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ABSTRACT: In the field of geotechnical site characterization, the Markov random field (MRF) models, used to be widely applied 
in physics and image processing, recently have gained much attention, and have been adopted for modeling and simulating 
stratigraphic heterogeneity using limited/sparse boreholes, performing which by far is still a challenging task in engineering geology. 
The gap lies in the difficulty of developing an integration of subjective engineering judgment (e.g., geological knowledge) and the 
objective site exploration data (e.g., the borehole observations). Recently, Bayesian machine learning, with its advances in artificial 
intelligence and uncertainty quantification, has been widely applied in a variety of research fields. In this paper, we combine Bayesian 
machine learning with the MRF model. An effective MRF stochastic modeling framework is developed to characterize the 
stratigraphic uncertainty. The model parameters are initially defined in terms of prior distribution. These parameters are then further 
calibrated with additional constraints from the site exploration results using Bayesian machine learning. Throughout the learning 
process, the stratigraphic uncertainty (inherent) and the model uncertainty (imperfect knowledge) are taken into consideration. The 
effects of both prior knowledge and borehole observations in quantifying stratigraphic uncertainty are discussed. To demonstrate the 
effectiveness of the developed approach, both synthetic and real-world examples are demonstrated. We envision this approach can 
be further generalized in industry practices for improved risk control in geotechnical engineering. 

RÉSUMÉ : Ci-joint les instructions pour la préparation de votre communication au 20ème congrès CIMSG de Sydney, 12-17 Septembre 
2021. Les articles, écrits en Times New Roman 9 ne doivent pas dépasser 6 pages A4 et être fournis sous format MS Word (.docx,) et 
PDF. Les résumés ne doivent pas dépasser 10 lignes. Il n’est pas demandé de transfert de copyright mais seulement une autorisation de 
publication. Il n’y aura pas de volume post-congrès pour les communications en retard. Vous êtes invités à utiliser directement cette 
feuille canevas pour mettre en forme votre contribution. Pour un article en français, inverser la disposition des titre et résumés avec les 
mots clés en français et anglais (ajouter « Mots-clés »). 
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1  INTRODUCTION 

Acquiring accurate site-specific soil layer information is a crucial 
and essential step for planning and design of any geotechnical 
project. However, subsurface soil layers are natural forming 
materials associated with inherent heterogeneity and randomness 
(Juang et al. 2018). Therefore, the design and construction of a 
geotechnical system need to take these randomness into account. 
Due to inadequate knowledge of the soil forming histories and/or 
other geological/human activities, the subsurface information at 
a project site can be difficult to infer (Gong et al. 2019; Wang et 
al. 2016). 

Only sparse borehole logs are collected in a project, partially 
due to the limited budget and the tight project schedule. As a 
result, the geological and geotechnical information only can be 
probed at sparsely distributed locations; whereas, subsurface 
information at other locations may have to be inferred or 
simulated based on available sparse information either from 
archived borehole data or planned site investigation data. The 
incomplete knowledge of the formation process of the geological 
bodies, together with the insufficient number of borehole logs 
and in-situ test results, leads to significant uncertainty in the 
inferred subsurface profile. It is fair to say that the issues of the 
subsurface uncertainty and the influence of such uncertainty on 
the geotechnical design have long posed challenges to 
practitioners (Gong et al. 2019). 

To acquire reasonable and confident estimates of subsurface 
uncertainty, Markov random field (MRF)-based stochastic 
simulation approaches have been adopted in engineering 
geology. The MRF models can provide a flexible and intuitive 
way to describe the Markovian contextual constraints, which 
enables the reflection and reproduction of the anisotropy and 
heterogeneity of subsurface geological structures. While the 
current MRF models (Gong et al. 2019; Wang et al. 2016; Wang 
et al. 2018; Wang et al. 2019; Wang et al. 2018) have some 
shortcomings, such as the model parameters, representing the 
spatial correlation of stratigraphic structures, need to be defined 
in priori by using subjective engineering judgments from local 
experience and the parameters cannot be updated during the 
inferential process once they are determined initially. This 
strategy is not robust as the simulated subsurface profile may 
deviate from reality due to the subjective guess of model 
parameters and the uncertainty could be underestimated. 

In this study, a novel stratigraphic uncertainty quantification 
approach is developed by combining the MRF theory with 
Bayesian machine learning (Wang 2018). The new approach has 
a more advanced and flexible spatial correlation model so that it 
can better leverage the prior information of the model parameters 
and enhance uncertainty quantification regarding soil 
heterogeneity when only sparse borehole information is 
available. The model parameters are regularized in terms of prior 
distribution and further updated with additional constraints from 
the site exploration results using Bayesian machine learning. As 
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a result, the developed new approach not only relies on fewer 
subjective information, but also has better adaptivity compared 
with previous MRF-based methods. To demonstrate the 
effectiveness of the developed approach, both synthetic and real-
world cases are studied and some preliminary results are 
presented in this paper. 

2  METHOD 

2.1  Markov Random Field 

One of the practical approaches analyzing sparse geotechnical 
data is to discretize a subset (e.g., a two-dimensional section) of 
the physical space into pixels according to the measurement 
resolution. For categorical data (as discussed in this paper), each 
pixel is assigned with a label indicating the associated soil type. 

A Markov random field model is a graphical description of 
the spatial pattern (e.g., the soil layers in the current context) in 
physical space. Pixels having the same label belong to the same 
soil type. The label field can be represented as a label 
configuration of all pixels 1 2 3( , , ,..., ),  N ix x x x x L= x  where 

{1,2,3,..., }L m=  is a set of all possible labels indicating different 
soil types. A typical example of a graph model describing the 
spatial correlation of a Markov random field is a two-
dimensional lattice with a second-order neighborhood system 
(Besag 1986). For pixel i, the neighbors i  are defined as the 
nearest eight pixels around it. The local conditional probabilities 
of a specific label given the labels of all neighbors can be 
calculated in the following form (Besag 1986; Geman and 
Geman 1984): 
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where U(.) is the so-called local energy. We adopt the widely 
used Potts model (Koller and Friedman 2009) to characterize the 
local interaction of the pixels within a neighborhood system. The 
local energy has the following form: 
 

,( , ) ( , )
j

j

j i j i j

i

U x V x x


=x
 

(2) 

 
with the potential function 
 

,

0  if  
( , )

  if  

i j

i j i j

d i j

x x
V x x

x x
=

=  
 (3) 

 
where βd ∈ {β1, β2, β3 β4} indicates the spatial constraint 
corresponding to four independent directions 0, π/2, π/4, 3π/4 
referring to a two-dimensional lattice grid, and is referred to as 
the granularity coefficients. The local energy reflects the spatial 
correlation of categorical data: pixels close to each other tend to 
have the same soil type. The behavior of an MRF model is 
intimately related to the granularity coefficients {βd}. For an 
anisotropic Potts model (as introduced in this work), positive 
values of these parameters cause attraction of neighboring pixels, 
or encourage clustering effects along a certain direction, while 
negative values result in repulsion, or prevent clustering (Cross 
and Jain 1983). 

2.2  Bayesian machine learning 

All pixels can be categorized into two types: a) pixels with 
known labels indicating sparse borehole information xBH and b) 
pixels with unknown labels xunknown elsewhere. Both xunknown and 
the granularity coefficients β need to be inferred from xBH. A 
Markov chain Monte Carlo (MCMC) technique is employed to 
implement Bayesian machine learning and sample (xunknown, β) 

iteratively via two conditional a posteriori distributions  
P(xunknown|xBH, β) and P(β|xunknown, xBH) iteratively. 

2.2.1   Simulation of conditional MRF P(xunknown|xBH, β) 
Given a random initial field at unknown pixels xunknown, and 
conditional on a specific setting of granularity coefficients and 
pixels with known soil type at borehole locations xBH, 
P(xunknown|xBH, β) is a Gibbs distribution with fixed soil labels 
only at the borehole locations. The local energy at unknown 
pixels can be calculated using Eq. (2) and the corresponding 
probability of choosing each label can be evaluated via Eq. (1). 
Realizations of the conditional random field P(xunknown|xBH, β) 
can be simulated via a parallel algorithm named chromatic 
sampler (Wang et al. 2016). 

2.2.2   Simulation of the model parameters P(β|xunknown, xBH) 
In this step, β is sampled following the conditional posterior 
distribution: 

 

Post( ) Prior( ) ( , | )unknown BHLβ β x x β  (4) 

                   
where Post(β) is the posterior distribution of β; Prior(β) is the 
prior distribution of β; L(xunknown, xBH|β) is the likelihood function 
indicating the possibility of having the simulated soil 
configuration given the known borehole information and can be 
evaluated via the following equation. 
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To incorporate prior knowledge, the prior distribution of β 

should be defined. In this work, a multivariate Gaussian 
distribution with a mean vector μ indicating the rough estimates 
of the granularity coefficients, and a diagonal covariate matrix 
Σ=diag(σ1

2, σ2
2, σ3

2, σ4
2), where σi is the standard deviation of 

the corresponding granularity coefficient. 
The Metropolis-Hasting algorithm is employed to implement 

the conditional MCMC sampling process. The log(target) 
function can be expressed as  
 

log(target) log(Prior( )) log( ( , | )).unknown BHL= +β x x β  (6) 

 
The log(target) function measures the log scale of the joint 

probability of the simulated granularity coefficients and the 
simulated soil profile. The higher the log(target) is, the higher 
possibility that the simulated soil profile is plausible and the 
corresponding granularity coefficients is compatible with the 
simulated field. In other words, Eq. (6) is being optimized in a 
probabilistic sense during the Bayesian machine learning process 
through MCMC. Since no training information is needed during 
the sampling process, this method is fully unsupervised. 

2.2.3   Maximum a posteriori (MAP) of soil profile and the 
most likely realization 

After the burn-in period of the Markov chain, each realization of 
the simulated soil profile is stored and the marginal probability 
of choosing each label is calculated for each pixel. The MAP 
estimate of the entire soil profile can be derived based on the 
majority vote principle at each pixel (i.e., the MAP label will be 
the one with the highest sampling probability). The most likely 
realization is defined as the realization corresponding to the 
highest log(target) value. 

2.3  Uncertainty-aware algorithm 

The marginal probability of each soil label derived from the 
simulated realizations takes the uncertainty of granularity 
coefficients β into consideration, and hence unlike other non-
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Bayesian methods with fixed model parameters, this algorithm 
automatically assesses possible model bias and incorporates it 
into the overall uncertainty quantification. This is one of the 
contributions of the current work. 

3  SYNTHETIC CASE STUDY 

The stratigraphic uncertainty estimated using an MRF model 
includes both local uncertainty and global uncertainty in 
configuration space when prior information of β and boreholes 
data are provided. The illustration of local and global 
uncertainties is shown in the Figure 1. Local uncertainty exists in 
a single MCMC simulation given a random initial field, and each 
realization in a single simulation is the result of the local 
uncertainty (see Figure 1 (a), (b), (c)). While the global 
uncertainty refers to the variation of the MAPs (or local 
optimums) derived from multiple Markov chains (see Figure 1 
(d), (e), (f)) generated from different initial fields. 

 

 
Figure 1. Illustration of simulated stratigraphic uncertainty. 

 

In this section, we focus on discussing how to determine a 
suitable prior distribution of β when only sparse boreholes are 
available. A synthetic stratigraphic profile shown in Figure 2(a) 
is simulated using a Potts model with β=[4, 0.1, 0.1, 0.1] and five 
virtual boreholes are extracted and shown in Figure 2(b) for 
inferring the “unknown” portion. The soil profile in Figure 2(a) 
is considered as the “ground truth” throughout the synthetic 
example. 

 

 
(a) Synthetic stratigraphic profile 

 
(b) Virtual boreholes 

Figure 2. Synthetic stratigraphic profile and selected virtual boreholes. 

3.1  Prior information of β 

The spatial correlation of a soil profile tends to be horizontally 
dominated. Therefore, it is intuitive that β1 should be much 
greater than β2, β3, and β4. For simplicity, β2, β3, and β4 share the 
same prior distribution, while β1 has its own prior distribution. 

3.1.1   Suitable range of β 
Different prior information of β can result in different local 
optimums in the configuration space. Yet only a small portion of 
local optimums controlled by reasonable β are compliant with 
geological knowledge, and can be considered as possible 

candidates. In order to figure out a reasonable range of β, we first 
choose a significantly high β1, such as 100, and then get the 
MAPs (local optimums) by gradually increasing β2,3,4. The 
realizations with different β2,3,4 are shown in Figure 3. It can be 
seen that the realizations are less realistic when β2,3,4 ≥ 0.3. 
Although a strong β1 could result in a horizontally dominated 
layered pattern, while it is only under the condition that β2,3,4 is 
small enough. This indicates that β2,3,4 should well controlled. 
According to experiences, the reasonable range for β2,3,4 could be 
0~0.3. 

 

 
(a) Realization by β2,3,4 = 0.1 

 
(b) Realization by β2,3,4 = 0.2 

 
(c) Realization by β2,3,4 = 0.3 

 
(d) Realization by β2,3,4 = 0.4 

Figure 3. Realizations with different β2,3,4 when β1 = 100. 

 
In the next experiment, β2,3,4 is set to be 0.1, and β1 gradually 

increases from 1. Typical realizations are shown in Figure 4. 
Obviously, the realizations with weak β1 do not conform to the 
geological knowledge as the horizontal constraint cannot extend 
the information of neighboring boreholes to a long distance. On 
the other hand, the realizations using β1 starting from 3 show 
reasonable layered patterns. Empirically, a suitable range of β1 
can be greater than 3. 

 

 
(a) Realization by β1 = 1 

 
(b) Realization by β1 = 2 

 
(c) Realization by β1 = 3 

 
(d) Realization by β1 = 4 

Figure 4. Realizations with different β1 when β234 = 0.1. 

3.1.2   Prior setting of β  
For β2,3,4, a prior mean µ2,3,4 of 0.1 is chosen, then a prior standard 
deviation σ2,3,4 of at least 0.07 is selected to guarantee the varying 
range [µ2,3,4-3σ2,3,4, µ2,3,4+3σ2,3,4] covers 0~0.3. While σ1 needs to 
be chosen according to µ1=4. To have a better illustration on the 
behavior, Figure 5 (a) and (b) shows the simulation results using 
a prior with small σ1, σ2,3,4 and a prior with big σ1, σ2,3,4, 
respectively. The images labeled as “Max Acc” and “Min Acc” 
are the realizations having highest and lowest accuracy compared 
with the ground truth. It is observed that both posterior β and 
estimated soil profile (see Max Acc image and Min Acc image) 
have good results using small σ1, σ2,3,4, while posteriors of β1, β2 
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tend to mix with each other and drift out of the original range [µ-
3σ, µ+3σ] seriously when big σ1, σ2,3,4 is adopted. As a result, the 
realizations are in poor quality, though, posteriors of β3 and β4 
(controlling the direction of 𝜋𝜋/4 and 3𝜋𝜋/4) seem to perform 
well. 

 

 
(a) Prior σ1 =0.33 and prior σ2,3,4 =0.07 

 
(b) Prior σ1 =0.5 and prior σ2,3,4 =0.3 

Figure 5. Bayesian estimations using prior µ1=4, µ2,3,4 = 0.1 and different 
standard deviation settings. 

 
The reason is that the algorithm tries to minimize the total 

energy of the configuration during the parameter estimation 
process. The way to reduce the total energy is to reduce β1 while 
increase β2 under the current configuration (i.e., vertically dense 
while horizontally sparse). Consequently, the equilibrium 
configuration with similar β1 and β2 possess a lower total energy. 
To compensate for this issue, appropriate regularizations on the 
standard deviations σ2,3,4 for controlling the variation of β1 and β2 

is needed, which prevents them from mixing with each other. 
To further demonstrate the above finding, Table 1 shows the 

estimation results of β1 and β2 with different σ2,3,4. As σ2,3,4 
increases, posterior µ1 and posterior µ2 get closer gradually. It 
can be noticed that the smaller σ2,3,4 is, the more favorable it is to 
the stochastic simulation process as the drifting effects can be 
well constricted via the regularization using small standard 
deviation. 

 
Table 1. Effect of different prior σ2,3,4 when prior σ1=0.34 

Prior 
σ234 

Posterior mean β for Max Acc 

µ1 µ2 Acc β1 β2 

0.07 4.07 0.13 87.4% 4.45 0.09 
0.20 3.43 0.48 83.3% 3.95 0.31 

0.30 3.40 0.65 82.5% 3.87 0.45 

0.40 3.36 1.03 82.2% 3.83 0.85 
0.50 3.22 1.38 76.3% 3.28 1.42 

 
The estimation results of β1 and β2 with gradually increased 

σ1 while keep σ2,3,4 as a constant is shown in Table 2. Posterior 

mean µ1 has a small increase over a long range (i.e. 0.33~10), 
and posterior mean µ2 is stable subject to a strong regularization. 
It can be concluded that the growth of prior σ1 has almost no 
effect on the estimation process. A large value of 10 is used as 
the prior setting of σ1, which enable β1 to explore in a large range 
in the process of stochastic simulation. 

 
Table 2. Effect of prior σ1 when prior σ2,3,4=0.07 

Prior σ1 

Posterior mean β for Max Acc 

µ1 µ2 Acc β1 β2 

0.34 4.07 0.13 87.4% 4.45 0.09 
0.50 4.20 0.13 84.6% 4.02 0.17 

0.60 4.33 0.12 85.5% 4.93 0.12 

…      
1 4.36 0.13 84.4% 4.47 0.12 

…      
10 4.63 0.13 87.3% 5.82 0.13 

 

3.1.3   Suitable choice of µ1 
Different prior mean µ1 is used to perform multiple synthetic 
experiments. Four boreholes (i.e. BH1, BH2, BH4, BH5 as 
shown in Figure 2(b)) are used for stochastic simulation, and 
BH3 is used as the validation borehole. 

 

 
(a) Accuracy of BH3 

 
(b) Posterior µ versus prior µ1 

Figure 6. Estimation results with different prior mean µ1. 

 
The best (regarding the accuracy at BH3) profiles using 

different prior mean µ1 generally have a high similarity to each 
other via visual inspection (not shown here). Quantitative results 
are shown in Figure 6 (a,b). The medians of the accuracy 
corresponding to different prior mean µ1 basically remain around 
0.69. The results indicate that the posteriors of β  always 
converge into a local optimal regardless the setting of prior mean 
µ1. This result demonstrate the robustness of the proposed 
approach. 

3.2  Estimate the stratigraphic uncertainty 

The prior parameter µ1 and µ2,3,4 is set to be 4.60 and 0.10, 
respectively. A small σ for β (i.e. σ1=0.1, σ2,3,4=0.07) is chosen 
for applying the regularization. The histogram of accuracy from 
100 simulations is shown in Figure 7. As can be noticed, most of 
the results fall in the range 93% - 95%, with a minimum accuracy 
of 93.0% and a maximum accuracy of 95.0%. 

 

 
(a) Distribution of accuracy 
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(b) MAP corresponding to the 
Max Accuracy 

 
(c) MAP corresponding to the 
Min Accuracy 

Figure 7. Validation results of the synthetic example. 

 

 
(a) Error map corresponding to 
the Max Accuracy 

 
(b) Error map corresponding to 
the Min Accuracy 

Figure 8. Error maps of the synthetic example. 

 
The simulated profiles corresponding to the minimum 

accuracy and maximum accuracy are shown in Figure 7. The 
accuracy is computed from 2000 realizations by using Eq. (7), 

1
( ( ) ( ))

n

R i T it
I Z x Z x

Acc
n

=
=

=  (7) 

where 𝐼𝐼(.) is an indication function and equals to 1 when the 𝑖𝑖-th 
element in realizations 𝑍𝑍R(𝑥𝑥𝑖𝑖) has the same categorical value 
(e.g., soil type) as that from the ground truth (see Figure 2(a)) 𝑍𝑍T(𝑥𝑥𝑖𝑖), and n represents the total number of realizations (i.e. 
2000). Figure 8 shows that the error pixels are mainly 
concentrated at the boundaries of different soil layers, which 
agrees with our intuition. 

4  REAL-WORLD EXAMPLE STUDY 

In this section, the developed algorithm is applied to a 
construction site in Hong Kong. The same case history has been 
studied by Li et al. 2019 use Coupled Markov Chain (CMC) 
modeling approach. 

 

 
Figure 9. Known borehole data of the Hong Kong case. 

 
The known boreholes are shown in Figure 9. BH1, BH2, BH5 

and BH7 are used to estimate model parameters and BH3, BH4 
and BH6 are used as validation boreholes. The estimation results 
for different β2,3,4 when β1=100 are shown in the Figure 10, from 
which we can notice that the geological information of the thin 
patches indicated by several boreholes have no horizontal 
extension due to the strong vertical constraints caused by β2 
starting from β2,3,4 =0.2. Therefore, the range of suitable β2,3,4 is 

0-0.2. The trials for choosing β1 are shown in Figure 11. 
Obviously, the simulation results do not conform to the 
geological knowledge when β1 is less than 2.5. 

 

 
(a) Realization by β234 = 0.1 

 
(b) Realization by β234 = 0.2 

 
(c) Realization by β234 = 0.3 

 
(d) Realization by β234 = 0.4 

Figure 10. Realizations with different β2,3,4 when β1 = 100. 

 
Since the larger σ2,3,4 is, the more unfavorable the result will 

be, σ2,3,4 takes the minimum value 0.07 when set µ2,3,4=0.1, with 
which the range [µ2,3,4-3σ2,3,4, µ2,3,4+3σ2,3,4] covers 0~0.3. It is 
more preferred for σ1 to have a larger value (i.e. 10). 

 

 
(a) Realization by β1 = 1.0 

 
(b) Realization by β1 = 2.0 

 
(c) Realization by β1 = 2.5 

 
(d) Realization by β1 = 3 

Figure 11. Realizations with different β1 when β234 = 0.1. 

 
We investigate the effect of prior knowledge by choosing 

different µ1. As can be seen from Figure 12(a), (b) and (c), the 
accuracy of BH3, BH4 and BH6 basically remain at 0.88, 0.93 
and 0.93, respectively. During the stochastic simulation, the 
posterior distributions of β converge to a reasonable value as long 
as the prior mean µ1>3 is chosen, as can be seen in Figure 12(d) 
and the stable posterior mean is approximate 4.15 for β1 and 0.10 
for β2,3,4. Again, it shows strong robustness. Then, prior parameter 
µ1 is set to be 4.15 and µ2,3,4 is set to be 0.10, by using small 
σ1=0.1 and σ234=0.07, all known boreholes are used to infer the 
soil profile. The final results are shown in Figure 13. 

 

 
(a) Accuracy of BH3 

 
(b) Accuracy of BH4 
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(c) Accuracy of BH6 

 
(d) Posterior µ versus prior µ1 

Figure 12. Estimation results with different prior µ1. 

 

 
Figure 13. Estimated soil profile of the Hong Kong case. 

5  CONCLUSIONS 

In this paper, a Markov random field-based soil profile modeling 
approach is presented. Bayesian machine learning is integrated 
with MRF models to infer and simulate subsurface profiles. The 
model parameters are initially defined in terms of prior 
distribution, and these parameters are further calibrated with 
constraints from the site exploration results (e.g., boreholes) 
using Bayesian machine learning. Both synthetic and real-world 
examples are used to validate the method and demonstrate its 
robust performance. It can be seen that, from the simulation 
results, the performance of this approach does not rely on the 
spatial pattern of the stratigraphy and/or the soil types, and is 
independent of the stratigraphical setting or complexity. 

Though the theoretical basis is the well-developed MRF, 
significant contributions are made to push forward this 
methodology toward real-world engineering applications with a 
higher technical readiness level. The excellent performance in 
both synthetic and real-world examples of the developed 
approach can demonstrate its effectiveness and robustness. To be 
more specific, the novelty can be summarized into three points: 
1) A more flexible anisotropic Potts model is used for complex 
heterogeneity simulation; 2) a proper setting for parameter priors 
so that the model uncertainty/bias can be considered with less 
assumptions; and 3) both local and global uncertainties in the 
configurations space are taken into consideration for inferring the 
soil profiles. 

Note that subsurface modeling is a routine process and 
essential step for geotechnical design and construction. For 
example, in tunnel projects, this new approach can be applied to 
analyze the effect of stratigraphic uncertainty on the supporting 
system performance of tunnels and obtain uncertainty-aware 
evaluations and reasonable design for tunnel construction in 
ground conditions with complex strata using sparsely located 
borehole information. The developed approach also can be 
employed to identify the uncertainty of foundation systems of 
wind turbines to be installed within a wind farm since predicting 
soil conditions away from boreholes with quantified uncertainty 
is important as often the wind farm layout changes during the 
development phase, and hence, information at some specific 
foundation locations may not be readily available. Furthermore, 
it can be applied for decision-making regarding general 
geotechnical risk management, namely whether additional 
budget should be spent on the site characterization (i.e., more 
boreholes, hence more accurate subsurface profile resulting in 
less budget for design and construction) or on structural design 

and construction (i.e., less budget on boreholes while implement 
more conservative design). 

The new approach still has certain limitation. More specific, 
it may generate unrealistic initial stratigraphic configurations 
without proper regularization at the beginning of the stochastic 
simulation. And hence this behavior may slow down the 
convergence rate and affect the computational efficiency. We are 
actively working on some promising solutions to mitigate this 
behavior and more results will be presented in another paper. As 
this new approach is more and more complete and polished, we 
envision this approach can be further promoted and applied in 
industry practices for improved risk control in geotechnical 
engineering. 
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