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ABSTRACT: This study aims to investigate the landslide susceptibility and resilience of the study area located in Central Taiwan,
including the mountain highway and the villages in this area. After calculating the landslide susceptibility values by Logistic
Regression model. By considering the core concept of resilience, the control factors were adopted and the data was collected for the
study area. In order to explore the temporal behavior of landslide resilience, the population density, electricity consumption per
household, and the cost of reconstruction were adopted as the indicators to establish the landslide disaster resilience model. Based
on the data layers, the comprehensive linear regression model was established and used for the resilience interpretations, with
suggestions on the village human mobility and the rehabilitation budget for resilience enhancement. This study can help for landslide
disaster mitigation, especially for the enhancement of landslide resilience of the villages in mountain areas.

RESUME : Cette étude vise a étudier la susceptibilité et la résilience des glissements de terrain de la zone d’étude située dans le centre
de Taiwan, y compris 1’autoroute de montagne et les villages de cette région. Aprés avoir calculé les valeurs de susceptibilité des
glissements de terrain par modele de régression logistique. En examinant le concept de base de résilience, les facteurs de controle ont
été adoptés et les données ont été recueillies pour la zone d’étude. Afin d’explorer le comportement temporel de la résilience aux
glissements de terrain, la densité de population, la consommation d’électricité par ménage et le cotit de la reconstruction ont été adoptés
comme indicateurs pour établir le mod¢le de résilience aux catastrophes des glissements de terrain. Basé sur les couches de données, le
modele complet de régression linéaire a été établi et utilisé pour les interprétations de résilience, avec des suggestions sur la mobilité
humaine du village et le budget de réhabilitation pour I’amélioration de la résilience. Cette étude peut aider a atténuer les catastrophes
par glissement de terrain, en particulier pour I’amélioration de la résilience des glissements de terrain dans les villages des zones
montagneuses.
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the six villages (see Figure 1). Data of the landslide causative
factors and the resilience control factors before and after rainfall
events in study area were collected, then the landslide
susceptibility values were calculated and the landslide disaster
resilience models were established.

1 INTRODUCTION.

Following the Hyogo Framework for Action, initiated on the
2005 World Conference on Disaster Reduction (WCDR), Sendai
Framework for Disaster Risk Reduction (SFDRR) was presented
in 2015, in which the disaster resilience was more clearly defined
to improve the capabililty of recovering from a disaster, by the

2.1 Landslide Susceptibility Analysis

countermeasures in the aspects of social, economy, policy, etc.
The most popular definition of resilience could be "the capability
of an ecosystem enduring external disturbance and returning to
the state before the disturbance". But it is still scarce for the
research on the quantitative disaster resilience, including the
geohazard-related reslilience. In view of the rainfall induced
landslide hazards in Taiwan, quantifying and enhancing the
resilience are critical to protect the life, property, and
infrastructure in the landslide area. This study comprises two
major part, i.e., calculating the landslide susceptibility as a
hazard factor, and collecting data of the control factors, then
establishing the landslide resilience model of the research
area.First paragraph (no indentation).

2 METHODOLOGIES

The study area is located in the upstream of Wu River watershed
in Central Taiwan, with focuses on the mountain highway and
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This study adopted the Logistic Regression method of Lin
(2016), with the nine causative factors, i.e., elevation, slope,
slope, dip slope index, distance to fault, distance to road, distance
to river, greenness index, and 72 hour cumulative rainfall.
Among them, the hourly rainfall data during 2012~2017 was
further analyzed to find the largest 72-hour cumulative in a
quarterly basis for each rainfall station, such that we can explore
the spatial changing trend of rainfall in the study area.

Considering the villages as the analysis units, the Thiessen's
Polygon method was used to obtain the rainfall distribution, as
shown in Figure 2. By introducing the seasonal rainfall data to
the following Logistic Regression model of Lin (2016), as
described in Eq. (1), we can obtain the seasonal landslide
susceptibility values of each village.

In [P /(1-P)]=-0.577*F1+1.545% F2+0.077*F3-0.038* F4-
0.242%F5-0.1027F6-0.458%F7-3.564*F8+0.560*F9-0.406
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Figure 1. The location and geology of the study area study are in the
upstream of Wu River watershed in Central Taiwan.
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Figure 2. The Thiessen's Polygons to obtain the rainfall distribution
of the six villages in the study area

2.2 Landslide Disaster Resilience

Based on a review of the behavior of landslide hazard, nine
control factors were selected for assessing the landslide
resilience in the study, including population density, average
electricity consumption per household, elder ratio, shelter ratio,
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fire fighter ratio, medical manpower ratio, income tax, and
reconstruction budget.

This study further applied linear regression analysis based on
the resilience of landslide disasters defined by Eq. (2) and Eq.
(3). Karen (2011) quantified the resilience of landslide disasters
with time dependence, using Eq. (2) to define the incremental
resilience r(t), as the cost per unit time C(t) multiplying unit time
Inc(t) and dividing by total time (NI). In Eq. (3), by integrating
r(t) according to time, the resilience Re can be obtained.

) = <" @
Re(t,) = /j; r(t)de ©)

3 LINEAR REGRESSION ANALYSIS

In order to more properly establish the landslide resilience
model, this study tried to use different control factors and divided
the data into high season and low season for linear regression
analysis. Before further establishment of resilience model, the
correlation of those control factors for the major resilience
indicators were anaylzed.

3.1 Population Density

The linear regression analysis was carried out for the high season
and low season of different time periods, namely 2012-2016,
2016-2017, 2012-2017, 2012-2015, and 2015-2017. The
independent control factors include landslide susceptibility
(RI1), elder ratio (RI2), shelter ratio (RI3), fire fighter ratio
(RI4), medical manpower ratio (RI5), income tax (RI6), and
rehabilitation budget (RI17).

The difference between low season and high season is that the
impact of landslide susceptibility on population density is
reduced, that is, it shows that the impact of landslides on the
study area is relatively lower during the period when the
population density is lower. The results suggest that, whether in
high season or low season, the best model for forecasting is the
2012-2015 period, as they can properly to predict the population
density in 2016-2017. Therefore, the population density could be
considered as a dependent factor to assess the recovering from a
landslide disaster.

Y=-0.731*RI1-0.594*RI2+0.434*RI3-.260*RI4+0.820*RI5-
0.543*RI16-0.124*RI7+1.879 4)

3.2 Electricity Consumption

Similarly, the linear regression analysis for the resilience
indicator, i.e., electricity consumption, was carried out for the
high season and low season of different time periods. Comparing
the R? coefficients of five models of electricity consumption, i.e.,
0.597-0.436, it shows the regression is barely acceptable. The
weightings of the control factors on the electricity consumption
for the 2016-2017 model (as shown in Eq.(5) can be ranked as:
landslide susceptibility, medical manpower ratio, shelter ratio,
reconstruction budget, income tax, elder ratio, and fire fighter
ratio.

Y=-0.199*RI1-0.617*RI2+0.419*RI3-1.310*RI4+0.820*RI5
-0.505*RI6-0.138*RI7+1.486 5)

Based on the highest R? value, it suggested the best mode for
both high season and low season is the 2012-2015 model. This
model was applied to predict the population density of 2016-



2017 with error between 1~53 %, best for Xinshen village and
worst for Nanfeng village. For the low season, the error is
between 0~66%, 0% for Faxiang village and 66% for Nanfeng
village. The results suggest there are variation of error temporally
and spatially.

Table 1. The prediction errors of regression models for different
seasons in 2016-2017.

% of Error

Year  Season Xinsheng Lixing Faxiang Nanfeng Cuihua

2% 3% 10% 45% 8%
6% 5% 9% 46% 7%
6% 5% 12% 44% 17%
4% 6% 18% 53% 12%
Ave 5% 5% 12% 47% 11%

2016

AN~

1 6% 19% 8% 8% 28%

2 2% 19% 1% 24% 19%

2017 3 3% 27% 8% 10% 23%
4 1% 26% 2% 13% 27%

Ave 3% 23% 5% 14% 24%

4 LANSLIDE RESILIENCE ANALYSIS

This study applied the model of Karen(2011) to study the
resilience of landslide disasters, to explore the differences in
reconstruction budget in different time scales.

4.1 Model Based on Reconstruction Budget

In order to compare the performance of the reconstruction budget
on the resilience, the linear regression analysis was carried out
by letting reconstruction budget as the dependent variable. The
cases of analyses were numbered as shown in Table 2. Case A is
for the reconstruction budgets in 2008-2011 and 2012-2016;
Case B is for the reconstruction budgets in 2012-2015 and 2016-
2017; Case C is based on the reconstruction budget as dependent
variable for linear regression, for the periods of 2012-2015 and
2016-2017, and matching with Eqgs. (2) and (3).

The linear regression analysis model with R? of 0.623 was
used to estimate the 2012-2017 reconstruction budget (see Figure
3); then introduce the data into the formula of Karen (2011) to
obtain the resilience, as shown in Figures 4~6. The results show
that the resilience of Lihang, Datong, Nanfeng and Cuihua
villages changed from negative to positive in the post-2015
period, while that of the remaining two villages (Xinshen and
Faxiang) was positive and increasing. In terms of the concept of
disaster resilience, the lower the cost of rehabilitation, the higher
the resilience, indicating that its villages do not need too much
money to deal with natural disasters. However, it is suggested to
have more evidence to support the findings of this study.

Table 2. Different group settings for the resilience analyses.

Case Groups of data
A 2008-2011 2012-2016
B/C 2012-2015 2016-2017
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Figure 3. The 2008-2018 reconstruction budgets for the villages in the
study area.
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Figure 4. The resilience values of the six villages in the study area, for
Case A with the reconstruction budget model.
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Figure 5. The resilience values of the six villages in the study area, for
Case B with the reconstruction budget model.
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Figure 6. The resilience values of the six villages in the study area, for
Case C with the reconstruction budget model.



4.2 Model Based on Population Density

For the population density model, the applied data was obtained
by the best regression formula, with the largest R? value. The
seasonal data 0f 2012-2017 was used as C(t). In order to compare
the temporal behavior of polulation density of each village, two
periods of time, i.e., 2012-2015 and 2016-2017, were considered.
The unit time of an increment Inc(t) is one season, and the total
time (seasons) NI(t) is 16 seasons in 2012-2015 and 8 seasons in
2016-2017.

The results in Figure 7 indicate Nanfeng village is obviously
different from the other villages. It could be due to the high
regression error of 54% , that also reflects an abnormal behavior
of population density. Unlike the other villages, there is no
significant variation of population density in Xinsheng and
Faxiang villages. Similar to electricity consumption, the
population density is an indicator of economic activity. The
larger of those two indicators, the larger disaster resilience.
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Figure 7. The resilience values of the six villages in the study ar
ea, for Case B with the population density model.

4.3  Model Based on Electricity Consumption

Similarly, the regression formula with the highest R? value is also
used to calculate the average electricity consumption per
household for each season of 2012-2017 as C (t). The unit time
of an increment Inc(t) is one season, and the total time (seasons)
NI(t) is 16 seasons in 2012-2015 and 8 seasons in 2016-2017.
According to the results of the regression analysis, although the
R2 value is acceptable, but the average error in the performance
of the forecast results is up to 68% (Faxiang Village). However,
Cuihua village possesses the largest increases in population
density and electricity consumption, also has the highest disaster
resilience out of the six villages.

Two different interpretations are summarized according to
different indicators of disaster resilience. First of all, the
reconstruction budgets are as the cost of post-disaster repair, the
more budget invested the more time the region needs to return to
a stable state. Therefore, as a wayward evaluation value the
greater the disaster resilience is lower. Based on the results of
Cuihua Village, the population density and electricity
consumption are the highest compared with other villages, and
the comparison with the calculation results of the village's
reconstruction budget shows that the reconstruction budgets of
the village in 2008-2018 were relatively large compared with
other villages. In order to compare the performance of the
reconstruction budget.

5 CONCLUSIONS AND DISCUSSIONS

This study adopted the upstream of Wu River as the research
area, and chose the control factors by to establish the resilience
model by linear regression method. In order to incorporate the
concept of disaster resilience, population density, electricity
consumption, and reconstruction budget were used as the
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indicators of resiliece. And the following conclusions are drawn
from the analysis results:
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Figure 8. The resilience values of the villages in the study area, for Case
B with the electricity consumption model.

For the landslide susceptibility, this study adopted the
Logistic Regression model of Lin (2016) to produce landslide
susceptibility values. The 99% percentile susceptibility value of
the grid unit was conservatively considered as the landslide
susceptibility of the village. In the establishment of landslide
disaster resilience assessment indicators, covering the hazard,
preservation, response and reconstruction indicators. The
following four groups of control factors were adopted for the
resilience analysis, i.e., (i) landslide susceptibility, (ii) population
density and electricity consumption, (iii) elder ratio, shelter ratio,
fire fighter ratio, and medical manpower ratio, (iv) income tax
and reconstruction budget.

Based on the analysis results using the resilience model of
Karen (2011), with considering reconstruction budget,
population density, and electricity consumption as resilience
indicators, it suggests the smaller the value calculated by the
reconstruction budget represents higher resilience. On the other
hand, for population density and electricity consumption, the
smaller the calculated value the smaller the resilience.

Through the analysis of population density as a dependent
variable, it is possible to find the time at which the villages return
to the pre-event stable state. However, for the quantitative
analyses, the number of samples is crucial to obtain promising
results. It is suggested to optimize and simplify the resilience
model of the most important indicator factor. Such that the error
of the model can be reduced and the efficiency of the evaluation
can be increased.
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