previous analysis based on
judgement. The new results also indicate a minor reduction of ¢»
and confirm the value of R obtained initially. The variability of
the inferred parameters is reflected in the uncertainty of the
envelopes of ¢ as shown in Figure 10 with the band of envelopes
for the 95% HDI of parameters.
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Figure 8. Conceptual Bayesian model for inference of the friction angle
of overburden using large-scale DST results plus additional UCS and D5,
data.
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Figure 9. Comer plot of inferred parameters with the Bayesian analysis
of DST, UCS and Ds results.
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Figure 10. Uncertainty of the B-K envelopes represented by the 95% HDI
of parameter values in Figure. 9.



5 CONCLUSIONS

Due to the variable nature inherent to mine waste rock materials,
large-scale strength determinations in the laboratory can only
represent the prototype sample tested. The implementation of a
Bayesian approach allows the use of all the available information
to characterise the material strength at project scale beside the
direct strength determinations.

The Barton-Kjaernsli (B-K) empirical criterion was used to
represent the shear strength of the overburden material. The
Bayesian approach of statistical analysis was used to estimate the
more likely B-K parameter values, ¢», R and S to represent the
material, honouring all the information available.

To show the benefits of including different sources of
information in the analysis, a first evaluation was conducted
using only the large-scale direct shear test results available. The
evaluation was improved with a second analysis incorporating
other sources of information, in this case, UCS and Dso
determinations. The main observations from these analyses are:

e The Bayesian approach allowed the assessment of the
quality of the information used for the evaluation. The first
analysis suggested that the information used was
insufficient to define adequately all the B-K parameters, and
that additional data was necessary for a better definition of
the parameter S. The second analysis showed a good
definition of the model parameters and provided strength
results with higher confidence.

e The Bayesian analysis provided valuable information in
terms of the variability and correlation of the B-K model
parameters ¢», R and S. A negative correlation between ¢»
and R was observed for the overburden material, which is
purely a statistical condition imposed by the data points to
ensure a good fit with the model.

e The analysis facilitates the identification of the more
relevant factors requiring more investigation to improve the
characterisation of the material strength. Once the
additional information required is available the parameters
can be updated and the reduction of their uncertainty can be
verified. The results of the evaluation indicated that the
shear strength in the B-K model is less sensitive to the
parameter S suggesting that greater attention needs to be
given to the evaluation of g» and R.

e The analysis allowed the inference of the best set of
parameters of the B-K criterion, to represent a material
composed of size-shape correlated particles, for which the
applicability of the standard B-K charts for estimation of
parameters was unknown.

e  The Bayesian analysis indicated that the B-K parameters
that best describe the overburden are ¢p» = 29.3°, R=4.4
and S = 76.4 MPa, The obtained value of R reflects
adequately the ability of the material to pack well
minimising void space, which is dictated by its particle
shape characteristics, whatever these characteristics are.
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