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ABSTRACT: In the field of geotechnical site characterization, the Markov random field (MRF) models, used to be widely applied
in physics and image processing, recently have gained much attention, and have been adopted for modeling and simulating
stratigraphic heterogeneity using limited/sparse boreholes, performing which by far is still a challenging task in engineering geology.
The gap lies in the difficulty of developing an integration of subjective engineering judgment (e.g., geological knowledge) and the
objective site exploration data (e.g., the borehole observations). Recently, Bayesian machine learning, with its advances in artificial
intelligence and uncertainty quantification, has been widely applied in a variety of research fields. In this paper, we combine Bayesian
machine learning with the MRF model. An effective MRF stochastic modeling framework is developed to characterize the
stratigraphic uncertainty. The model parameters are initially defined in terms of prior distribution. These parameters are then further
calibrated with additional constraints from the site exploration results using Bayesian machine learning. Throughout the learning
process, the stratigraphic uncertainty (inherent) and the model uncertainty (imperfect knowledge) are taken into consideration. The
effects of both prior knowledge and borehole observations in quantifying stratigraphic uncertainty are discussed. To demonstrate the
effectiveness of the developed approach, both synthetic and real-world examples are demonstrated. We envision this approach can
be further generalized in industry practices for improved risk control in geotechnical engineering.
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To acquire reasonable and confident estimates of subsurface
uncertainty, Markov random field (MRF)-based stochastic
simulation approaches have been adopted in engineering
geology. The MRF models can provide a flexible and intuitive

1 INTRODUCTION

Acquiring accurate site-specific soil layer information is a crucial

and essential step for planning and design of any geotechnical
project. However, subsurface soil layers are natural forming
materials associated with inherent heterogeneity and randomness
(Juang et al. 2018). Therefore, the design and construction of a
geotechnical system need to take these randomness into account.
Due to inadequate knowledge of the soil forming histories and/or
other geological/human activities, the subsurface information at
a project site can be difficult to infer (Gong et al. 2019; Wang et
al. 2016).

Only sparse borehole logs are collected in a project, partially
due to the limited budget and the tight project schedule. As a
result, the geological and geotechnical information only can be
probed at sparsely distributed locations; whereas, subsurface
information at other locations may have to be inferred or
simulated based on available sparse information either from
archived borehole data or planned site investigation data. The
incomplete knowledge of the formation process of the geological
bodies, together with the insufficient number of borehole logs
and in-situ test results, leads to significant uncertainty in the
inferred subsurface profile. It is fair to say that the issues of the
subsurface uncertainty and the influence of such uncertainty on
the geotechnical design have long posed challenges to
practitioners (Gong et al. 2019).
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way to describe the Markovian contextual constraints, which
enables the reflection and reproduction of the anisotropy and
heterogeneity of subsurface geological structures. While the
current MRF models (Gong et al. 2019; Wang et al. 2016; Wang
et al. 2018; Wang et al. 2019; Wang et al. 2018) have some
shortcomings, such as the model parameters, representing the
spatial correlation of stratigraphic structures, need to be defined
in priori by using subjective engineering judgments from local
experience and the parameters cannot be updated during the
inferential process once they are determined initially. This
strategy is not robust as the simulated subsurface profile may
deviate from reality due to the subjective guess of model
parameters and the uncertainty could be underestimated.

In this study, a novel stratigraphic uncertainty quantification
approach is developed by combining the MRF theory with
Bayesian machine learning (Wang 2018). The new approach has
a more advanced and flexible spatial correlation model so that it
can better leverage the prior information of the model parameters
and enhance uncertainty quantification regarding soil
heterogeneity when only sparse borehole information is
available. The model parameters are regularized in terms of prior
distribution and further updated with additional constraints from
the site exploration results using Bayesian machine learning. As



a result, the developed new approach not only relies on fewer
subjective information, but also has better adaptivity compared
with previous MRF-based methods. To demonstrate the
effectiveness of the developed approach, both synthetic and real-
world cases are studied and some preliminary results are
presented in this paper.

2 METHOD

2.1 Markov Random Field

One of the practical approaches analyzing sparse geotechnical
data is to discretize a subset (e.g., a two-dimensional section) of
the physical space into pixels according to the measurement
resolution. For categorical data (as discussed in this paper), each
pixel is assigned with a label indicating the associated soil type.

A Markov random field model is a graphical description of
the spatial pattern (e.g., the soil layers in the current context) in
physical space. Pixels having the same label belong to the same
soil type. The label field can be represented as a label
configuration of all pixels X=(x,X),X;,...X,), X, €L where
L={1,2,3,..,m} is a set of all possible labels indicating different
soil types. A typical example of a graph model describing the
spatial correlation of a Markov random field is a two-
dimensional lattice with a second-order neighborhood system
(Besag 1986). For pixel i, the neighbors ¢, are defined as the
nearest eight pixels around it. The local conditional probabilities
of a specific label given the labels of all neighbors can be
calculated in the following form (Besag 1986; Geman and
Geman 1984):

p ~ P(x;,x;, ) ~exp[-Ulx;,x; )]
(X/ | xa, )= Z P(x/_ ',xﬁ/) - z CX]:)[—U(X/. ',xﬁ/ N (1)

where U(.) is the so-called local energy. We adopt the widely
used Potts model (Koller and Friedman 2009) to characterize the
local interaction of the pixels within a neighborhood system. The
local energy has the following form:

Ux, %)= 2V, (x,.x) )

with the potential function

0 if x;, =x,

V'-'(x"’x/):{ﬁd if x, % x, &)

where fa € {f1, P2, f3 Pa} indicates the spatial constraint
corresponding to four independent directions 0, 772, 17/4, 310/4
referring to a two-dimensional lattice grid, and is referred to as
the granularity coefficients. The local energy reflects the spatial
correlation of categorical data: pixels close to each other tend to
have the same soil type. The behavior of an MRF model is
intimately related to the granularity coefficients {fd}. For an
anisotropic Potts model (as introduced in this work), positive
values of these parameters cause attraction of neighboring pixels,
or encourage clustering effects along a certain direction, while
negative values result in repulsion, or prevent clustering (Cross
and Jain 1983).

2.2 Bayesian machine learning

All pixels can be categorized into two types: a) pixels with
known labels indicating sparse borehole information xgx and b)
pixels with unknown labels Xunknown elsewhere. Both Xuminown and
the granularity coefficients f need to be inferred from xau. A
Markov chain Monte Carlo (MCMC) technique is employed to
implement Bayesian machine learning and sample (Xunknown, )
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iteratively via two conditional a posteriori distributions
P(XunknowanBH, ﬂ) and P(ﬂl.X?unknown’ XBH) iteratively.

2.2.1  Simulation of conditional MRF P(Xunknown|XBH, f8)
Given a random initial field at unknown pixels Xunknown, and
conditional on a specific setting of granularity coefficients and
pixels with known soil type at borehole locations xamw,
P(Xunknown|xH, B) is a Gibbs distribution with fixed soil labels
only at the borehole locations. The local energy at unknown
pixels can be calculated using Eq. (2) and the corresponding
probability of choosing each label can be evaluated via Eq. (1).
Realizations of the conditional random field P(Xunknown|xaH, B)
can be simulated via a parallel algorithm named chromatic
sampler (Wang et al. 2016).

2.2.2  Simulation of the model parameters P(B|Xunknown, XBi)
In this step, g is sampled following the conditional posterior
distribution:

Post(f) oc Prior(B)L(X,on» X511 | B) “4)

where Post(f) is the posterior distribution of f; Prior(f) is the
prior distribution of 8; L(Xunknown, xau|f) is the likelihood function
indicating the possibility of having the simulated soil
configuration given the known borehole information and can be
evaluated via the following equation.

L(X o> X511 | B) = H

P(x. | x,;p).
X €4 X unknown X pr } ( j| K ﬁ) (5)
To incorporate prior knowledge, the prior distribution of #
should be defined. In this work, a multivariate Gaussian
distribution with a mean vector u indicating the rough estimates
of the granularity coefficients, and a diagonal covariate matrix
Y=diag(c1%, 622, 032, 64%), where o; is the standard deviation of
the corresponding granularity coefficient.
The Metropolis-Hasting algorithm is employed to implement
the conditional MCMC sampling process. The log(target)
function can be expressed as

log(target) = log(Prior(#)) +108(L(X, 001> X511 | B))- (©)

The log(target) function measures the log scale of the joint
probability of the simulated granularity coefficients and the
simulated soil profile. The higher the log(target) is, the higher
possibility that the simulated soil profile is plausible and the
corresponding granularity coefficients is compatible with the
simulated field. In other words, Eq. (6) is being optimized in a
probabilistic sense during the Bayesian machine learning process
through MCMC. Since no training information is needed during
the sampling process, this method is fully unsupervised.

2.2.3  Maximum a posteriori (MAP) of soil profile and the
most likely realization

After the burn-in period of the Markov chain, each realization of
the simulated soil profile is stored and the marginal probability
of choosing each label is calculated for each pixel. The MAP
estimate of the entire soil profile can be derived based on the
majority vote principle at each pixel (i.e., the MAP label will be
the one with the highest sampling probability). The most likely
realization is defined as the realization corresponding to the
highest log(target) value.

2.3 Uncertainty-aware algorithm

The marginal probability of each soil label derived from the
simulated realizations takes the uncertainty of granularity
coefficients f# into consideration, and hence unlike other non-



Bayesian methods with fixed model parameters, this algorithm
automatically assesses possible model bias and incorporates it
into the overall uncertainty quantification. This is one of the
contributions of the current work.

3 SYNTHETIC CASE STUDY

The stratigraphic uncertainty estimated using an MRF model
includes both local uncertainty and global uncertainty in
configuration space when prior information of # and boreholes
data are provided. The illustration of local and global
uncertainties is shown in the Figure 1. Local uncertainty exists in
a single MCMC simulation given a random initial field, and each
realization in a single simulation is the result of the local
uncertainty (see Figure 1 (a), (b), (c)). While the global
uncertainty refers to the variation of the MAPs (or local
optimums) derived from multiple Markov chains (see Figure 1
(d), (e), () generated from different initial fields.
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Figure 1. Illustration of simulated stratigraphic uncertainty.
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In this section, we focus on discussing how to determine a
suitable prior distribution of f when only sparse boreholes are
available. A synthetic stratigraphic profile shown in Figure 2(a)
is simulated using a Potts model with f=[4, 0.1, 0.1, 0.1] and five
virtual boreholes are extracted and shown in Figure 2(b) for
inferring the “unknown” portion. The soil profile in Figure 2(a)
is considered as the “ground truth” throughout the synthetic
example.

L BH2 BH3 BH4 BHS

w | ’ .

(] 20 Eh] 60 80

X x
(a) Synthetic stratigraphic profile  (b) Virtual boreholes

Figure 2. Synthetic stratigraphic profile and selected virtual boreholes.

3.1  Prior information of B

The spatial correlation of a soil profile tends to be horizontally
dominated. Therefore, it is intuitive that f; should be much
greater than f2, 3, and 4. For simplicity, 2, f3, and f4 share the
same prior distribution, while f; has its own prior distribution.

3.1.1  Suitable range of B

Different prior information of # can result in different local
optimums in the configuration space. Yet only a small portion of
local optimums controlled by reasonable # are compliant with
geological knowledge, and can be considered as possible

candidates. In order to figure out a reasonable range of 8, we first
choose a significantly high £, such as 100, and then get the
MAPs (local optimums) by gradually increasing /234 The
realizations with different f2.3 4 are shown in Figure 3. It can be
seen that the realizations are less realistic when 234 > 0.3.
Although a strong f; could result in a horizontally dominated
layered pattern, while it is only under the condition that 234 is
small enough. This indicates that 234 should well controlled.
According to experiences, the reasonable range for 2 3.4 could be

0~0.3.

(b) Realization by £,3,=0.2

(d) Realization by f3,3,=0.4

(a) Realization by £,3,=0.1

(c) Realization by f3,;,=10.3
Figure 3. Realizations with different /5, 3, when f;, = 100.

In the next experiment, f32.3,41s set to be 0.1, and f; gradually
increases from 1. Typical realizations are shown in Figure 4.
Obviously, the realizations with weak f; do not conform to the
geological knowledge as the horizontal constraint cannot extend
the information of neighboring boreholes to a long distance. On
the other hand, the realizations using f; starting from 3 show
reasonable layered patterns. Empirically, a suitable range of f;
can be greater than 3.

(b) Realization by 8, =2

(c) Realization by ;=3 (d) Realization by g, =4

Figure 4. Realizations with different ; when £, =0.1.

3.1.2  Prior setting of B

For f2,3,4, a prior mean 2,34 0f 0.1 is chosen, then a prior standard
deviation 02,34 of at least 0.07 is selected to guarantee the varying
range [2,3,4-3023,4, U2,34+302,3.4] covers 0~0.3. While o7 needs to
be chosen according to u;=4. To have a better illustration on the
behavior, Figure 5 (a) and (b) shows the simulation results using
a prior with small ¢;, 6234 and a prior with big o1, 6234,
respectively. The images labeled as “Max Acc” and “Min Acc”
are the realizations having highest and lowest accuracy compared
with the ground truth. It is observed that both posterior # and
estimated soil profile (see Max Acc image and Min Acc image)
have good results using small o1, 02,34, while posteriors of f1, f2

4657



tend to mix with each other and drift out of the original range [u-
30, ut30] seriously when big o1, 02,3,41s adopted. As a result, the
realizations are in poor quality, though, posteriors of £; and S«
(controlling the direction of m/4 and 3m/4) seem to perform

well.
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Figure 5. Bayesian estimations using prior x,;=4, u534= 0.1 and different

standard deviation settings.

The reason is that the algorithm tries to minimize the total

energy of the configuration during the parameter estimation
process. The way to reduce the total energy is to reduce £; while

increase f52 under the current configuration (i.e., vertically dense
while horizontally sparse). Consequently, the equilibrium
configuration with similar £; and 52 possess a lower total energy.
To compensate for this issue, appropriate regularizations on the
standard deviations 02,34 for controlling the variation of #; and f2
is needed, which prevents them from mixing with each other.
To further demonstrate the above finding, Table 1 shows the
estimation results of f; and > with different 0234 As 0234

increases, posterior u; and posterior x> get closer gradually. It

can be noticed that the smaller 0234 is, the more favorable it is to
the stochastic simulation process as the drifting effects can be
well constricted via the regularization using small standard
deviation.

Table 1. Effect of different prior o, 354 when prior 6,=0.34

. Posterior mean p for Max Acc

Prior

0234 Ui M2 Acc Bi B
0.07 4.07 0.13 87.4% 4.45 0.09
0.20 3.43 0.48 83.3% 3.95 0.31
0.30 3.40 0.65 82.5% 3.87 0.45
0.40 3.36 1.03 82.2% 3.83 0.85
0.50 3.22 1.38 76.3% 3.28 1.42

The estimation results of £ and > with gradually increased
o1 while keep 0234 as a constant is shown in Table 2. Posterior
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mean x; has a small increase over a long range (i.e. 0.33~10),
and posterior mean 2 is stable subject to a strong regularization.
It can be concluded that the growth of prior o; has almost no
effect on the estimation process. A large value of 10 is used as
the prior setting of o7, which enable f; to explore in a large range
in the process of stochastic simulation.

Table 2. Effect of prior 6, when prior g 3 ,=0.07

Posterior mean p for Max Acc
Prior g, ) s Acc 8, P
0.34 4.07 0.13 87.4% 445 0.09
0.50 4.20 0.13 84.6% 4.02 0.17
0.60 433 0.12 85.5% 4.93 0.12
1 436 0.13 84.4% 447 0.12
10 4.63 0.13 87.3% 5.82 0.13
3.1.3  Suitable choice of i

Different prior mean u; is used to perform multiple synthetic
experiments. Four boreholes (i.e. BH1, BH2, BH4, BHS as
shown in Figure 2(b)) are used for stochastic simulation, and
BH3 is used as the validation borehole.
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Figure 6. Estimation results with different prior mean u;.

The best (regarding the accuracy at BH3) profiles using
different prior mean u; generally have a high similarity to each
other via visual inspection (not shown here). Quantitative results
are shown in Figure 6 (a,b). The medians of the accuracy
corresponding to different prior mean u; basically remain around
0.69. The results indicate that the posteriors of B always
converge into a local optimal regardless the setting of prior mean
1. This result demonstrate the robustness of the proposed
approach.

3.2 Estimate the stratigraphic uncertainty

The prior parameter u; and u234 is set to be 4.60 and 0.10,
respectively. A small ¢ for g (i.e. 0/=0.1, 62,34=0.07) is chosen
for applying the regularization. The histogram of accuracy from
100 simulations is shown in Figure 7. As can be noticed, most of
the results fall in the range 93% - 95%, with a minimum accuracy
0f'93.0% and a maximum accuracy of 95.0%.
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Figure 7. Validation results of the synthetic example.
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Figure 8. Error maps of the synthetic example.

The simulated profiles corresponding to the minimum
accuracy and maximum accuracy are shown in Figure 7. The
accuracy is computed from 2000 realizations by using Eq. (7),

Acc = Z:t=1](ZR (x)=2;(x))

n

where I(.) is an indication function and equals to 1 when the i-th
element in realizations Zr(xi) has the same categorical value
(e.g., soil type) as that from the ground truth (see Figure 2(a))
Zt1(xi), and n represents the total number of realizations (i.e.
2000). Figure 8 shows that the error pixels are mainly
concentrated at the boundaries of different soil layers, which
agrees with our intuition.

0

4 REAL-WORLD EXAMPLE STUDY

In this section, the developed algorithm is applied to a
construction site in Hong Kong. The same case history has been
studied by Li et al. 2019 use Coupled Markov Chain (CMC)
modeling approach.

15 ‘ | | ‘ ‘
3
I |

49
0

Y (m)

15 30 43
X (m)

Figure 9. Known borehole data of the Hong Kong case.

The known boreholes are shown in Figure 9. BH1, BH2, BHS
and BH?7 are used to estimate model parameters and BH3, BH4
and BH6 are used as validation boreholes. The estimation results
for different f23,4 when /=100 are shown in the Figure 10, from
which we can notice that the geological information of the thin
patches indicated by several boreholes have no horizontal
extension due to the strong vertical constraints caused by f£:
starting from 234 =0.2. Therefore, the range of suitable /2,4 is
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0-0.2. The trials for choosing f; are shown in Figure 11.
Obviously, the simulation results do not conform to the
geological knowledge when f; is less than 2.5.

(a) Realization by f23,=0.1 (b) Realization by f3,= 0.2

(c) Realization by f,3,= 0.3 (d) Realization by 23, = 0.4

Figure 10. Realizations with different /5, 5 , when 8, = 100.

Since the larger 6234 is, the more unfavorable the result will
be, 0234 takes the minimum value 0.07 when set u2,34=0.1, with
which the range [u234-30234, ©234+30234] covers 0~0.3. It is
more preferred for o; to have a larger value (i.e. 10).

(c) Realization by 8, =2.5 (d) Realization by ;=3

Figure 11. Realizations with different #; when f,3, = 0.1.

We investigate the effect of prior knowledge by choosing
different ;. As can be seen from Figure 12(a), (b) and (c), the
accuracy of BH3, BH4 and BH6 basically remain at 0.88, 0.93
and 0.93, respectively. During the stochastic simulation, the
posterior distributions of # converge to a reasonable value as long
as the prior mean x,>3 is chosen, as can be seen in Figure 12(d)
and the stable posterior mean is approximate 4.15 for g, and 0.10
for B, ;4. Again, it shows strong robustness. Then, prior parameter
f1 1s set to be 4.15 and p234 is set to be 0.10, by using small
0:/=0.1 and 023/=0.07, all known boreholes are used to infer the
soil profile. The final results are shown in Figure 13.
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Figure 13. Estimated soil profile of the Hong Kong case.

5 CONCLUSIONS

In this paper, a Markov random field-based soil profile modeling
approach is presented. Bayesian machine learning is integrated
with MRF models to infer and simulate subsurface profiles. The
model parameters are initially defined in terms of prior
distribution, and these parameters are further calibrated with
constraints from the site exploration results (e.g., boreholes)
using Bayesian machine learning. Both synthetic and real-world
examples are used to validate the method and demonstrate its
robust performance. It can be seen that, from the simulation
results, the performance of this approach does not rely on the
spatial pattern of the stratigraphy and/or the soil types, and is
independent of the stratigraphical setting or complexity.

Though the theoretical basis is the well-developed MRF,
significant contributions are made to push forward this
methodology toward real-world engineering applications with a
higher technical readiness level. The excellent performance in
both synthetic and real-world examples of the developed
approach can demonstrate its effectiveness and robustness. To be
more specific, the novelty can be summarized into three points:
1) A more flexible anisotropic Potts model is used for complex
heterogeneity simulation; 2) a proper setting for parameter priors
so that the model uncertainty/bias can be considered with less
assumptions; and 3) both local and global uncertainties in the
configurations space are taken into consideration for inferring the
soil profiles.

Note that subsurface modeling is a routine process and
essential step for geotechnical design and construction. For
example, in tunnel projects, this new approach can be applied to
analyze the effect of stratigraphic uncertainty on the supporting
system performance of tunnels and obtain uncertainty-aware
evaluations and reasonable design for tunnel construction in
ground conditions with complex strata using sparsely located
borehole information. The developed approach also can be
employed to identify the uncertainty of foundation systems of
wind turbines to be installed within a wind farm since predicting
soil conditions away from boreholes with quantified uncertainty
is important as often the wind farm layout changes during the
development phase, and hence, information at some specific
foundation locations may not be readily available. Furthermore,
it can be applied for decision-making regarding general
geotechnical risk management, namely whether additional
budget should be spent on the site characterization (i.e., more
boreholes, hence more accurate subsurface profile resulting in
less budget for design and construction) or on structural design
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and construction (i.e., less budget on boreholes while implement
more conservative design).

The new approach still has certain limitation. More specific,
it may generate unrealistic initial stratigraphic configurations
without proper regularization at the beginning of the stochastic
simulation. And hence this behavior may slow down the
convergence rate and affect the computational efficiency. We are
actively working on some promising solutions to mitigate this
behavior and more results will be presented in another paper. As
this new approach is more and more complete and polished, we
envision this approach can be further promoted and applied in
industry practices for improved risk control in geotechnical
engineering.
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