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Is the scale of fluctuation the only important parameter in geotechnical spatial 
variability? 

L'échelle de fluctuation est-elle le seul paramètre important de la variabilité spatiale géotechnique? 
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ABSTRACT: This paper summarizes our recent findings in characterizing geotechnical spatial variability. In the literature, the scale 
of fluctuation (SOF) has been considered as the main parameter that affects the auto-correlation behavior in geotechnical spatial 
variability. Other parameters have been largely ignored. In this paper, we show that SOF is the only key parameter for spatial 
variability only when the performance function of a geotechnical structure is completely governed by arithmetic spatial averaging 
(e.g., friction pile). For a performance function that is not completely governed by arithmetic spatial averaging, we show that two 
other factors may be also important: sample path smoothness and pseudo-periodicity (hole effect). The sample path smoothness is 
characterized by the smoothness parameter in the Whittle-Matérn (WM) auto-correlation model, and the hole effect can be 
characterized by multiplying the auto-correlation model by a cosine function. 

RÉSUMÉ : Cet article résume nos récentes découvertes dans la caractérisation de la variabilité spatiale géotechnique. Dans la littérature, 
l'échelle de fluctuation (SOF) a été considérée comme le paramètre principal qui affecte le comportement d'auto-corrélation dans la 
variabilité spatiale géotechnique. D'autres paramètres ont été largement ignorés. Dans cet article, nous montrons que SOF est le seul 
paramètre clé pour la variabilité spatiale uniquement lorsque la fonction de performance d'une structure géotechnique est complètement 
régie par une moyenne spatiale (par exemple, un pieu de friction). Pour une fonction de performance qui n'est pas complètement régie 
par la moyenne spatiale, nous montrons que deux autres facteurs sont également importants : la régularité du chemin de l'échantillon et 
la pseudo-périodicité (effet trou). Le lissage du chemin de l'échantillon est caractérisé par le paramètre de lissage dans le modèle d'auto-
corrélation de Whittle-Matérn (WM), et l'effet de trou peut être caractérisé en multipliant le modèle d'auto-corrélation par une fonction 
cosinus. L'article continue d'illustrer comment identifier systématiquement le SOF, la régularité et la pseudo-périodicité dans un ensemble 
de données de test de pénétration du cône en utilisant la méthode du maximum de vraisemblance avec le modèle d'auto-corrélation 
cosinus-WM. 

KEYWORDS: Spatial variability, auto-correlation mode, scale of fluctuation, sample path smoothness, hole effect. 

 
1  INTRODUCTION 

For decades, the scale of fluctuation (SOF) (Vanmarcker 1977, 
1983) has been considered as the only important parameter for 
the auto-correlation (or spatial correlation) of soil properties. The 
effect of other parameters on geotechnical problems is not well 
investigated in the literature until recently. Ching and Phoon 
(2019) showed that the performance of a geotechnical structure 
in spatially variable soil can be significantly affected by the 
sample path smoothness (or simply, smoothness), which is 
related to the mean-square differentiability of a random field. 
More recently, Chang et al. (2021) further showed that the 
performance of a geotechnical structure can also be significantly 
affected by the pseudo-periodicity (hole effect) in spatial 
variability. This suggests that SOF alone is not enough to capture 
the effect of soil spatial variability on geotechnical performance. 
One may need to consider three parameters, SOF, smoothness, 
and hole effect, simultaneously. 

The purpose of the current paper is two folds. First, the paper 
will briefly introduce the notions of smoothness and pseudo-
periodicity (hole effect) in spatial variability. Second, the paper 
will demonstrate by numerical examples that smoothness and 
hole effect have significantly impact on the performance of a 
geotechnical structure in spatially variable soil. 

 
 
 
 
 

 

2  SMOOTHNESS AND HOLE EFFECT 

2.1  Smoothness 

In geotechnical engineering, the property of a spatially variable 
soil mass is often modeled as the summation of trend function (t) 
and spatial variability (). The spatial variability (z) (z is depth) 
is typically modeled as a zero-mean stationary random field with 
standard deviation  and certain auto-correlation function 
(Vanmarcke 1977). The auto-correlation function (ACF), 
denoted by (z), defines the correlation between two locations 
with z apart: 
 

( ) ( ) ( )
( ) ( )

( ) ( )
CV z , z+Δz

ρ Δz =ρ z , z+Δz =
Var z Var z+Δz

      
        

 (1) 

 
where Var(.) denotes variance; CV(.,.) denotes covariance. 
Several ACF models have been adopted in the literature (e.g., 
Vanmarcke 1983; Jaksa et al. 1999; Uzielli et al. 2005): 
 

( ) ( )ρ Δz exp 2 | z | Single exponential (SExp)= −     (2) 

( ) | z | | z |ρ Δz 1 4 exp 4 Second order Markov (SMK)
    = +  −       

 (3) 

( ) ( )2 2ρ Δz exp z Squared exponential (QExp)= −   (4) 

 
where  (in m) is the scale of fluctuation (SOF). Figure 1 shows 
these ACF models with  = 1. These ACF models are finite-scale 
models in the sense that the area under (z) is finite. Figure 1a 
show the general view, whereas Figure 1b shows the zoom-in 
near z = 0. 
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Seldom mentioned in the literature is that the random field 
realizations obtained from different ACF models may have very 
different appearances. Figure 2 shows realizations of a zero-
mean random field with different ACF models. All random fields 
have a unit SOF, i.e.,  = 1. It is clear that for SExp, the random 
field realizations have significant local jitters, whereas the local 
jitters are not present for QExp and SMK. The QExp model 
produces a very smooth realization. Whether or not the ACF is 
differentiable at zero lag has direct impact on the local jitters 
(Rasmussen and Williams 2006): the ACFs for QExp and SMK 
are differentiable at zero lag, whereas that for SExp is not (see 
Figure 1b). Therefore, significant local jitters are present in the 
random field realizations for SExp, but not in those for QExp. 
 

 

Figure 1. Three different ACF models with  = 1: (a) general view; (b) 

zoom-in near z = 0. 

 

The Whittle-Matérn (WM) auto-correlation model (Stein 
1999; Guttorp and Gneiting 2006) is a suitable ACF model that 
can produce random field realizations with various degrees of 
local jitters. Its ACF model has the following format: 
 

( ) ( )
( )
( )

( )
( )

0.5 z 2 0.5 z2ρ Δz = K





      +      +  
                

 (5) 

where  is the smoothness parameter;  is the Gamma function 
(Abramowitz and Stegun 1970); Kv is the modified Bessel 
function of the second kind with order  (Abramowitz and 
Stegun 1970). For  = 0.5, 1.5, and , the W-M auto-correlation 
model reduces to the SExp, SMK, and QExp model, respectively. 

 

 
Figure 2.  Realizations of a zero-mean random field with different 
ACF models 

2.2  Hole effect 

The hole effect refers to the phenomenon of a non-monotonic 
ACF (Journel and Froidevaux 1982; Ma and Jones 2001). An 
ACF model without a hole effect is usually characterized by 
monotonic decreasing trend with lag distance (e.g., Figure 3a), 
whereas an ACF model with the hole effect is usually 
characterized by certain degree of periodicity as a function of lag 
distance (e.g., Figure 3c). The hole effect is usually the reflection 
of pseudo-periodicity in the spatial variability (Journel and 
Froidevaux 1982). Figures 3d-f show the random field 
realizations for the ACF models in Figures 3a-c, respectively. 
The model in Figure 3a has no hole effect, so there is no pseudo-
periodicity in the realization in Figure 3d. In contrast, the model 
in Figure 3c has a strong hole effect, so the pseudo-periodicity in 
Figure 3f is clearly visible. Note that pseudo-periodicity in the 
random field realization is not always clearly visible, e.g., the 
pseudo-periodicity in Figure 3e is not very clear, although its 
underlying model (Figure 3b) has certain hole effect. 

 

 
Figure 3. (a-c) ACF models with various degrees of hole effect; (d-f) random field realizations.

 

The following cosine Whittle-Matérn (CosWM) model 
(Chang et al. 2021) is a suitable ACF model that can produce 
random field realizations with various degrees of smoothness and 
hole effect: 

 

( ) ( )
1 2 z 2 z2 zρ Δz = K cos

s s b


−



                         

 (6) 

 
where s (in m) is the scale parameter; the parameter b (in m) 
controls the period of the consine function. The dashed lines in 
Figure 4 illustrate the CosWM model with  = 0.5 (CosSExp), 

1.5 (CosSMK), and  (CosQExp). All illustrations are with s = 1 
m and b/s = 0.3. The hole effect is quantified by b/s. When b/s 
approaches , the hole effect disappears, and CosWM reduces to 
WM. The smaller b/s, the stronger the hole effect. b/s = 1 can be 
regarded as the threshold for a significant hole effect. For b/s < 1 
(e.g., Figure 4 with b/s = 0.3), the hole effect is significant. For 
b/s  1, the hole effect is insignificant. Although the CosWM 
model does not adopt SOF as its basic parameter, the ratio /s can 
be expressed as a function of  and b/s, but unfortunately the 
analytical expression for this relationship is not available. Figure 
5 shows how /s varies with  and b/s. When b/s approaches , 
the hole effect disappears, and /s approaches a constant. 
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Figure 4. ACF models with various smoothness: (a)  = 0.5; (b)  = 1.5; (c)  = . Solid lines are for monotonic models, whereas dashed lines are for 
hole-effect models.

 
Figure 5. Relationship between /s and (, b/s) for the CosWM model. 
 

3  NUMERICAL EXAMPLES 

The current paper investigates the impact of the hole effect on 
the failure probability (pf) of a geotechnical structure. The WM 
and CosWM models are adopted to simulate random fields. Four 
geotechnical examples are investigated: (a) friction pile; (b) one-
dimensional seepage; (c) infinite slope; and (d) differential 
settlement between two footings. 

3.1  Friction pile 

Consider a friction pile embedded in clay with a total length L 
subjected to a vertical dead load DL. The pile has a diameter B = 
1 m. The spatially variable undrained shear strength (su) of the 
clay is modeled as a stationary normal random with mean  = 
100 kN/m2 and standard deviation  = 30 kN/m2: 
 

( ) ( )us z z= +  (7) 

 
where (z) is the zero-mean spatial variability with standard 
deviation . Suppose that the horizontal SOF is larger than the 
diameter B, so the horizontal variability can be ignored. The unit 
side resistance fs(z) is expressed as 
 

( ) ( )s uf z s z=   (8) 

 
where  = 0.5 is adopted. For a friction pile, the end bearing is 
negligible, so the total resistance Q is equal to the total shaft 
resistance: 
 

( ) ( )
L

u s L

0

Q B f z dz BL=  =  +   (9) 

 
where 

L  is the spatial averaged (z) over the depth range L. 
The performance function G can be defined as 
 

( )u LG Q DL BL DL= − =  +  −  (10) 

 

The pile fails if G < 0. The spatial average 
L can be computed 

as the arithmetic average of the (z) values simulated over the 
dense grid points (z1, z2, …, zn). 

3.2  One-dimensional seepage 

Consider a soil mass with spatially variable hydraulic 
conductivity (k). The total depth of the soil mass is D, and it is 
underlain by an impermeable layer. Suppose the vertical 
variability in k is much more significant than the horizontal one, 
so k is modeled as a function of depth z only. The vertically 
variable k(z) is modeled as a stationary lognormal random with 
mean  = 110-4 cm/s and COV = 100%: 
 

( ) ( )k z exp z= +    (11) 

 
where  = ln[/(1+COV2)0.5] and  = [ln(1+COV2)]0.5 are the 
mean value and standard deviation of ln[k(z)], respectively; (z) 
is modeled as a zero-mean stationary normal random field with 
standard deviation = 1. The main focus of the one-dimensional 
seepage example is on the equivalent vertical k of the soil mass, 
denoted by kV: 
 

( ) ( )
n n

j 1 j 1V j j

1 1 dz 1 1

k D nk z k z= =

= =   (12) 

 
which involves the harmonic average. Suppose that the failure is 
defined as the exceedance of kV over a prescribed critical value 
kcr: 
 

cr VG k k= −  (13) 

 
where kcr is taken to be 110-4 cm/s. Each sample path of (z) 
produces a realization of G. 

3.3  Infinite slope 

Consider an infinite slope with an inclination angle  and a 
vertical depth D (see Figure 6). Suppose the friction angle  of 
the cohensionless soil is spatially variable in a way that the 
variability is only in the vertical direction. It is homogeneous in 
the direction parallel to the slope. The ground water is deep, so it 
has no effect on the stability. The spatially variable (z) is 
modeled as a stationary normal random with mean  = 30o and 
standard deviation  = 3o: 
 

( ) ( )z z = +  (14) 

 
where (z) is the zero-mean spatial variability with standard 
deviation . A potential slip plane with depth z fails if (z) < , 
where (z) denotes the friction angle at depth z. The infinite 
slope fails if any one potential slip plane fails. Therefore, the 
performance function G for the infinite slope can be written as 






( ) ( )
( )
( )

( )
( )

ρ Δ




      +      +  
                

 


 

( ) ( )
ρ Δ


−



                         












  

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Figure 6. Random field sample paths of tan[(z)] for the infinite slope. 
 

 
( ) min

z 0,10
G min z


=  − = + −  (15) 

 
where min denotes the minimum value of the (z) realization.  
The infinite slope fails if G < 0. 

3.4  Differential settlement between two footings 

Let us consider two square rigid footings on undrained clay, with 
width B = 1 m and separation distance = L shown in Figure 7. 
The depth of a hard stratum is assumed to be very deep. Each 
footing is subjected to a vertical load of Q, producing a bearing 
pressure of q = Q/B2. The horizontal direction is denoted by x. 
The Young’s modulus E for the undrained clay underlying the 
footing is denoted by E(x). It is assumed that E(x) has taken into 
account the (weighted) average of E over 4B to 5B beneath the 
footing. The spatially variable E(x) is modeled as a stationary 
lognormal random field with mean  = 20 MN/m2 and COV = 
50%. This suggests that ln[E(x)] is a stationary normal random 
field with variance 2 = ln(1+COV2) mean  = ln() – 0.52: 
 

( ) ( )ln E x x= +    (16) 

 
where (x) is the zero-mean spatial variability with standard 
deviation = 1. The settlement Se at the center of each rigid footing 
can be estimated as (Janbu et al. 1956; Christian and Carrier 1978) 

 ( ) ( )e 1 2

q B
S x 0.93 A A

E x


=    (17) 

 
where (x1, x2) are the x coordinates for the two footings. The 
performance function G can be written as 
 

1
G

500
=  −  (18) 

 
where 1/500 is the maximum acceptable angular distortion 
(European Committee for Standardization 1994). 
 

 
Figure 7. Two footings. 
 
4  ANALYSIS RESULTS 

For all four examples, Monte Carlo simulation (MCS) is adopted 
to estimate the failure probability pf = P(G < 0). Ten thousands 
(N = 10,000) realizations of (z) are simulated. Each (z) sample 
produces a realization of G. Hence, N = 10,000 realizations of G 
are simulated, and the failure probability pf can be estimated: 

 
N

i

f

i 1

1
p I G 0

N =

     (19) 

 
where I[.] is the indicator function; Gi is the i-th realization of G. 
For cases with small pf, N increases to 100,000. 

4.1  Impact of smoothness on performance 

To investigate the impact of smoothness on pf, the WM model 
with SOF =  and smoothness parameter =  is adopted as the 
ACF model for (z). 

4.1.1   Friction pile 
For the friction pile example, Figure 8 shows how pf changes 
with  for several chosen /L values. It is clear that pf does not 
depend much on , but it depends on /L. The effect of the 
smoothness of (z) realizations is minimal for the friction pile 
example because it is completely governed by arithmetic spatial 
averaging. 

4.1.2   One-dimensional seepage 
Figure 9 shows how pf changes with  for several chosen /D 
values. It is interesting to see that  does not significantly affect 
pf, except when  is small. Note that both the friction pile and 
one-dimensional seepage examples are completely governed by 
spatial averaging. The only difference is that the friction pile 
example is governed by the arithmetic average, whereas the one-
dimensional seepage example is governed by the harmonic 
average. 

4.1.3   Infinite slope 
Figure 10 shows how pf changes with  for several chosen /D 
values. It is clear that  now has a significant effect on pf. In 
particular, pf produced by SExp ( = 0.5) is significantly larger 
than those produced by SMK ( = 1.5) and QExp ( = ) even if 
they share the same /D. This observation stands in strong 
contrast to that obtained in the friction pile example. For the 
friction pile example, arithmetic spatial averaging completely 
governs, hence  is the only parameter that matters. On the 
contrary, for the infinite slope example, there is no spatial 
averaging, and weakest-path seeking mechanism completely 
governs. The local jitters produced by a small  lead to lots of 
apparent weak layers that affect the stability of the infinite slope. 
As a result,  has a significant effect on pf for the infinite slope 
problem. 

4.1.4   Differential settlement between two footings 

Figure 11 shows how pf changes with  for several chosen /L 
values. It is clear that  has a significant effect on pf when /L is 
relatively large. When /L is large, the separation distance 
between the footings is only a fraction of . In this case, the 
differential settlement between the two footings is governed by 
the short range auto-correlation, which is affected significantly 
by . This explains why  has a significant effect on pf when /L 
is relatively large. 

4.2  Impact of hole effect on performance 

To investigate the impact of hole effect on pf, the CosWM model 
with various b/s is adopted as the ACF model for (z). The 
smoothness  in the CosWM model is fixed at 0.5. 

4.2.1   Friction pile 
For the friction pile example, Figure 12 shows how pf changes 
with b/s for several chosen /L values. It is clear that pf does not 
depend much on b/s. The impact of the hole effect of (z) 
realizations is minimal for the friction pile example. 
 

Q 

x 

Q 
L 

B B 
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Figure 8. Variation of pf with respect to  for several chosen /L values 
(friction pile with L = 10 m & DL = 1400 kN). 
 

 
Figure 9. Variation of pf with respect to  for several chosen /D values 
(one-dimensional seepage with D = 10 m). 
 

 
Figure 10. Variation of pf with respect to  for several chosen /D values 
(infinite slope with  = 18o & D = 10 m). 

 

Figure 11. Variation of pf with respect to  for several chosen /L values 
(differential settlement with L = 5 m & Q = 200 kN). 

4.2.2   One-dimensional seepage 
Figure 13 shows how pf changes with b/s for several chosen /D 
values: b/s now significantly affects pf. Note that the one-
dimensional seepage example is governed by harmonic spatial 
averaging, not by arithmetic spatial average. 

4.2.3   Infinite slop 
Figure 14 shows how pf changes with b/s for several chosen /D 
values: b/s significantly affects pf. 

4.2.4   Differential settlement between two footings 
Figure 15 shows how pf changes with b/s for several chosen /L 
values: b/s significantly affects pf. 
 

 
Figure 12. Variation of pf with respect to b/s for several chosen /L values 
(friction pile with L = 10 m & DL = 1500 kN). 

5  CONCLUSIONS AND DISCUSSIONS 

The scale of fluctuation (SOF) has been regarded as the only 
essential parameter for soil spatial variability. Numerous 1-
parameter auto-correlation function (ACF) models are available 
in the literature. Recently, Ching and Phoon (2019) showed that 
the sample-path smoothness (governed by ) has significant 
impact on the performance of a geotechnical structure and that 
SOF and smoothness can be simultaneously modeled by the 
Whittle-Matérn (WM) model. Chang et al. (2021) further showed 
that the pseudo-periodicity (hole effect) (governed by b/s) also 
has significant impact on the performance of a geotechnical 
structure and that SOF, smoothness, and hole effect can be 



 
( )


=  − = + −

 



   

( ) ( )= +  



( ) ( )


=  

=  −

 

=

   

 


 
 
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simultaneously modeled by the cosine Whittle-Matérn (CosWM) 
model. The only exception is the friction pile example whose 
performance is completely governed by arithmetic spatial 
average: both  and b/s has insignificant impact on the 
performance of a geotechnical structure. 
 

 
Figure 13. Variation of pf with respect to b/s for several chosen /D values 
(one-dimensional seepage with D = 10 m). 
 

 
Figure 14. Variation of pf with respect to b/s for several chosen /D values 
(infinite slope with  = 22o & D = 10 m). 
 

 
Figure 15. Variation of pf with respect to b/s for several chosen /L values 
(differential settlement with L = 5 m & Q = 200 kN). 

Vanmarcke (1977) stated that the probability distribution of 
“point” soil properties may be less important, whereas the 
probability distribution of the “spatial averaged” soil properties 
is more important. This statement has a profound influence on 

research works conducted later in the area of geotechnical 
reliability. Because the (arithmetic) spatial averaging effect (or 
the variance reduction effect) can be well captured by a single 
parameter, the scale of fluctuation , this parameter  has been 
widely accepted to be a key parameter for spatial correlation. In 
fact,  probably has become the only parameter that people 
concern about the spatial correlation. Indeed,  should be the only 
concern if the problem is completely governed by arithmetic 
spatial averaging, e.g., the friction pile. 

However, the observation obtained in the current paper rejects 
the claim that  should be the only concern. There are other 
important mechanisms, e.g., seeking of the weakest path, that are 
apart from spatial averaging. It is evident that  alone may not 
capture these important mechanisms. We need more parameters 
such as the smooth parameter  in the WM model and the hole-
effect parameter b/s in the CosWM model to capture these 
mechanisms. However, in the literature, extra parameters have 
never been addressed. When characterizing spatial correlation, 
nearly all past works focus on the identification of . There is no 
past work discussing how to characterize the “smoothness” or 
“hole effect” of the spatial variability. Nevertheless, the 
observation obtained in the current paper indicates that these 
characteristics (smoothness and hole effect) may be important for 
problems not completely governed by arithmetic spatial 
averaging.  
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