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ABSTRACT : Geotechnical site characterization requires the determination of site-specific field parameters which are known to 
exhibit pronounced variability. In this paper, in-situ and laboratory test data of a project site located in the mangrove swamp of the 
Niger Delta region of Nigeria are used to characterize the site based on probability concepts. The characterization involves the 
application of random field theory in estimating the spatial variability parameters, using CPT data from different test locations. Of 
particular interest are the two key deep foundation design quantities – cone tip resistance, q_c, and undrained shear strength, s_u. 
The modeling of spatial variability entails the statistical description of the soil properties in terms of the statistical quantities: mean 𝜇𝜇, variance 𝜎𝜎2, and correlation structure 𝜃𝜃, in the vertical and horizontal directions. In this study however, only the vertical spatial 
variation of the design quantities is modelled, with the correlation structure estimated by fitting the theoretical correlation to the 
experimental correlation function. The cosine exponential correlation model is found to yield good level of accuracy in estimating 
the correlation length or scale of fluctuations. The generated soil profile portrays a sequence of organic sensitive silty Clay underlain 
by alternating layers of inorganic Clay and gravely Sand. The estimated scale of fluctuations for the upper organic sensitive Clay is 
small for both design quantities, which is indicative of rough field up to a depth of about 5m. Beyond this depth, the correlation 
length increased with depth implying strong spatial correlation in the design quantities within soil layers at great depths. The site-
specific estimates of the vertical scale of fluctuation of both the unit cone resistance and the undrained shear strength have been 
presented and compares closely to literature globally and hence scheme recommended for deep foundation development in the 
Nigerian Niger Delta Areas. 

RÉSUMÉ: La caractérisation géotechnique du site nécessite la détermination de paramètres de terrain spécifiques au site qui sont 
connus pour présenter une variabilité prononcée. Dans cet article, les données d'essais in situ et en laboratoire d'un site de projet situé 
dans la mangrove de la région du delta du Niger au Nigeria sont utilisées pour caractériser le site sur la base de concepts de probabilité. 
La caractérisation implique l'application de la théorie des champs aléatoires dans l'estimation des paramètres de variabilité spatiale, 
en utilisant des données CPT provenant de différents emplacements de test. Les deux grandeurs de conception des fondations 
profondes sont particulièrement intéressantes : la résistance à la pointe du cône, q_c,, et la résistance au cisaillement non drainé, s_u.  
La modélisation de la variabilité spatiale implique la description statistique des propriétés du sol en termes de grandeurs statistiques : 
moyenne 𝜇𝜇, variance 𝜎𝜎2 et structure de corrélation 𝜃𝜃, dans les directions verticale et horizontale. Cependant, dans cette étude, seule 
la variation spatiale verticale des grandeurs de conception est modélisée, la structure de corrélation étant estimée en ajustant la 
corrélation théorique à la fonction de corrélation expérimentale. Le modèle de corrélation exponentielle en cosinus donne un bon 
niveau de précision dans l'estimation de la longueur de corrélation ou de l'échelle des fluctuations. Le profil de sol généré dépeint 
une séquence d'argile limoneuse sensible aux matières organiques reposant sur des couches alternées d'argile inorganique et de sable 
graveleux. L'échelle estimée des fluctuations pour l'argile sensible organique supérieure est petite pour les deux quantités de 
conception, ce qui indique un champ rugueux jusqu'à une profondeur d'environ 5m. Au-delà de cette profondeur, la longueur de 
corrélation augmente avec la profondeur, ce qui implique une forte corrélation spatiale dans les grandeurs de conception dans les 
couches de sol à de grandes profondeurs. Les estimations spécifiques au site de l'échelle verticale de fluctuation de la résistance du 
cône unitaire et de la résistance au cisaillement non drainé ont été présentées et se comparent étroitement à la littérature mondiale et 
donc au schéma recommandé pour le développement de fondations profondes dans les zones du delta du Niger au Nigéria. 
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1  INTRODUCTION 

Soils are natural materials formed by a weathering process with 
physical properties varying from one place to another as a result 
of the physical and chemical changes they undergo during 
formation (Mitchel and Soga, 2005). The conventional tool used 
in accounting for spatial variability in geotechnical engineering 
practice is reliance on factors of safety and local experience. 
However, the hypothesis of randomness is now commonly 

adopted as a more rational method of resolving issues of 
variability. Consequently, efforts at characterizing spatial 
variability of soil properties have relied more on statistical and 
probabilistic methods (Onyejekwe, 2012).   

Application of statistical analysis in the evaluation of soil 
behavior in Nigeria is rare but there is no doubt that using such 
approach offers a wide range of opportunities for advancement 
of geotechnical engineering practice in the country. Research in 
this area is scanty and only few works exist on the application of 
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probabilistic methods in analyzing geotechnical engineering 
behavior and validating analytical models of Nigerian soils, (e.g., 
Ejezie and Harrop-Williams, 1984). Most of these studies applied 
concepts formulated at the early stages of development of the 
probabilistic and reliability methods and therefore, did not 
adequately evaluate the effect of spatial variability. This study 
seeks to broaden the application of statistical analysis by 
developing models of the spatial variability of the soil properties 
of a project site located in a mangrove swamp within the Niger 
Delta region of Nigeria using the random field theory. 

 

2  RANDOM FIELD THEORY  

2.1 Spatial Variability  

The random field model of spatial variability assumes spatial 
dependence such that the soil properties 𝑋𝑋(𝑥𝑥1) 𝑎𝑎𝑛𝑛𝑎𝑎  𝑋𝑋(𝑥𝑥2) are 
expected to exhibit some sort of interdependence that decreases 
with their separation distance. The interdependence of the 
properties at the different points in the field is depicted using 
joint bivariate distribution 𝑓𝑓𝑥𝑥1,𝑥𝑥2(𝑥𝑥1,𝑥𝑥2). However, for three or 
more points, the complete probabilistic description of the random 
process becomes complex and difficult to use in practice. The 
characterization problem is, nevertheless, simplified by 
assuming a Gaussian process and stationarity of data which 
allows the complete joint distribution to be quantified by the 
mean vector and covariance matrix, and makes the distribution 
independent on stationary position but dependent only on relative 
positions of points (Fenton and Griffiths, 2008). Assumption of 
stationarity implies that the statistical properties of the random 
field remain the same when the spatial origin changes position. 

To facilitate the application of random field theory, a 
transformation of the variables by decomposition is often 
performed to convert the non-stationary field to a stationary or 
nearly stationary field. The decomposition transformation 
technique idealizes the soil property as comprising of a 
deterministic trend component and a fluctuating or variable 
component expressed in form of an additive equation (Baecher 
& Christian 2003; Uzielli 2006):  𝜓𝜓(𝑧𝑧) = 𝑡𝑡(𝑧𝑧) + 𝜉𝜉(𝑧𝑧)                 (1) 

The objective in the decomposition process is primarily to 
obtain an estimate and remove the deterministic component, 𝑡𝑡(𝑧𝑧), while ensuring that the residual random component, 𝜉𝜉(𝑧𝑧), 
remains stationary. Analysis of inherent variability involves 
modeling the residual component of the soil property by 
statistical means. The residual component is assumed to have a 
spatial structure defined by the scale of fluctuation, 𝜃𝜃, and the 
autocovariance function, 𝐶𝐶(𝜏𝜏), where 𝜏𝜏 is the distance between 
observation points (Oguz and Huvaj, 2019) 

The modelling of the soil parameters relies much on two 
essential statistical properties of the random field namely: 
autocovariance, 𝑐𝑐𝑘𝑘 ,  and autocorrelation coefficient, 𝜌𝜌𝑘𝑘 , at 𝑙𝑙𝑎𝑎𝑙𝑙, 𝑘𝑘,. In practice, 𝑐𝑐𝑘𝑘 and 𝜌𝜌𝑘𝑘 are estimated from the samples 
obtained from a population. The sample autocovariance 𝑐𝑐𝑘𝑘∗ and 
the sample autocorrelation coefficient, at 𝑙𝑙𝑎𝑎𝑙𝑙 𝑘𝑘, 𝑟𝑟𝑘𝑘 are defined 
as follows (Jaksa 2006): 

 𝑐𝑐𝑘𝑘∗ = 1𝑛𝑛 ∑ (𝑋𝑋𝑖𝑖 − 𝑋̅𝑋)(𝑋𝑋𝑖𝑖+𝑘𝑘 − 𝑋̅𝑋)𝑛𝑛−𝑘𝑘𝑖𝑖=1                (2) 

 

and  

 𝑟𝑟𝑘𝑘 = 𝑐𝑐𝑘𝑘∗𝑐𝑐0 = ∑ (𝑋𝑋𝑖𝑖−𝑋̅𝑋)(𝑋𝑋𝑖𝑖+𝑘𝑘−𝑋̅𝑋)𝑛𝑛−𝑘𝑘𝑖𝑖=1∑ (𝑋𝑋𝑖𝑖−𝑋̅𝑋)2𝑛𝑛𝑖𝑖=1        (3) 
 

𝑋̅𝑋 = average of the observations 𝑋𝑋1,𝑋𝑋2, … , 𝑋𝑋𝑛𝑛, 𝑎𝑎𝑛𝑛𝑎𝑎 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 

The plot or graph of 𝑐𝑐𝑘𝑘∗  for lags 𝑘𝑘 = 0,1,2, …  represents the 
sample autocovariance function (ACVF), or auto-variogram 
while the plot of  𝑟𝑟𝑘𝑘 for lags  𝑘𝑘 = 0,1,2, … 𝐾𝐾  represents the 
sample autocorrelation (ACF), where 𝐾𝐾  is the maximum 
number of lags for 𝑟𝑟𝑘𝑘calculations (e.g., 𝐾𝐾 = 𝑛𝑛 4⁄ ) 

The modelling of the spatial variability of geotechnical 
material requires a minimum of three parameters: the mean, 𝜇𝜇; 
a measure of variance, 𝜎𝜎2 (standard deviation,𝜎𝜎, or coefficient 
of variation); and the scale of fluctuation, 𝜃𝜃, that associates the 
correlation of properties with distance (Vanmarcke, 1983). Large 
values of 𝜃𝜃, for a particular property, signifies that the property 
slowly fluctuates with distance about the mean, suggesting a 
more continuous deposit, while a small 𝜃𝜃 is an indication of the 
property fluctuating rapidly about the mean, suggesting a more 
randomly varying material (Jaksa, 2006). 

2.2 Scale of Fluctuation 

The scale of fluctuation, 𝜃𝜃, is a measure of the distance within 
which points in a domain are significantly correlated and it 
conveniently describes the spatial variability of a soil property 
(Vanmarcke, 1983). The correlation between two points depends 
on how the separation distance compares with 𝜃𝜃 . Given the 
importance of  𝜃𝜃  in the spatial variability description of soil 
property in a random field, extensive research work aimed at 
developing more rational approaches in determining accurate 
estimates of the scale of fluctuation have been carried out 
(Fenton and Griffiths, 2005; Griffiths et al. 2009; Hicks and 
Spencer, 2010; Cassidy et al., 2013). Small values of 𝜃𝜃 obtained 
from any of the models indicate that the correlation function 
decays rapidly to zero with increasing 𝜏𝜏  (meaning that the 
correlation between the two points under consideration are 
rapidly smaller) resulting in a rougher random field. As 𝜃𝜃 → 0, 
all points within the domain become uncorrelated and the field 
becomes extremely rough. Conversely, increasing values of 𝜃𝜃 is 
an indication that the property field is smoother meaning that the 
field is showing less variability converging to a uniform field 
when 𝜃𝜃 → ∞ Lloret-Cabot et al. (2013). In practice, estimation 
of 𝜃𝜃  is done by fitting the theoretical correlation to the 
experimental correlation function (Uzielli et al., 2006; Zhu and 
Zhang, 2013; Oguz and Huvaj, 2019). 
 
Table 1: Some common correlation models  

Correlation 

Model 

Expression Scale of 

Fluctuation 𝜽𝜽 

Simple 

exponential 

𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒[−|𝜏𝜏| 𝑏𝑏⁄ ] 2𝑏𝑏 

Gaussian 

exponential 
𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒{−𝜋𝜋[|𝜏𝜏| 𝑐𝑐⁄ ]2} √𝜋𝜋𝑐𝑐 

Second-order 
autoregressive 
process 

𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒−|𝜏𝜏| 𝑑𝑑⁄ (1 + |𝜏𝜏| 𝑎𝑎⁄ ) 4𝑎𝑎 

Cosine 
exponential 

𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒−|𝜏𝜏| 𝛼𝛼⁄ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜏𝜏 𝛼𝛼⁄ ) 𝛼𝛼 

Source: Lloret-Cabot et al. (2013) 

3  RESEARCH METHODOLOGY   

3.1 Study Area and Data Acquisition  

The area of study falls within the Tertiary Niger Delta which 
occurs at the southern end of Nigeria bordering the Atlantic 
Ocean and extends from about longitudes 30-90E and latitude 40 
30’-50 20’N.  
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Figure 1. Location of study area 

The study used data from a geotechnical site investigation 
report of a refinery project with a total of 96 data sets available, 
out of which 20 (16 CPT and 4 borehole data), were carefully 
selected for the study to present an equally spaced CPT grid, 
suited for random field theory application. A summary of the data 
set is presented in Table 2 

 
Table 2. Study data set 

Data Refinery 

 

CPT 

CP 10 CP 14 CP 19 CP 24 

CP11 CP16 CP20 CP26 

CP12 CP17 CP22 CP27 
CP13 CP18 CP23 CP28 

Borehole BH8 BH9 BH10 BH11 

 

3.2 Method of Data Analysis     

The soil profile generated from the borehole log and CPT data 
identified five distinct soil layers and analyses were performed 
for each of the soil layers. To ensure statistical homogeneity or 
stationarity within the domain for a seamless application of the 
random field theory, the entire soil profile within the zone of 
influence was divided into number of statistically homogeneous 
or stationary sections, and the data within each layer subjected 
separately to statistical analysis (Phoon et al. 2003).  

Data from each CPT test hole was evaluated to determine the 
value of geotechnical parameter at the different strata of the soil 
profile. The examination of data of each CPT to determine the 
value of the realization at any strata was carried out using the 
following steps (Jaska, 2006): 

• Examine the data of the parameter across the depth and 

transform the non-stationary data into stationary data. Where 

the data exhibited a trend, decomposition was required 

otherwise linear transformation into a weak stationary field 

was performed. 

• Decomposition involved separating the trended data into a 

slowly changing trend component and a random or residual 

component. The ordinary least square (OLS) method was 

used to estimate the trend.  

• To ensure stationarity of the residuals, eyeballing and the 

Kendal’s 𝜏𝜏 test was used to examine for stationarity. With 

stationarity confirmed, it was assumed that the residuals are 

normally distributed.   

• Calculate the sample autocovariance and autocorrelation 

functions using Equations (2) and (3) respectively. 

• Estimate the correlation length, 𝜃𝜃 , by fitting a theoretical 

model from Table 1 to the plot of sample ACF over lag 

distance 

• Calculate the Bartletts distance (i.e., distance over which the 

samples are autocorrelated). 

The vertical spatial variability was analyzed by estimating the 

correlation distance within each soil layer for the cone tip 
resistance and undrained shear strength. 

4  RESULTS AND DISCUSSION 

4.1 Soil Profile Generation  

The CPT data were analyzed with the aid of NovoCPT® (2019) 
software, which generates soil profiles using the charts 
developed by Robertson (1986), Robertson (1990 SBT) and 
Jefferies & Been (2006). Comparative examination of the soil 
behavior pattern in Figure 2, initial soil profile in Figure 3 and 
CPT data shows that some of the soil layers are mixtures of 
“clays” and “sands”. There was need therefore to classify the soil 
layers into major soil groups. The initial soil profile generated 
was adjusted through a three-step approach that allowed thin 
layers to be merged into neighboring layers (Salgado et al., 2015). 
• SBT chart band approach – merging thin layers into adjacent 

layers by consideration of the secondary soil type(s) 

classification 

• Soil group approach – merging thin layers into adjacent layers 

of the same soil group 

• Average 𝑞𝑞𝑐𝑐  approach – merging thin layers into adjacent 

layers with similar average 𝑞𝑞𝑐𝑐 

 

 

Figure 2: Jefferies & Been 2006 Soil type 

 
Figure 3: NovoCPT generated soil profiles 

𝑋𝑋(𝑥𝑥1) 𝑎𝑎𝑛𝑛𝑎𝑎  𝑋𝑋(𝑥𝑥2)
𝑓𝑓𝑥𝑥1,𝑥𝑥2(𝑥𝑥1,𝑥𝑥2)

𝜓𝜓(𝑧𝑧) = 𝑡𝑡(𝑧𝑧) + 𝜉𝜉(𝑧𝑧)
𝑡𝑡(𝑧𝑧) 𝜉𝜉(𝑧𝑧)

𝜃𝜃𝐶𝐶(𝜏𝜏)  𝜏𝜏
𝑐𝑐𝑘𝑘 𝜌𝜌𝑘𝑘𝑙𝑙𝑎𝑎𝑙𝑙, 𝑘𝑘 𝑐𝑐𝑘𝑘 𝜌𝜌𝑘𝑘 𝑐𝑐𝑘𝑘∗𝑙𝑙𝑎𝑎𝑙𝑙 𝑘𝑘  𝑟𝑟𝑘𝑘

𝑐𝑐𝑘𝑘∗ = 1𝑛𝑛 ∑ (𝑋𝑋𝑖𝑖 − 𝑋̅𝑋)(𝑋𝑋𝑖𝑖+𝑘𝑘 − 𝑋̅𝑋)𝑛𝑛−𝑘𝑘𝑖𝑖=1

𝑟𝑟𝑘𝑘 = 𝑐𝑐𝑘𝑘∗𝑐𝑐0 = ∑ (𝑋𝑋𝑖𝑖−𝑋̅𝑋)(𝑋𝑋𝑖𝑖+𝑘𝑘−𝑋̅𝑋)𝑛𝑛−𝑘𝑘𝑖𝑖=1∑ (𝑋𝑋𝑖𝑖−𝑋̅𝑋)2𝑛𝑛𝑖𝑖=1

𝑋̅𝑋 𝑋𝑋1,𝑋𝑋2, … , 𝑋𝑋𝑛𝑛, 𝑎𝑎𝑛𝑛𝑎𝑎 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛
𝑐𝑐𝑘𝑘∗ 𝑘𝑘 = 0,1,2, …𝑟𝑟𝑘𝑘  𝑘𝑘 = 0,1,2, … 𝐾𝐾𝐾𝐾𝑟𝑟𝑘𝑘  𝐾𝐾 = 𝑛𝑛 4⁄ 𝜇𝜇𝜎𝜎2 𝜎𝜎𝜃𝜃𝜃𝜃 𝜃𝜃

𝜃𝜃
𝜃𝜃 𝜃𝜃

𝜃𝜃𝜏𝜏 𝜃𝜃 → 0𝜃𝜃
𝜃𝜃 → ∞𝜃𝜃

 𝜽𝜽𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒[−|𝜏𝜏| 𝑏𝑏⁄ ] 2𝑏𝑏𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒{−𝜋𝜋[|𝜏𝜏| 𝑐𝑐⁄ ]2} √𝜋𝜋𝑐𝑐
r 𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒−|𝜏𝜏| 𝑑𝑑⁄ (1 + |𝜏𝜏| 𝑎𝑎⁄ ) 4𝑎𝑎

𝜌𝜌(𝜏𝜏) = 𝑒𝑒𝑥𝑥𝑒𝑒−|𝜏𝜏| 𝛼𝛼⁄ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜏𝜏 𝛼𝛼⁄ ) 𝛼𝛼
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Figure 4: Adjusted Soil Profile 

The final soil profile generated for the study, as shown in 
Figure 4, is composed of five main soil groups. 
 

4.2 Laboratory and in-situ test results  

The summary of in-situ and laboratory test results for undrained 
shear strength is presented in Table 3 which shows the mean of 
the undrained shear strength increasing with depth as the 
coefficient of variation (COV) decreased as depth increased.  

  
Table 3: Statistics of undrained shear strength 

Soil layer Description No of 
data 

Mean  

(kPa) 
Std 
Dev 

COV 
(%) 

Sensitive organic clay 306 17.79 8.58 48.2 

Clay 481 34.14 13.97 40.9 

Clayey silt to silty 
clay 

858 64.47 25.58 39.7 

  

4.2 Random Field Characterization  

4.2.1   Vertical spatial variability of Cone Tip Resistance 𝑞𝑞𝑐𝑐 

The random field modeling for vertical variability of 𝑞𝑞𝑐𝑐  is 
illustrated using data from the CP26 test hole. The plot of 𝑞𝑞𝑐𝑐 
against depth from the CPT interpretation software is shown in 
Figure 5. Each stratum was examined for spatial trend and where 
trends existed it was removed using Ordinary Least Square (OLS) 
method. 
  

 

Figure 5: Cone tip resistance plot of CP26 

 The data exhibited both linear and quadratic trends. Figure 
6 shows a trend model with residual over the depth band shown 
in Figures 7. The clay soil layers followed a linear trend while 
the sand and gravelly layers followed a quadratic trend. For the 
strata lying within 12.5-25m depth, the residual, 𝑟𝑟𝑞𝑞𝑐𝑐 is obtained 
by subtracting the trend value from the measured value as in 
equation (4). 

 

 𝑟𝑟𝑞𝑞𝑐𝑐 = 𝑞𝑞𝑐𝑐 − (9.3999 − 7.203𝑥𝑥 + 1.9175𝑥𝑥2 − 0.0951𝑥𝑥3)   (4) 
 

Results of the Kendall’s 𝜏𝜏  test had all the soil layers 𝜏𝜏 
values within the range ±1  and closer to 0 indicating 
stationarity of data. To estimate the correlation length, the 
autocorrelation functions (ACF) were computed for separation 
distances 𝜏𝜏𝑘𝑘 = 𝑘𝑘∆𝑧𝑧  for lags 𝑘𝑘 = 0,1,2, … 𝑛𝑛/4  where ∆𝑧𝑧 =0.25𝑚𝑚  (i.e., sampling interval) and 𝑛𝑛 =number of data points 
within layer. The plot of sample ACF over the separation 
distances with the cosine exponential theoretical model 
superimposed, for soil layer at 16.5-37.5m depth is shown in 
Figure 8. 
 

 
 

 
Figure 6: Measured cone tip resistance with quadratic trend for at 

12.5-16.25m depth 

 

Figure 7: Residuals of qc, after trend removal at 12.5-25m depth 

      

 
Figure 8: Sample and model ACF from residual of 𝑞𝑞𝑐𝑐, at 16.5-37

.5m depth 

Summary of results of vertical variability analyses of CP26 test 
hole is presented in Table 4.  
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Similar analyses were repeated on the data from each of the 
other 15 CP test holes and the estimated vertical scale of 
fluctuations are presented in Table 5 for the clay soil units and 
Table 6 for the sand and gravelly soil units.  
 

Table 4: Summary of results of vertical variability analyses on CP26 test 
hole data 

Depth range 
of stratum (m) 

Value of 
Parameter 

(m) 

Bartlett’s 
distance 

Scale of 
Fluctuation,𝜽𝜽 

(m) 
0.25-5.25 α=0.478 ±0.428 0.250 

6.25-12.25 α=0.105 ±0.392 0.135 

12.5-16.25 α=0.345 ±0.490 0.248 

16.5-37.5 α=0.182 ±0.216 0.176 

37.75-46.5 α=0.261 ±0.490 0.128 

 

 

Table 5: Vertical Scale of Fluctuation, 𝜃𝜃𝑣𝑣, of cone tip resistance, 𝑞𝑞𝑐𝑐, in 

clay units 

Sensitive fines 0.25 - 5.25m   

Clay  6.25 – 12.25m 16.5 – 37.5m 

Variable 𝜃𝜃𝑉𝑉 (𝑚𝑚) 𝜃𝜃𝑉𝑉 (𝑚𝑚) 𝜃𝜃𝑉𝑉 (𝑚𝑚) 

CP10 0.246 0.162 0.186 

CP11 0.195 0.173 0.212 

CP12 0.184 0.168 0.179 

CP13 0.224 0.161 0.210 

CP14 0.246 0.165 0.202 

CP16 0.214 0.142 0.180 

CP17 0.238 0.158 0.204 

CP18 0.147 0.154 0.199 

CP19 0.210 0.145 0.201 

CP20 0.167 0.172 0.212 

CP22 0.247 0.174 0.216 

CP23 0.195 0.165 0.183 

CP24 0.246 0.175 0.188 

CP26 0.250 0.135 0.176 

CP27 0.135 0.188 0.216 
CP28 0.165 0.167 0.181 

Mean (m) 0.207 0.163 0.197 

Std Dev (m) 0.038 0.014 0.014 

COV (%) 18.6 8.4 7.4 

 

Table 6: Vertical Scale of Fluctuation of cone tip resistance in sand and 
gravelly units 

Sand 12.5 – 16.25m  

Gravely Sand   37.75 - 46.5m 

Variable 𝜃𝜃𝑉𝑉 (𝑚𝑚) 𝜃𝜃𝑉𝑉 (𝑚𝑚) 

CP10 0.265 0.182 

CP11 0.237 0.198 

CP12 0.321 0.180 

CP13 0.237 0.210 

CP14 0.246 0.200 

CP16 0.231 0.242 

CP17 0.322 0.183 
CP18 0.280 0.203 

CP19 0.280 0.225 

CP20 0.288 0.220 
CP22 0.313 0.250 

CP23 0.284 0.240 

CP24 0.249 0.254 
CP26 0.248 0.128 

CP27 0.135 0.125 

CP28 0.268 0.220 

Mean (m) 0.262 0.204 

Std Dev (m) 0.045 0.038 

COV (%) 17.2 18.8 

 

Based on the results of the vertical variability analysis for the 
cone tip resistance, the following are deduced 

a) The estimated vertical scale of fluctuation or correlation 

length for the clay soil layers are within the range 0.135-

0.250m with coefficient of variation (COV) relatively high 

for the upper layers and less for the deeper layers indicating 

a more strongly spatial correlated cone tip resistance as 

depth increases. The sand and gravelly layers do not exhibit 

any notable trend as the correlation length seem not to be 

influenced by the depth of occurrence of the cohesionless 

layer.  

b) The decrease with depth of the COV in the clay units Table 

8), is a further indication that the soil parameters become 

more predictable with depth as soil deposits go into more 

stable state with increasing depth during the soil formation 

process.      

4.2.2   Vertical spatial variability of Undrained Shear Strength 𝑠𝑠𝑢𝑢 

The vertical variability of undrained shear strength is illustrated 
with the data for CPT test holes CP26 following similar steps as 
in the cone tip resistance. Data stationarity was confirmed, and 
the cosine exponential correlation model was used to fit the 
sample ACF as shown in Figure 9 with the summary of the 
analyses presented in Table 7. 
 

 
Figure 9: Sample and model ACF from residuals of 𝑠𝑠𝑢𝑢 at 16.5-37

.5m depth 

Table 7: Summary of vertical variability analyses of 𝑠𝑠𝑢𝑢 with CP26 test 

hole data 

Depth range of 
stratum (m) 

Value of 
Parameter 

(m) 

Bartlett’s 
distance 

(m) 

Scale of 
Fluctuation,𝜽𝜽 

(m) 

0.25-5.25 α=0.300 ±0.428 0.191 

6.25-12.25 α=0.400 ±0.392 0.388 

17.00-37.25 α=0.800 ±0.216 0.875 

 

Similar analyses were repeated on the data from each of 
the other 15 CP test holes and the estimated vertical scale 
of fluctuations are presented in Table 8. 
The results of vertical spatial variability of the undrained shear 
strength also show that the COV decreases with depth, a further 
confirmation that the soil property is more spatially predictable 
as depth increases.   

Table 9 presents the COV of the soil parameters for all the soil 
units investigated in the study showing decreasing COV as depth 
is increasing.  

 The estimated vertical correlation lengths for other soil layers 
of clay and sand are generally smaller than those reported in 
literature of other regions. The correlation lengths for the 
mangrove swamp compared with those in literature is presented 
in Table 10  
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Table 8: Vertical scale of fluctuation, 𝜃𝜃𝑣𝑣 of undrained shear strength, 𝑠𝑠𝑢𝑢 

Sensitive fines 0.25 - 5.25m   

Clay  6.25 – 12.25m 16.5 – 37.5m 

Variable 𝜃𝜃𝑉𝑉 (𝑚𝑚) 𝜃𝜃𝑉𝑉 (𝑚𝑚) 𝜃𝜃𝑉𝑉 (𝑚𝑚) 

CP10 0.320 0.782 0.871 
CP11 0.278 0.690 0.631 

CP12 0.465 0.585 0.678 

CP13 0.348 0.356 0.503 

CP14 0.386 0.638 0.671 

CP16 0.320 0.650 0.652 

CP17 0.405 0.420 0.517 

CP18 0.482 0.316 0.518 

CP19 0.434 0.628 0.613 

CP20 0.238 0.706 0.601 

CP22 0.682 0.601 0.830 

CP23 0.204 0.354 0.667 

CP24 0.328 0.468 0.768 

CP26 0.191 0.388 0.875 

CP27 0.510 0.875 0.500 

CP28 0.805 0.708 0.773 

Mean (m) 0.400 0.573 0.667 

Std Dev (m) 0.166 0.169 0.127 

COV (%) 41.45 29.54 19.02 

 
 

Table 9: COV of spatial variability with depth 

Variability Parameter Coefficient of Variation COV (%) at 
depths 

0.25-
5.25 

6.25-
12.25 

12.25-
16.25 

16.5-
37.5 

37.5-
46.5 

 

Vertical 
𝑞𝑞𝑐𝑐, 45.6 37.8  14.7  𝑠𝑠𝑢𝑢  26.9 22.5  18.5  

 

Table 10: Vertical Correlation lengths of soil parameters compared with 
those reported in literature 

Soil 
Property 

Vertical Correlation length (m) Soil 
type Study Literature Source 𝒒𝒒𝒄𝒄, 0.14-0.25 2.00 Chiasson et 

al. (1995) 
Sensitive 

clay 

 0.80-1.80 Popescu et 
al. (1995) 

Clay 

 1.00 Vanmarcke 
(1977) 

Clay 

 0.1-2.2 Phoon and 
Kulhawy 

(1996) 

Sand, 
Clay 

0.20-0.40 1.6 Kulatilake 
and Ghosh 

(1988) 

Clean 
sand 𝒔𝒔𝒖𝒖 0.13-0.3 0.3-0.6 Keavenly et 

al (1989) 
Offshore 

soils 
 0.8-6.1 Phoon and 

Kulhawy 
(1996) 

Clay 

  0.06-0.24 Jaska (1999) Clay 
 

5  CONCLUSIONS 

Spatial variability analyses of two geotechnical parameters 

commonly used in pile foundation analysis (cone tip resistance 
and undrained shear strength) were performed over the depth of 
penetration, taking each soil layer separately. The analyses 
estimated the vertical spatial variability of the soil parameters in 
terms of the correlation characteristics of the parameters within 
the domain. 
• The generalized soil profile comprises of upper soft organic 

sensitive fines and alternating layers of clay and sand/gravely 

sand. The upper organic sensitive fines exhibit small 

correlation lengths for the parameters, indicative of a rough 

field up to a depth of about 5m. The geotechnical properties 

on this layer are largely unpredictable and changes over 

extremely small distances. In practice, such soil is usually 

adjudged unsuitable to support any structure and will be 

recommended for replacement and preloading with sandfills. 

• The vertical correlation length for cone tip resistance and 

undrained shear strength for the clay and sandy soils of the 

site investigated are as shown in Table 11. Both parameters 

show strong spatial correlation as depth increases 

• The estimated correlation lengths are recommended for use in 

planning and preliminary design for foundations in the area.  

Table 11: Range of correlation lengths for Mangrove swamp site 

Soil Type Depth range of 
stratum (m) 

Scale of Fluctuation,𝜽𝜽 

(m) 

Cone tip 
resistance 

Undrained 
shear 

strength 

Sensitive 
fines 

0.25-5.25 0.135-0.250 0.191-0.805 

Clay 6.25-12.25 0.135-0.188 0.316-0.875 

sand 12.5-16.25 0.135-0.322  

Clayey silt 
to silty clay 

16.25-37.5 0.176-0.216 0.500-0.875 

Sand 37.75-46.5 0.125-0.254  
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