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ABSTRACT: This study aims to investigate the landslide susceptibility and resilience of the study area located in Central Taiwan, 
including the mountain highway and the villages in this area. After calculating the landslide susceptibility values by Logistic 
Regression model. By considering the core concept of resilience, the control factors were adopted and the data was collected for the 
study area. In order to explore the temporal behavior of landslide resilience, the population density, electricity consumption per 
household, and the cost of reconstruction were adopted as the indicators to establish the landslide disaster resilience model. Based 
on the data layers, the comprehensive linear regression model was established and used for the resilience interpretations, with 
suggestions on the village human mobility and the rehabilitation budget for resilience enhancement. This study can help for landslide 
disaster mitigation, especially for the enhancement of landslide resilience of the villages in mountain areas.

RÉSUMÉ : Cette étude vise à étudier la susceptibilité et la résilience des glissements de terrain de la zone d’étude située dans le centre 
de Taïwan, y compris l’autoroute de montagne et les villages de cette région. Après avoir calculé les valeurs de susceptibilité des 
glissements de terrain par modèle de régression logistique. En examinant le concept de base de résilience, les facteurs de contrôle ont 
été adoptés et les données ont été recueillies pour la zone d’étude. Afin d’explorer le comportement temporel de la résilience aux 
glissements de terrain, la densité de population, la consommation d’électricité par ménage et le coût de la reconstruction ont été adoptés 
comme indicateurs pour établir le modèle de résilience aux catastrophes des glissements de terrain. Basé sur les couches de données, le 
modèle complet de régression linéaire a été établi et utilisé pour les interprétations de résilience, avec des suggestions sur la mobilité 
humaine du village et le budget de réhabilitation pour l’amélioration de la résilience. Cette étude peut aider à atténuer les catastrophes 
par glissement de terrain, en particulier pour l’amélioration de la résilience des glissements de terrain dans les villages des zones 
montagneuses.
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1  INTRODUCTION.

Following the Hyogo Framework for Action, initiated on the 
2005 World Conference on Disaster Reduction (WCDR), Sendai 
Framework for Disaster Risk Reduction (SFDRR) was presented 
in 2015, in which the disaster resilience was more clearly defined 
to improve the capabililty of recovering from a disaster, by the 
countermeasures in the aspects of social, economy, policy, etc. 
The most popular definition of resilience could be "the capability 
of an ecosystem enduring external disturbance and returning to 
the state before the disturbance". But it is still scarce for the 
research on the quantitative disaster resilience, including the 
geohazard-related reslilience. In view of the rainfall induced 
landslide hazards in Taiwan, quantifying and enhancing the 
resilience are critical to protect the life, property, and 
infrastructure in the landslide area. This study comprises two 
major part, i.e., calculating the landslide susceptibility as a 
hazard factor, and collecting data of the control factors, then 
establishing the landslide resilience model of the research 
area.First paragraph (no indentation).

2  METHODOLOGIES

The study area is located in the upstream of Wu River watershed 
in Central Taiwan, with focuses on the mountain highway and 

the six villages (see Figure 1). Data of the landslide causative 
factors and the resilience control factors before and after rainfall
events in study area were collected, then the landslide 
susceptibility values were calculated and the landslide disaster 
resilience models were established.

2.1 Landslide Susceptibility Analysis

This study adopted the Logistic Regression method of Lin 
(2016), with the nine causative factors, i.e., elevation, slope, 
slope, dip slope index, distance to fault, distance to road, distance 
to river, greenness index, and 72 hour cumulative rainfall. 
Among them, the hourly rainfall data during 2012~2017 was 
further analyzed to find the largest 72-hour cumulative in a 
quarterly basis for each rainfall station, such that we can explore 
the spatial changing trend of rainfall in the study area.

Considering the villages as the analysis units, the Thiessen's 
Polygon method was used to obtain the rainfall distribution, as 
shown in Figure 2. By introducing the seasonal rainfall data to 
the following Logistic Regression model of Lin (2016), as 
described in Eq. (1), we can obtain the seasonal landslide 
susceptibility values of each village. ln [P /(1-P)]=-0.577*F1+1.545* F2+0.077*F3-0.038* F4-0.242*F5-0.102*F6-0.458*F7-3.564*F8+0.560*F9-0.406 (1) 

Serrano‐González J. and Lacal‐Arántegui R. 2016. Technological 
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Figure 1. The location and geology of the study area study are in the 
upstream of Wu River watershed in Central Taiwan. 

 

Figure 2. The Thiessen's Polygons to obtain the rainfall distribution 

of the six villages in the study area 

 
 

2.2  Landslide Disaster Resilience 

Based on a review of the behavior of landslide hazard, nine 
control factors were selected for assessing the landslide 
resilience in the study, including population density, average 
electricity consumption per household, elder ratio, shelter ratio, 

fire fighter ratio, medical manpower ratio, income tax, and 
reconstruction budget. 

This study further applied linear regression analysis based on 
the resilience of landslide disasters defined by Eq. (2) and Eq. 
(3). Karen (2011) quantified the resilience of landslide disasters 
with time dependence, using Eq. (2) to define the incremental 
resilience r(t), as the cost per unit time C(t) multiplying unit time 
Inc(t) and dividing by total time (NI). In Eq. (3), by integrating 
r(t) according to time, the resilience Re can be obtained.  
     r(t) = C(t)Inc(t)NI(t)                                   (2)      Re(ts) = ∫ r(t)dttst0                               (3) 
 
 

3  LINEAR REGRESSION ANALYSIS 

In order to more properly establish the landslide resilience 
model, this study tried to use different control factors and divided 
the data into high season and low season for linear regression 
analysis. Before further establishment of resilience model, the 
correlation of those control factors for the major resilience 
indicators were anaylzed.  
 

3.1  Population Density  

The linear regression analysis was carried out for the high season 
and low season of different time periods, namely 2012-2016, 
2016-2017, 2012-2017, 2012-2015, and 2015-2017. The 
independent control factors include landslide susceptibility 
(RI1), elder ratio (RI2), shelter ratio (RI3), fire fighter ratio 
(RI4), medical manpower ratio (RI5), income tax (RI6), and 
rehabilitation budget (RI7). 

The difference between low season and high season is that the 
impact of landslide susceptibility on population density is 
reduced, that is, it shows that the impact of landslides on the 
study area is relatively lower during the period when the 
population density is lower. The results suggest that, whether in 
high season or low season, the best model for forecasting is the 
2012-2015 period, as they can properly to predict the population 
density in 2016-2017. Therefore, the population density could be 
considered as a dependent factor to assess the recovering from a 
landslide disaster.  
 Y=-0.731*RI1-0.594*RI2+0.434*RI3-.260*RI4+0.820*RI5-0.543*RI6-0.124*RI7+1.879               (4) 
3.2  Electricity Consumption  

Similarly, the linear regression analysis for the resilience 
indicator, i.e., electricity consumption, was carried out for the 
high season and low season of different time periods. Comparing 
the R2 coefficients of five models of electricity consumption, i.e., 
0.597-0.436, it shows the regression is barely acceptable. The 
weightings of the control factors on the electricity consumption 
for the 2016-2017 model (as shown in Eq.(5) can be ranked as: 
landslide susceptibility, medical manpower ratio, shelter ratio, 
reconstruction budget, income tax, elder ratio, and fire fighter 
ratio. 
 Y=-0.199*RI1-0.617*RI2+0.419*RI3-1.310*RI4+0.820*RI5 -0.505*RI6-0.138*RI7+1.486               (5) 
 

Based on the highest R2 value, it suggested the best mode for 

both high season and low season is the 2012-2015 model. This 

model was applied to predict the population density of 2016-
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2017 with error between 1~53 %, best for Xinshen village and 

worst for Nanfeng village. For the low season, the error is 

between 0~66%, 0% for Faxiang village and 66% for Nanfeng 

village. The results suggest there are variation of error temporally 

and spatially. 

 
Table 1. The prediction errors of regression models for different 
seasons in 2016-2017. 

Year Season 

% of Error 

Xinsheng Lixing Faxiang Nanfeng Cuihua 

2016 

1 2% 3% 10% 45% 8% 

2 6% 5% 9% 46% 7% 

3 6% 5% 12% 44% 17% 

4 4% 6% 18% 53% 12% 

Ave 5% 5% 12% 47% 11% 

2017 

1 6% 19% 8% 8% 28% 

2 2% 19% 1% 24% 19% 

3 3% 27% 8% 10% 23% 

4 1% 26% 2% 13% 27% 

Ave 3% 23% 5% 14% 24% 

 

4  LANSLIDE RESILIENCE ANALYSIS 

This study applied the model of Karen(2011) to study the 
resilience of landslide disasters, to explore the differences in 
reconstruction budget in different time scales.  
 

4.1  Model Based on Reconstruction Budget  

In order to compare the performance of the reconstruction budget 
on the resilience, the linear regression analysis was carried out 
by letting reconstruction budget as the dependent variable. The 
cases of analyses were numbered as shown in Table 2. Case A is 
for the reconstruction budgets in 2008-2011 and 2012-2016; 
Case B is for the reconstruction budgets in 2012-2015 and 2016-
2017; Case C is based on the reconstruction budget as dependent 
variable for linear regression, for the periods of 2012-2015 and 
2016-2017, and matching with Eqs. (2) and (3). 

The linear regression analysis model with R2 of 0.623 was 
used to estimate the 2012-2017 reconstruction budget (see Figure 
3); then introduce the data into the formula of Karen (2011) to 
obtain the resilience, as shown in Figures 4~6. The results show 
that the resilience of Lihang, Datong, Nanfeng and Cuihua 
villages changed from negative to positive in the post-2015 
period, while that of the remaining two villages (Xinshen and 
Faxiang) was positive and increasing. In terms of the concept of 
disaster resilience, the lower the cost of rehabilitation, the higher 
the resilience, indicating that its villages do not need too much 
money to deal with natural disasters. However, it is suggested to 
have more evidence to support the findings of this study. 
 
Table 2. Different group settings for the resilience analyses. 

Case Groups of data 

A 2008-2011 2012-2016 

B/C 2012-2015 2016-2017 

 

 
Figure 3. The 2008-2018 reconstruction budgets for the villages in the 
study area. 

 

 

 
Figure 4. The resilience values of the six villages in the study area, for 
Case A with the reconstruction budget model.   

 

 

 
Figure 5. The resilience values of the six villages in the study area, for 
Case B with the reconstruction budget model.   

 

 

 
Figure 6. The resilience values of the six villages in the study area, for 

Case C with the reconstruction budget model.   
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    r(t) = C(t)Inc(t)NI(t)                                   (2)      Re(ts) = ∫ r(t)dttst0                               (3) 

Y=-0.731*RI1-0.594*RI2+0.434*RI3-.260*RI4+0.820*RI5-0.543*RI6-0.124*RI7+1.879          (4) 
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4.2  Model Based on Population Density 
 
For the population density model, the applied data was obtained 
by the best regression formula, with the largest R2 value. The 
seasonal data of 2012-2017 was used as C(t). In order to compare 
the temporal behavior of polulation density of each village, two 
periods of time, i.e., 2012-2015 and 2016-2017, were considered. 
The unit time of an increment Inc(t) is one season, and the total 
time (seasons) NI(t) is 16 seasons in 2012-2015 and 8 seasons in 
2016-2017. 

The results in Figure 7 indicate Nanfeng village is obviously 
different from the other villages. It could be due to the high 
regression error of 54%，that also reflects an abnormal behavior 
of population density. Unlike the other villages, there is no 
significant variation of population density in Xinsheng and 
Faxiang villages. Similar to electricity consumption, the 
population density is an indicator of economic activity. The 
larger of those two indicators, the larger disaster resilience. 
 
 

 
Figure 7. The resilience values of the six villages in the study ar

ea, for Case B with the population density model. 

4.3  Model Based on Electricity Consumption  

Similarly, the regression formula with the highest R2 value is also 
used to calculate the average electricity consumption per 
household for each season of 2012-2017 as C (t). The unit time 
of an increment Inc(t) is one season, and the total time (seasons) 
NI(t) is 16 seasons in 2012-2015 and 8 seasons in 2016-2017.  
According to the results of the regression analysis, although the 
R2 value is acceptable, but the average error in the performance 
of the forecast results is up to 68% (Faxiang Village). However, 
Cuihua village possesses the largest increases in population 
density and electricity consumption, also has the highest disaster 
resilience out of the six villages. 

Two different interpretations are summarized according to 
different indicators of disaster resilience. First of all, the 
reconstruction budgets are as the cost of post-disaster repair, the 
more budget invested the more time the region needs to return to 
a stable state. Therefore, as a wayward evaluation value the 
greater the disaster resilience is lower. Based on the results of 
Cuihua Village, the population density and electricity 
consumption are the highest compared with other villages, and 
the comparison with the calculation results of the village's 
reconstruction budget shows that the reconstruction budgets of 
the village in 2008-2018 were relatively large compared with 
other villages. In order to compare the performance of the 
reconstruction budget. 

5  CONCLUSIONS AND DISCUSSIONS 

This study adopted the upstream of Wu River as the research 
area, and chose the control factors by to establish the resilience 
model by linear regression method. In order to incorporate the 
concept of disaster resilience, population density, electricity 
consumption, and reconstruction budget were used as the 

indicators of resiliece. And the following conclusions are drawn 
from the analysis results: 
 

 
Figure 8. The resilience values of the villages in the study area, for Case 

B with the electricity consumption model. 

For the landslide susceptibility, this study adopted the 
Logistic Regression model of Lin (2016) to produce landslide 
susceptibility values. The 99% percentile susceptibility value of 
the grid unit was conservatively considered as the landslide 
susceptibility of the village. In the establishment of landslide 
disaster resilience assessment indicators, covering the hazard, 
preservation, response and reconstruction indicators. The 
following four groups of control factors were adopted for the 
resilience analysis, i.e., (i) landslide susceptibility, (ii) population 
density and electricity consumption, (iii) elder ratio, shelter ratio, 
fire fighter ratio, and medical manpower ratio, (iv) income tax 
and reconstruction budget. 

Based on the analysis results using the resilience model of 
Karen (2011), with considering reconstruction budget, 
population density, and electricity consumption as resilience 
indicators, it suggests the smaller the value calculated by the 
reconstruction budget represents higher resilience. On the other 
hand, for population density and electricity consumption, the 
smaller the calculated value the smaller the resilience. 

Through the analysis of population density as a dependent 
variable, it is possible to find the time at which the villages return 
to the pre-event stable state. However, for the quantitative 
analyses, the number of samples is crucial to obtain promising 
results. It is suggested to optimize and simplify the resilience 
model of the most important indicator factor. Such that the error 
of the model can be reduced and the efficiency of the evaluation 
can be increased. 
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