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ABSTRACT : Geotechnical site characterization requires the determination of site-specific field parameters which are known to
exhibit pronounced variability. In this paper, in-situ and laboratory test data of a project site located in the mangrove swamp of the
Niger Delta region of Nigeria are used to characterize the site based on probability concepts. The characterization involves the
application of random field theory in estimating the spatial variability parameters, using CPT data from different test locations. Of
particular interest are the two key deep foundation design quantities — cone tip resistance, q_c, and undrained shear strength, s_u.
The modeling of spatial variability entails the statistical description of the soil properties in terms of the statistical quantities: mean
1, variance 02, and correlation structure 6, in the vertical and horizontal directions. In this study however, only the vertical spatial
variation of the design quantities is modelled, with the correlation structure estimated by fitting the theoretical correlation to the
experimental correlation function. The cosine exponential correlation model is found to yield good level of accuracy in estimating
the correlation length or scale of fluctuations. The generated soil profile portrays a sequence of organic sensitive silty Clay underlain
by alternating layers of inorganic Clay and gravely Sand. The estimated scale of fluctuations for the upper organic sensitive Clay is
small for both design quantities, which is indicative of rough field up to a depth of about 5Sm. Beyond this depth, the correlation
length increased with depth implying strong spatial correlation in the design quantities within soil layers at great depths. The site-
specific estimates of the vertical scale of fluctuation of both the unit cone resistance and the undrained shear strength have been
presented and compares closely to literature globally and hence scheme recommended for deep foundation development in the
Nigerian Niger Delta Areas.

RESUME: La caractérisation géotechnique du site nécessite la détermination de paramétres de terrain spécifiques au site qui sont
connus pour présenter une variabilité prononcée. Dans cet article, les données d'essais in situ et en laboratoire d'un site de projet situé
dans la mangrove de la région du delta du Niger au Nigeria sont utilisées pour caractériser le site sur la base de concepts de probabilité.
La caractérisation implique 1'application de la théorie des champs aléatoires dans 'estimation des paramétres de variabilité spatiale,
en utilisant des données CPT provenant de différents emplacements de test. Les deux grandeurs de conception des fondations
profondes sont particuliérement intéressantes : la résistance a la pointe du cone, q_c,, et la résistance au cisaillement non drainé, s_u.
La mod¢élisation de la variabilité spatiale implique la description statistique des propriétés du sol en termes de grandeurs statistiques :
moyenne (4, variance o2 et structure de corrélation 6, dans les directions verticale et horizontale. Cependant, dans cette étude, seule
la variation spatiale verticale des grandeurs de conception est modélisée, la structure de corrélation étant estimée en ajustant la
corrélation théorique a la fonction de corrélation expérimentale. Le modele de corrélation exponentielle en cosinus donne un bon
niveau de précision dans I'estimation de la longueur de corrélation ou de I'échelle des fluctuations. Le profil de sol généré dépeint
une séquence d'argile limoneuse sensible aux maticres organiques reposant sur des couches alternées d'argile inorganique et de sable
graveleux. L'échelle estimée des fluctuations pour l'argile sensible organique supérieure est petite pour les deux quantités de
conception, ce qui indique un champ rugueux jusqu'a une profondeur d'environ Sm. Au-dela de cette profondeur, la longueur de
corrélation augmente avec la profondeur, ce qui implique une forte corrélation spatiale dans les grandeurs de conception dans les
couches de sol a de grandes profondeurs. Les estimations spécifiques au site de 1'échelle verticale de fluctuation de la résistance du
cone unitaire et de la résistance au cisaillement non drainé ont été présentées et se comparent étroitement a la littérature mondiale et
donc au schéma recommandé¢ pour le développement de fondations profondes dans les zones du delta du Niger au Nigéria.

KEYWORDS: site characterization, random field theory, spatial variability, correlation model, isotropic field.

1 INTRODUCTION

Soils are natural materials formed by a weathering process with
physical properties varying from one place to another as a result
of the physical and chemical changes they undergo during
formation (Mitchel and Soga, 2005). The conventional tool used
in accounting for spatial variability in geotechnical engineering
practice is reliance on factors of safety and local experience.
However, the hypothesis of randomness is now commonly
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adopted as a more rational method of resolving issues of
variability. Consequently, efforts at characterizing spatial
variability of soil properties have relied more on statistical and
probabilistic methods (Onyejekwe, 2012).

Application of statistical analysis in the evaluation of soil
behavior in Nigeria is rare but there is no doubt that using such
approach offers a wide range of opportunities for advancement
of geotechnical engineering practice in the country. Research in
this area is scanty and only few works exist on the application of



probabilistic methods in analyzing geotechnical engineering
behavior and validating analytical models of Nigerian soils, (e.g.,
Ejezie and Harrop-Williams, 1984). Most of these studies applied
concepts formulated at the early stages of development of the
probabilistic and reliability methods and therefore, did not
adequately evaluate the effect of spatial variability. This study
seeks to broaden the application of statistical analysis by
developing models of the spatial variability of the soil properties
of a project site located in a mangrove swamp within the Niger
Delta region of Nigeria using the random field theory.

2 RANDOM FIELD THEORY

2.1 Spatial Variability

The random field model of spatial variability assumes spatial
dependence such that the soil properties X(x;) and X(x;) are
expected to exhibit some sort of interdependence that decreases
with their separation distance. The interdependence of the
properties at the different points in the field is depicted using
joint bivariate distribution f, ., (xl,xz), However, for three or
more points, the complete probabilistic description of the random
process becomes complex and difficult to use in practice. The
characterization problem is, nevertheless, simplified by
assuming a Gaussian process and stationarity of data which
allows the complete joint distribution to be quantified by the
mean vector and covariance matrix, and makes the distribution
independent on stationary position but dependent only on relative
positions of points (Fenton and Griffiths, 2008). Assumption of
stationarity implies that the statistical properties of the random
field remain the same when the spatial origin changes position.

To facilitate the application of random field theory, a
transformation of the variables by decomposition is often
performed to convert the non-stationary field to a stationary or
nearly stationary field. The decomposition transformation
technique idealizes the soil property as comprising of a
deterministic trend component and a fluctuating or variable
component expressed in form of an additive equation (Baecher
& Christian 2003; Uzielli 2006):

Y(z) = t(2) +§(2) (M

The objective in the decomposition process is primarily to
obtain an estimate and remove the deterministic component,
t(z), while ensuring that the residual random component, &(z),
remains stationary. Analysis of inherent variability involves
modeling the residual component of the soil property by
statistical means. The residual component is assumed to have a
spatial structure defined by the scale of fluctuation, 6, and the
autocovariance function, C(7), where T is the distance between
observation points (Oguz and Huvaj, 2019)

The modelling of the soil parameters relies much on two
essential statistical properties of the random field namely:
autocovariance, ¢y, and autocorrelation coefficient, p,, at
lag, k,. In practice, ¢, and p; are estimated from the samples
obtained from a population. The sample autocovariance c¢; and
the sample autocorrelation coefficient, at lag k, r;, are defined
as follows (Jaksa 2006):

G = 20X = X Koy — X @
and

roo= Sk _ T =) Kisie=X)
LS T, (G-X)?

©)
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X =average of the observations X; X, ...,X,, and0 <k <n

The plot or graph of ¢, for lags k = 0,1,2, ... represents the
sample autocovariance function (ACVF), or auto-variogram
while the plot of 1y for lags k = 0,1,2,...K represents the
sample autocorrelation (ACF), where K is the maximum
number of lags for rycalculations (e.g., K = n/4)

The modelling of the spatial variability of geotechnical
material requires a minimum of three parameters: the mean, y;
a measure of variance, ¢? (standard deviation,a, or coefficient
of variation); and the scale of fluctuation, 6, that associates the
correlation of properties with distance (Vanmarcke, 1983). Large
values of 6, for a particular property, signifies that the property
slowly fluctuates with distance about the mean, suggesting a
more continuous deposit, while a small 6 is an indication of the
property fluctuating rapidly about the mean, suggesting a more
randomly varying material (Jaksa, 2006).

2.2 Scale of Fluctuation

The scale of fluctuation, 6, is a measure of the distance within
which points in a domain are significantly correlated and it
conveniently describes the spatial variability of a soil property
(Vanmarcke, 1983). The correlation between two points depends
on how the separation distance compares with 6. Given the
importance of 6 in the spatial variability description of soil
property in a random field, extensive research work aimed at
developing more rational approaches in determining accurate
estimates of the scale of fluctuation have been carried out
(Fenton and Griffiths, 2005; Griffiths et al. 2009; Hicks and
Spencer, 2010; Cassidy et al., 2013). Small values of 6 obtained
from any of the models indicate that the correlation function
decays rapidly to zero with increasing T (meaning that the
correlation between the two points under consideration are
rapidly smaller) resulting in a rougher random field. As 8 — 0,
all points within the domain become uncorrelated and the field
becomes extremely rough. Conversely, increasing values of 8 is
an indication that the property field is smoother meaning that the
field is showing less variability converging to a uniform field
when 6 — oo Lloret-Cabot et al. (2013). In practice, estimation
of 6 is done by fitting the theoretical correlation to the
experimental correlation function (Uzielli et al., 2006; Zhu and
Zhang, 2013; Oguz and Huvaj, 2019).

Table 1: Some common correlation models

Correlation Expression Scale of
Model Fluctuation 8
Simple p(t) = exp[—|t|/b] 2b
exponential

Gaussian p(t) = exp{—n[|t|/c]*} NG
exponential

Second-order  p(7) = exp~I?(1 + |7]/d) 4d
autoregressive

process

Cosine p(7) = exp~1"2cos(t/a) a
exponential

Source: Lloret-Cabot et al. (2013)

3 RESEARCH METHODOLOGY

3.1 Study Area and Data Acquisition

The area of study falls within the Tertiary Niger Delta which
occurs at the southern end of Nigeria bordering the Atlantic
Ocean and extends from about longitudes 3°-9°E and latitude 4°
30°-5° 20°N.
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Figure 1. Location of study area

The study used data from a geotechnical site investigation
report of a refinery project with a total of 96 data sets available,
out of which 20 (16 CPT and 4 borehole data), were carefully
selected for the study to present an equally spaced CPT grid,
suited for random field theory application. A summary of the data
set is presented in Table 2

Table 2. Study data set

Data Refinery
CP 10 CP 14 CP 19 CP 24
CPT CP11 CP16 CP20 CP26
CP12 CP17 CP22 CP27
CP13 CP18 CP23 CP28
Borehole BHS BH9 BHI0 BHI1

3.2 Method of Data Analysis

The soil profile generated from the borehole log and CPT data
identified five distinct soil layers and analyses were performed
for each of the soil layers. To ensure statistical homogeneity or
stationarity within the domain for a seamless application of the
random field theory, the entire soil profile within the zone of
influence was divided into number of statistically homogeneous
or stationary sections, and the data within each layer subjected
separately to statistical analysis (Phoon et al. 2003).

Data from each CPT test hole was evaluated to determine the
value of geotechnical parameter at the different strata of the soil
profile. The examination of data of each CPT to determine the
value of the realization at any strata was carried out using the
following steps (Jaska, 2006):

e Examine the data of the parameter across the depth and
transform the non-stationary data into stationary data. Where
the data exhibited a trend, decomposition was required
otherwise linear transformation into a weak stationary field
was performed.

e Decomposition involved separating the trended data into a
slowly changing trend component and a random or residual
component. The ordinary least square (OLS) method was
used to estimate the trend.

e To ensure stationarity of the residuals, eyeballing and the

Kendal’s 7 test was used to examine for stationarity. With

stationarity confirmed, it was assumed that the residuals are

normally distributed.

Calculate the sample autocovariance and autocorrelation

functions using Equations (2) and (3) respectively.

Estimate the correlation length, €, by fitting a theoretical

model from Table 1 to the plot of sample ACF over lag

distance

Calculate the Bartletts distance (i.e., distance over which the

samples are autocorrelated).

The vertical spatial variability was analyzed by estimating the
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correlation distance within each soil layer for the cone tip
resistance and undrained shear strength.

4 RESULTS AND DISCUSSION

4.1 Soil Profile Generation

The CPT data were analyzed with the aid of NovoCPT® (2019)
software, which generates soil profiles using the charts
developed by Robertson (1986), Robertson (1990 SBT) and
Jefferies & Been (2006). Comparative examination of the soil
behavior pattern in Figure 2, initial soil profile in Figure 3 and
CPT data shows that some of the soil layers are mixtures of
“clays” and “sands”. There was need therefore to classify the soil
layers into major soil groups. The initial soil profile generated
was adjusted through a three-step approach that allowed thin
layers to be merged into neighboring layers (Salgado et al., 2015).
o SBT chart band approach — merging thin layers into adjacent
layers by consideration of the secondary soil type(s)
classification
¢ Soil group approach — merging thin layers into adjacent layers
of the same soil group
e Average q. approach — merging thin layers into adjacent
layers with similar average q,.

® 2019 Novo Tech Software [1d

Gravelly

Sands to
Sand, some s&

Qt (18, + 1

Organic Soils

Jefferies & Been, 2006

0.1

0.1 1
Friction Ratio (%)

10

Figure 2: Jefferies & Been 2006 Soil type

Soil Type
01234567 89101112

Figure 3: NovoCPT generated soil profiles
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Figure 4: Adjusted Soil Profile

The final soil profile generated for the study, as shown in
Figure 4, is composed of five main soil groups.

4.2 Laboratory and in-situ test results

The summary of in-situ and laboratory test results for undrained
shear strength is presented in Table 3 which shows the mean of
the undrained shear strength increasing with depth as the
coefficient of variation (COV) decreased as depth increased.

Table 3: Statistics of undrained shear strength

Soil layer Description No of Mean Std cov
data (kPa) Dev (%)

Sensitive organic clay 306 17.79 8.58 48.2
Clay 481 34.14 13.97 40.9

Clayey silt to silty 858 64.47 25.58 39.7

clay

4.2 Random Field Characterization

4.2.1  Vertical spatial variability of Cone Tip Resistance q.
The random field modeling for vertical variability of q. is
illustrated using data from the CP26 test hole. The plot of q.
against depth from the CPT interpretation software is shown in
Figure 5. Each stratum was examined for spatial trend and where
trends existed it was removed using Ordinary Least Square (OLS)
method.

Tip Resistance qc(MPa)
o] 10 20 30 40 50 60

10

15 —eee———
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Depth (m)
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35

40

45

50

Figure 5: Cone tip resistance plot of CP26
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The data exhibited both linear and quadratic trends. Figure
6 shows a trend model with residual over the depth band shown
in Figures 7. The clay soil layers followed a linear trend while
the sand and gravelly layers followed a quadratic trend. For the
strata lying within 12.5-25m depth, the residual, 7. is obtained
by subtracting the trend value from the measured value as in
equation (4).

Tye = e — (9.3999 — 7.203x + 1.9175x% — 0.0951x3)  (4)

Results of the Kendall’s t test had all the soil layers 7
values within the range +1 and closer to 0 indicating
stationarity of data. To estimate the correlation length, the
autocorrelation functions (ACF) were computed for separation
distances 1, = kAz for lags k =0,1,2,..n/4 where Az =
0.25m (i.e., sampling interval) and n=number of data points
within layer. The plot of sample ACF over the separation
distances with the cosine exponential theoretical model
superimposed, for soil layer at 16.5-37.5m depth is shown in
Figure 8.

60
Q

o

3 40

o

8 _

2 8 20

L=

= 0 e

[J] -
S 125 13 135 14 145 15 155 16
o 20

Depth below ground (m)

Figure 6: Measured cone tip resistance with quadratic trend for at
12.5-16.25m depth

Cone tip resistance

Depth below ground level (m)

Figure 7: Residuals of qc, after trend removal at 12.5-25m depth

Autocorrelation pk

= = = Theoretical

Sample ACF

------- Bartletts distance

Figure 8: Sample and model ACF from residual of q. at 16.5-37
.Sm depth

Summary of results of vertical variability analyses of CP26 test
hole is presented in Table 4.



Similar analyses were repeated on the data from each of the
other 15 CP test holes and the estimated vertical scale of
fluctuations are presented in Table 5 for the clay soil units and
Table 6 for the sand and gravelly soil units.

Table 4: Summary of results of vertical variability analyses on CP26 test
hole data

Depth range Value of Bartlett’s Scale of
of stratum (m) Parameter distance Fluctuation,@
(m) (m)
0.25-5.25 0=0.478 +0.428 0.250
6.25-12.25 0=0.105 +0.392 0.135
12.5-16.25 0=0.345 +0.490 0.248
16.5-37.5 0=0.182 +0.216 0.176
37.75-46.5 0=0.261 +0.490 0.128

Table 5: Vertical Scale of Fluctuation, 6,, of cone tip resistance, q. in
clay units

Sensitive fines  0.25 - 5.25m

Clay 6.25—-12.25m 16.5-37.5m

Variable 6, (m) 6, (m) 6, (m)
CP10 0.246 0.162 0.186
CP11 0.195 0.173 0.212
CPI12 0.184 0.168 0.179
CPI13 0.224 0.161 0.210
CP14 0.246 0.165 0.202
CP16 0.214 0.142 0.180
CP17 0.238 0.158 0.204
CP138 0.147 0.154 0.199
CP19 0.210 0.145 0.201
CP20 0.167 0.172 0.212
CP22 0.247 0.174 0.216
CP23 0.195 0.165 0.183
CP24 0.246 0.175 0.188
CP26 0.250 0.135 0.176
CP27 0.135 0.188 0.216
CP28 0.165 0.167 0.181

Mean (m) 0.207 0.163 0.197

Std Dev (m) 0.038 0.014 0.014
COV (%) 18.6 8.4 7.4

Table 6: Vertical Scale of Fluctuation of cone tip resistance in sand and
gravelly units

a) The estimated vertical scale of fluctuation or correlation
length for the clay soil layers are within the range 0.135-
0.250m with coefficient of variation (COV) relatively high
for the upper layers and less for the deeper layers indicating
a more strongly spatial correlated cone tip resistance as
depth increases. The sand and gravelly layers do not exhibit
any notable trend as the correlation length seem not to be
influenced by the depth of occurrence of the cohesionless
layer.

b) The decrease with depth of the COV in the clay units Table
8), is a further indication that the soil parameters become
more predictable with depth as soil deposits go into more
stable state with increasing depth during the soil formation
process.

4.2.2  Vertical spatial variability of Undrained Shear Strength
Su

The vertical variability of undrained shear strength is illustrated
with the data for CPT test holes CP26 following similar steps as
in the cone tip resistance. Data stationarity was confirmed, and
the cosine exponential correlation model was used to fit the
sample ACF as shown in Figure 9 with the summary of the
analyses presented in Table 7.

15

Sample ACF

....... Bartlett's limit

Figure 9: Sample and model ACF from residuals of s, at 16.5-37
.5Sm depth

Table 7: Summary of vertical variability analyses of s, with CP26 test
hole data

Depth range of Value of Bartlett’s Scale of
Sand 12.5-16.25m stratum (m) Parameter distance Fluctuation,@
Gravely Sand 37.75 - 46.5m (m) (m) (m)

Variable 0, (m) 6, (m) 0.255.25 4=0.300 +0.428 0.191

CP10 0.265 0.182 6.25-12.25 0=0.400 +0.392 0.388

CP11 0.237 0.198 17.00-37.25 0=0.800 +0.216 0.875

CP12 0.321 0.180

CPI3 0.237 0.210 Similar analyses were repeated on the data from each of

Cr14 0.246 0.200 the other 15 CP test holes and the estimated vertical scale

CP16 0.231 0.242 of fluctuations are presented in Table 8.

CP17 0.322 0.183 The results of vertical spatial variability of the undrained shear

CP18 0.280 0.203 .

CP19 0.280 0225 strength also show that the COV decreases with depth, a further

CP20 0.288 0.220 confirmation that the soil property is more spatially predictable

CP22 0313 0.250 as depth increases.

CP23 0.284 0.240 Table 9 presents the COV of the soil parameters for all the soil

CP24 0.249 0.254 units investigated in the study showing decreasing COV as depth

CP26 0.248 0.128 is increasing.

CP27 0.135 0.125 The estimated vertical correlation lengths for other soil layers

CP28 0.268 0.220 of clay and sand are generally smaller than those reported in
Mean (m) 0.262 0.204 literature of other regions. The correlation lengths for the

Std Dev (m) 0.045 0.038 mangrove swamp compared with those in literature is presented

COV (%) 17.2 18.8 in Table 10

Based on the results of the vertical variability analysis for the
cone tip resistance, the following are deduced
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Table 8: Vertical scale of fluctuation, 6, of undrained shear strength,

Su
Sensitive fines 0.25-5.25m
Clay 6.25-12.25m  16.5-37.5m
Variable 6, (m) 6, (m) 0y (m)
CP10 0.320 0.782 0.871
CP11 0.278 0.690 0.631
CP12 0.465 0.585 0.678
CP13 0.348 0.356 0.503
CP14 0.386 0.638 0.671
CP16 0.320 0.650 0.652
CP17 0.405 0.420 0.517
CP138 0.482 0316 0.518
CP19 0.434 0.628 0.613
CP20 0.238 0.706 0.601
CP22 0.682 0.601 0.830
CP23 0.204 0.354 0.667
CP24 0.328 0.468 0.768
CP26 0.191 0.388 0.875
CP27 0.510 0.875 0.500
CP28 0.805 0.708 0.773
Mean (m) 0.400 0.573 0.667
Std Dev (m) 0.166 0.169 0.127
COV (%) 4145 29.54 19.02

Table 9: COV of spatial variability with depth

Variability Parameter Coefficient of Variation COV (%) at
depths
0.25-  6.25- 12.25- 16.5- 37.5-
525 1225 1625 375 465
. qe, 456 378 14.7
Vertical Sy 269 225 18.5

Table 10: Vertical Correlation lengths of soil parameters compared with

those reported in literature

Soil Vertical Correlation length (m) Soil
Property Study Literature Source type
q. 0.14-0.25 2.00 Chiasson et Sensitive
’ al. (1995) clay
0.80-1.80 Popescu et Clay
al. (1995)
1.00 Vanmarcke Clay
1977)
0.1-2.2 Phoon and Sand,
Kulhawy Clay
(1996)
0.20-0.40 1.6 Kulatilake Clean
and Ghosh sand
(1988)
Su 0.13-0.3 0.3-0.6 Keavenly et Offshore
al (1989) soils
0.8-6.1 Phoon and Clay
Kulhawy
(1996)
0.06-0.24  Jaska (1999) Clay

sand. The upper organic sensitive fines exhibit small
correlation lengths for the parameters, indicative of a rough
field up to a depth of about S5Sm. The geotechnical properties
on this layer are largely unpredictable and changes over
extremely small distances. In practice, such soil is usually
adjudged unsuitable to support any structure and will be
recommended for replacement and preloading with sandfills.

The vertical correlation length for cone tip resistance and

undrained shear strength for the clay and sandy soils of the
site investigated are as shown in Table 11. Both parameters
show strong spatial correlation as depth increases

e The estimated correlation lengths are recommended for use in
planning and preliminary design for foundations in the area.

Table 11: Range of correlation lengths for Mangrove swamp site

Soil Type Depth range of Scale of Fluctuation,®
stratum (m) (m)
Cone tip Undrained
resistance shear
strength
Sensitive 0.25-5.25 0.135-0.250 0.191-0.805
fines
Clay 6.25-12.25 0.135-0.188 0.316-0.875
sand 12.5-16.25 0.135-0.322
Clayey silt 16.25-37.5 0.176-0.216 0.500-0.875
to silty clay
Sand 37.75-46.5 0.125-0.254

5 CONCLUSIONS

Spatial variability analyses of two geotechnical parameters
commonly used in pile foundation analysis (cone tip resistance
and undrained shear strength) were performed over the depth of
penetration, taking each soil layer separately. The analyses
estimated the vertical spatial variability of the soil parameters in
terms of the correlation characteristics of the parameters within
the domain.
e The generalized soil profile comprises of upper soft organic
sensitive fines and alternating layers of clay and sand/gravely
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