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ABSTRACT: This paper presents the non-stochastic regression modeling and its performance evaluation for predicting the hydraulic 
conductivity of sandy soils using a wide range of related index properties. The procedure was proposed with data preprocessing, 
modeling of regression algorithms, and optimization of models, and uncertainty estimation. The empirical data-dependent trends of 
the hydraulic conductivity with pore structure characteristics are derived by explicit model parameters. To recognize the prevailing 
relations between the hydraulic conductivity and multivariate influential index properties, the regression modeling in machine 
learning suggest the best combination of index properties and uncertainties depends on the prediction model performance. This study 
includes compilation of regression model and its tuning methods for the optimization of parametric representation. The prediction 
results highlight the best-fitting model and parameter combination having the lowest residuals.

RÉSUMÉ : Cet article présente la modélisation de la régression non stochastique et son évaluation de la performance pour prédire la 
conductivité hydraulique des sols sableux en utilisant un large éventail de propriétés d'indice connexes. La procédure a été proposée avec 
le prétraitement des données, la modélisation des algorithmes de régression, l'optimisation des modèles et l'estimation de l'incertitude. 
Les tendances dépendantes des données empiriques de la conductivité hydraulique avec les caractéristiques de la structure des pores sont 
dérivées par des paramètres de modèle explicites. Pour reconnaître les relations dominantes entre la conductivité hydraulique et les 
propriétés d'indice d'influence multivariée, la modélisation de régression en apprentissage automatique suggère que la meilleure 
combinaison de propriétés d'indice et d'incertitudes dépend des performances du modèle de prédiction. Cette étude comprend la 
compilation du modèle de régression et ses méthodes de réglage pour l'optimisation de la représentation paramétrique. Les résultats de 
la prédiction mettent en évidence le modèle le mieux adapté et la combinaison de paramètres ayant les résidus les plus bas.
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1  INTRODUCTION. 

Many complexities and uncertainties in geotechnical engineering 
related to the uncertainty of coherent soil composition, errors in 
in-situ and laboratory testing, and characterization of the index 
properties of geomaterials. The treatment of such problems have 
been simplified by the classical/conventional models of 
engineering modeling approaches. For the precise site 
characterization and management as well as geotechnical reliable 
design using large scale database, the accurate and multivariate 
regression models are essential. Especially, the generic modeling 
based on the artificial intelligence (AI) for predicting the 
engineering properties such as hydraulic conductivity (k) is 
appropriate when known the principal basic properties (e.g., void 
ratio, specific surface) and mathematical models. In this analysis, 
learning models were evaluated to predict the hydraulic 
conductivity and to provide a reliable regression models and 
principal features about index properties. 

The hydraulic conductivity of a sediment, which is difficult to 
measure, is recognized to be associated with its pores structure 
(i.e., particle size distribution). The classical hydraulic 
conductivity (k) measurement equation of particle size data from 
Hazen (1911), in which the k was presented proportional to the 
squared grain size at 10% passing, it may be written as:𝑘𝑘 = 𝐶𝐶𝐻𝐻(𝑔𝑔 𝜇𝜇⁄ )𝑑𝑑102
(1)

where 𝑔𝑔 is the gravitational acceleration; 𝑑𝑑10 denote the grain
size at 10% passing; 𝐶𝐶𝐻𝐻 is a coefficient about 6.54 × 10−4
(Harleman et al., 1963). The Kozeny-Carman’s equation 
considers the sediment pore network as a bundle of tubes and 
assumes the laminar fluid flow of poiseuille in the tubes (Ren and 
Santamarina, 2018), and are as follows:𝑘𝑘 = 𝐶𝐶𝐹𝐹(1 𝑆𝑆𝑆𝑆2⁄ )(𝛾𝛾𝑤𝑤 𝜇𝜇𝜌𝜌𝑚𝑚2⁄ )(𝑒𝑒3 1 + 𝑒𝑒⁄ )
(2)

where C𝐹𝐹 is a dimensionless shape constant, with a value aboutC𝐹𝐹 ≈ 0.2 (Taylor, 1948); γ𝑤𝑤 is unit weight of fluid (N/m3);ρ𝑚𝑚 (kg/m3) is particle density of soil; μ (N∙s/m2) is fluid
kinematic viscosity.

With the increasing availability of hydraulic conductivity 
database in respect to various soil index properties, which can be 
acquired effectively and proximally and open source algorithms 
freely available, machine learning techniques for soil analysis 
have been used quickly (Padarian et al., 2020). There are 
challenges applying the AI to the soil characterization: 1) 
sensitivity of the learning models; 2) input parameters for 
prediction; 3) lack of empirical case studies; 4) uncertainty of 
standard validation methods; 5) handling of missing data; 6) 
small size data for model training (Sharma et al., 2021). To solve 
this problem, several researches have tried to predict hydraulic 
conductivity using AI models such as artificial neural networks 
(Arshad et al., 2013; Tayfur et al., 2014; Sedaghat et al., 2016), 
fuzzy neural network (Arshad et al., 2013) and support vector 
machine (SVM) technique (Lamorski et al., 2008; Das et al., 
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2012). Thus, measuring the hydraulic conductivity regarding 
with pore structures characteristics, the construction and 
refinement of the large scale database archived from verified data 
source and the robust optimization approach of machine learning 
algorithms should be considered.  

In this study, the various regression models were trained to 
optimize the best-fitting model for predicting sandy soil’s 
hydraulic conductivity using the relations with multivariate 
index/basic soil properties (Figure 1). Firstly, the hydraulic 
conductivity database was refined considering the major trends 
of relations of the hydraulic conductivity versus index properties. 
Second, the preprocessing procedures were performed because 
the original data from source have inconsistencies and errors, 
prior to regression modeling. In this phase, the index properties 
are composed of the combinations of principal components. 
Third, the best-fitting regression algorithms were modeled based 
on the K-fold cross-validation. For exploring the dataset, K-Fold 
cross validation was used as testing methodology. K-fold cross 
validation avoids overlapping by splitting data into K subsets and 
makes K iterations. For each iteration, a different subset was 
chosen for testing and the remainder for training. We picked 
K=10 because this value is considered appropriate to obtain an 
accurate estimation. There are uncertainty in prediction accuracy 
based on the trained model on certain data, due to the biased input 
relations of hydraulic conductivity with index properties. Finally, 
the uncertainties with regard to other relations from test datasets 
were evaluated. The classical model of k with index properties 
are also applied for comparing with the proposed fitting models. 
 

 

Figure 1. Conceptual procedure of machine learning for predicting k with 
index properties. 

2  HYDRAULIC CONDUCTIVITY DATABASE OF SOIL 
INDEX PROPERTIES 

The hydraulic conductivity (k) database containing index 
properties of sandy soil was used from Ren and Santamarina 
(2018)’s hydraulic conductivity database, which including 
natural and remolded sediments (gravels, sands, silts, and clays). 
There are 6,952 relations (data points) between k and index 
properties for 92 soils. In particular, the major components in the 
database were void ratio (2,879 points), specific surface (2,080), 
and percentage by weight passing the #200 sieve (1,360 points). 
In this study, for predicting k, there are six index properties: 
percentage by weight passing the #200 sieve (P#200); particle 
size distribution (D10, D50, D60); specific surface (SS); void ratio 
(e). Even though there are many relations, data are not evenly 
distributed with properties. Thus, target dataset having the 
similarity (cluster) of sand’s relations were selected (Figure 2). 

The hydraulic conductivity generally increases with 
increasing void ratio for silt, sand, and gravel. Although a plot of 
k versus 𝑒𝑒3 (1 + 𝑒𝑒)⁄  must be a straight line that pass through 
the origin at the Kozeny-Carman relation (Equation 1), 
experimental studies in sandy soils do not always support such a 
linear association. There are two explicit groups corresponding 
to the range and increasing ratio of k with 𝑒𝑒3 (1 + 𝑒𝑒)⁄ . The R2 
of the linear relations using all data points is 0.6. The train-test 
split was conducted for evaluating the performance of a machine 
learning algorithm considering cluster in data points of k versus 

𝑒𝑒3 (1 + 𝑒𝑒)⁄ . The major group (266 points) within ±1.5 standard 
deviation (σ) of the linear relation and larger k was defined as 
train and validation datasets. The secondary group having lower 
k relations was defined as test dataset. The R2 of the linear 
relations increased to 0.9, only using train and validation datasets 
by excluding the test datasets (Figure 2). The counts of train and 
validation datasets (data sources: seven references), and test 
datasets are 266 and 75. The test datasets have the higher specific 
surface and void ratio than train data’s index properties, despite 
having a higher k. 

 

 

Figure 2. k and 𝑒𝑒3 (1 + 𝑒𝑒)⁄  correlations (266 points) excluded the 
points far away from the central trend by 7 reference. 

3  MODELING OF MACHNIE LEARNING REGRESSION 

3.1  Data preprocessing of the hydraulic conductivity 
database 

The selected index properties excluded the out-trending datasets 
have still atypical (i.e., null data, not labelled data, etc.) for 
directly applying the machine learning algorithms. Even though 
there are major relations between k and e, the multivariate 
correlations with other index properties influence the prediction 
accuracy of the trained models. The data preprocessing method 
is the first step to begin the process when it comes to building a 
machine learning model. The data preprocessing is also a method 
used for the conversions of raw data into a clean datasets. If the 
datasets is obtained from multiple sources, it is collected in a raw 
format that cannot be analyzed. In machine learning, this 
procedures are an integral step as the consistency of data and the 
geotechnical expert knowledge obtained directly affects the 
capacity of our algorithm to learn. Thus, before we input it in our 
model, it is highly necessary that we preprocess our data. In 
machine learning, there are five essential stages in data 
preprocessing: 1) handling null (missing) values; 2) scaling; 3) 
one-hot encoding; 4) feature selection; 5) splitting the dataset 
into training dataset and test dataset (Garcia et al., 2015).  

There are always few null values in any real-world dataset. If 
it is a regression and classification, it doesn't matter whether any 
model can manage these values on its own so we have to 
interfere. There are many missing data treatments including the 
deletion methods (likewise deletion and pairwise deletion), and 
imputation methods (mean imputation, hot-deck imputation, 
cold-deck imputation, regression imputation, etc.) (Osman et al., 
2018). In this study, deletion methods, particularly likewise 
deletion, which is commonly used to handle the missing values 
as default approaches then results in many datasets being 
discarded in cases and bias (Raymond, 1986), applied in this 
modeling.  

The feature scaling is a technique of data preprocessing for 
normalizing datasets. This is useful for optimization algorithms 
used as gradient descent, algorithms that use distance 
measurements (i.e., K-nearest neighbors), and regression and 
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neural networks algorithms. There are two techniques of scaling: 
standardization, normalization. Standardization, or whitening of 
a sample requires rescaling the value distribution to 0 and 
standard deviation to 1. Normalization consists of a rescaling of 
the initial datasets such that all values are [0,1] or [-1,1], denoted 
as min-max scaling. As seen following equation (Angelov and 
Gu, 2019), the target of scaling are usually used for intervals of 
[0,1] and [-1,1]. 

Normalization: [0,1] 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖: 𝑋𝑋′ = (𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛) (X𝑚𝑚𝑚𝑚𝑚𝑚 − X𝑚𝑚𝑖𝑖𝑛𝑛)⁄       
(3) [−1,1] 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖: 𝑋𝑋′ =[𝑋𝑋 − (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)/2] [(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)/2]⁄       
(4) 

Standardization: 𝑋𝑋′ = (𝑋𝑋 − 𝜇𝜇) 𝜎𝜎⁄        
(5) 
Here, Xmax and Xmin are the maximum and the minimum values 
of the feature respectively. μ is the mean of the feature values and 
σ is the standard deviation of the feature values. Scaling 
transforms the characteristic value according to the Equations 3-
5, which allows the same amount of control to be exercised by 
all scaled characteristics (Angelis and Stamelos, 2000) and thus 
immune to unit choice (Kosti et al., 2012). For any feature, the 
majority of algorithms use index encode, whereby the index code 
has a particular identifier for every feature string (Mishra et al., 
2019). 

The purpose of the collection of functions is to select the best 
subset of features for building models that have significant 
impact onto the predicting performance. High-dimensional 
databases nevertheless have irrelevant, noisy and redundant 
characteristics. The aim of reducing dimensionality is to reach 
optimized features faster, since the bigger the data size the slower 
the function optimization (Xue et al., 2016). The strategies for 
choosing principal features in the following categories can be 
categorized widely: filter methods, wrapper methods, embedded 
methods, hybrid methods (Ferreira and Figueiredo, 2012). 
Among these, the filter methods used to take the intrinsic 
characteristics of the characteristics calculated through 
univariate statistics rather than cross-validation. In the refined 
database of soil index properties, there are ln(k) value as label 
attribute and other original features: e, SS, D10, D50, D60, P#200. 
To evaluate the predicting performance depending on the feature 
combinations using the filter methods, the seven combinations 
having low to high dimensionality were defined (Table 1). 

 
Table 1. Input combination and experimental results obtained while 
comparing the combinations of input attributes. 

Combination Input attributes Number of 
data 

Number of 
average 

epochs 

Average 
runtime 

(min) 

C#1 e 341 21 1 

C#2 e, SS 266 453 2 

C#3 D10, D50, D60 23 562 3 

C#4 e, D10, D50, D60 266 432 8 

C#5 SS, D10, D50, D60 36 124 4 

C#6 e, SS, D10, D50, 

D60 

266 456 2 

C#7 e, SS, D10, D50, 
D60, P#200, 𝑒𝑒3 (1 + 𝑒𝑒)⁄  

266 231 9 

 

Each dataset must be divided into two distinct sets for the 
machine learning model composed of the training sets and testing 
sets. Since there are various number (23~341) of datasets with 
combinations (Table 1), the resample procedure such as K-fold 
cross-validation is necessary to build the best-fitting model on a 
limited data sample, excluded the performance effected by the 
constant dataset split. K-fold cross-validation eliminates the 

overlap of data division into K-folds and generates of K. Firstly, 
the datasets are shuffled randomly. If a certain value for K is 
determined, it can be used instead of K in the model relations so 
that K=10 is 10 times cross-validation. Each K-folds were 
permitted to be used as an end-of-the-line test datasets, and all 
other folds are used as a training datasets together. 

3.2  Modeling regression algorithms 

In this study, regression algorithms for predicting k value are 
compared with methods based on cost functions. In respect of the 
artificial intelligence, we designed the representative six 
regression algorithms: linear regression (LR), K-nearest 
neighbors (KNN), decision tree (DT), random forest (RF), 
support vector regression (SVR), multilayer perceptron (MLP).  

The LR model is composed of the variable predictor and a 
variable dependent on each other linearly. We used the linear 
stepwise regression algorithms (Tibshirni et al., 2013), assuming 
that the linear relations between the ln(k) and combined feature 
groups (Table 1). Stepwise regression is a way to pick principal 
variables to obtain an interpretable model. In this algorithms, for 
each possible predictor, the one with the highest modified R2 is 
the starting point from the null model for a univariate linear 
regression model. Linear regression results in multiple linear 
regressions with less-squares, including selection of a 
combination, either by greedily reversing or by constructing a 
complete model from all the attributes and decreasing one-by-
one terms from their uniform coefficient before an interruption 
criterion has been met. For LR with one combination (or feature), 
the object function is as follows: E(𝑦𝑦|𝑥𝑥) = 𝑚𝑚 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯ + 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑒𝑒      
(6) Min ∑ (𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)2𝑛𝑛𝑖𝑖=1         
(7) 
where 𝑦𝑦𝑖𝑖 denote the target labeled data, 𝑤𝑤𝑖𝑖 is the coefficient, 𝑥𝑥𝑖𝑖 is the combination (feature), and e is the observed error. Least 
squares are based on the LR. Based on LR model, the equations 
can be derived to predict ln(k) for C#7 as follows: ln(𝑘𝑘) = −2.705𝑃𝑃#200 − 2.4355𝑆𝑆𝑆𝑆 +7.70794 𝑒𝑒3 (1 + 𝑒𝑒) − 6.8585⁄         
(8) 

For the KNN method, the expected values are obtained as 
weighted averages from the values of adjacent measurements for 
interesting variables. One key drawback of this method is the 
need to choose a similarity metric sometimes ad hoc, in particular 
for heterogeneous datasets from which the extracted features are 
of various kinds and sizes and interrelated (Yao and Ruzzo, 
2006). The vicinity of a given point in a high dimensional space 
becomes very sparse and induces a high variety. KNN algorithms 
are classified as two types: KNN classification and KNN 
regression. KNN regression is non-parametric approach which 
approximates in an intuitive way, integrating the observations in 
the same neighborhood, the relations between independent 
variables and continuous effects. KNN regression employs the 
distance functions (i.e., Euclidean distance, Manhattan distance, 
Minkowski distance, etc.) and an important method with less 
concern compared with KNN classification. In this study, 
Euclidean distance, only valid for continuous variables, was used 
as following: d(𝑥𝑥, 𝑦𝑦) = √∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑚𝑚𝑖𝑖=1         
(9) 

DT are a supervised non-parametric method for classification 
and regression learning. Classification and regression tree 
(CART) analysis, a type of decision tree method, is perfect for 
generating rules on engineering decision making, due to 
comparatively slowly accepted unlike other regression models 
(Lewis, 2000). CART are the if-then (split) specifications which 
allow for case prediction or classification (Razi and Athappilly, 
2005). CART does not establish a probability equation, unlike 
logistic and linear regression. Datasets are instead partitioned in 
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sub-sets of homogeneous values of the dependent variable along 
the predictor axes and a method represented by a decision tree to 
forecast new observations (Krzywinski and Altman, 2017). 
CART is a binary recursive partitioning method that only two 
groups can be separated into each combination of index 
properties, represented in a decision tree by a node. CART can 
accommodate numeric or multi-modal information with an 
ordinary or non-ordinary structure, as well as categorical 
predictors.  

RF is a bagging algorithm for supervised learning using a 
classification and regression ensemble learning system. In RF, 
each node is divided into a subset of randomly selected predictors 
using the best one. The method is a meta-estimator which 
combines various decision trees to require equal use of all 
possible predictive combination. The tree predictor assumes 
numerical values in contrast to RF classifier (Breiman, 1999). 
There are several methods to variable induction selection in the 
literature and the majority of approaches explicitly allocate a 
quality measure to the variable (Singh et al., 2017). Information 
gain ratio criterion (Quinlan, 1992) and Gini Index (Breiman et 
al., 1984) are the most widely used component selection tests. 
The Gini Index makes it possible to introduce larger 
distributions, while the information gain prefers smaller 
distributions with many unique values. In this study, the split 
criteria for regression tree is based on selecting the input variable 
with the smallest Gini Index: 𝐼𝐼𝐺𝐺 = 1 − ∑ (𝑃𝑃𝑖𝑖)2𝑛𝑛𝑖𝑖=1        
(10) 
where 𝑃𝑃𝑖𝑖 is the likelihood of an element for a distinct class.  

SVR, as a type of support vector machine (SVM), is linear or 
nonlinear regression method and denoted as support vector 
machine regression. SVM solves problems with binary 
classification by formulating them as problems with convex 
optimization (Vapnik, 1998; Dibike et al., 2001; Liong and 
Sivapragasam, 2002).). SVR approach uses linear quadratic 
programming techniques to deal with data in high dimension 
space (Lin et al., 2005). We strived to decrease the error rate in a 
LR. We try to fit the error within certain threshold during SVR. 
The former condition produces the objective function in 
equation, in which ‖𝑤𝑤‖ is approximated by the magnitude of 
the normal vector to the surface: Min 1 2⁄ ‖𝑤𝑤‖2        
(11) 

MLP is a static neural structure made up of layers that 
transmits and exchanges information by means of synaptic 
connections represented by weight adaptation. MLP is 
commonly used as an approximation method for regression 
functions. In MLP, a transfer function is used to transfer the 
weighted sum of inputs and bias terms to the activation level and 
the units are organized in a layered feed-forward topology 
(Venkatesan and Anitha 2006; Hornik, Stinchcombe, & White, 
1989). A feed-forward neural network is an artificial neural 
network that doesn’t form a cycle at a time. And each perceptron 
in a single layer is fully connected with all nodes. MLP modeling 
is typically composed of input, hidden, and output layers. In this 
study, the input layers for each combination (Table 1) are 
connected two hidden layers. The input values are weighted and 
generated in accordance with the activation function from the 
above layer (Jodouin, 1994).  

As the activation function for the first and second hidden 
layers, rectified linear units (ReLu) and softmax are used, 
respectively. If the input is smaller than 0, and the raw output is 
different for ReLU, it has output 0 (Equation 12). ReLU has the 
advantage of being non-linear and has no backpropagation 
mistake as opposed to the sigmoid function (Li and Yuan, 2017). 
It does not just map output into a [0.1] range but also maps each 
output to the extent that the total value is 1. In the logistic 
regression model, softmax is used for multi-classification while 
sigmoid is used for binary classification in the logistic regression 

model, with one for softmax the number of probabilities. 
Softmax in which z is mathematically the input vector for the 
output layer and j indicates the output units (Equation 13). 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥, 0)        
(12) 𝜎𝜎(𝑧𝑧)𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖 ∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾𝑗𝑗=1⁄  for 𝑗𝑗 = 1, ⋯ , 𝐾𝐾      
(13) 
where all 𝑧𝑧𝑖𝑖  values are input vector elements, and where any 
real value can be taken. 

4  OPTIMIZATION OF REGRESSION ALGORITMS 

4.1  Verification of the best-fitting model and combination 

Using the six modelled regression algorithms, the seven input 
combinations were trained and verified with K-fold cross-
validation, simultaneously. The averaged residuals between 
predicted and actual k value (Figure 3) were calculated for each 
cross-validation. The validation data for the model is then 
considered to be a single sub-sample and the remaining K-1 
samplings are used as training data. Figure 3 presented the best-
fitting model (blue dot) having the averaged lowest residuals for 
each combination after 10-fold cross-validation.  

The prediction of k using C#1 shows generally the three or 
four linear clusters, which stationary estimations with 
measurements. Among the models, DT is the best-fitting model 
only considering e and k correlations. The relationship between 
k and e is reviewed and validated from classic geomechanics (i.e. 
Kozeny-Carman equation) for sandy soils. Using these 
regression algorithms, the high deviations of e influenced low 
prediction performance in comparison with other combinations, 
despite the 341 correlations.  

On the contrary, the residuals in fitted k with C#2 are 
relatively low and show particularly denser cluster in application 
of MLP model. As Carman (1939) notes, “It is shown that the 
permeability of a water-saturated sand or fine powder can be 
calculated with considerable accuracy, if the porosity and the 
specific surface are known”. Thus, the nonlinear correlation 
between k and combination of e and 𝑆𝑆𝑆𝑆  provides better 
prediction performance using MLP model with much epoch 
(453). 

When training with only grain size analysis results (D10, D50, 
D60), C#3, LR is the best-fitting model, even so sparser cluster. 
Since the number of combination is smallest (23), the regression 
with K-fold cross-validation shows low performance. In addition 
to the grain size, the k value is more influenced by other 
parameters, such as degree of compaction, porosity and shape of 
the grains (Uma et al., 1989). The C#4 shows similar pattern with 
C#2 application. DT is best-fitting model. The e value, having 
more correlations than grain size, influenced more impact to 
regression model. The prediction of k using C#5, S𝑆𝑆 only added 
to C#3, shows higher accuracy than the application C#3. 
Likewise, the S𝑆𝑆  value influenced more impact to regression 
model. In this combination, MLP was determined as the best-
fitting model. 

The residuals in fitted k with e, SS, D10, D50, D60 (C#6) are 
relatively low and similar with the application of C#2 and C#4. 
That is, e is the principal component for predicting k. 
Accordingly, the weighting of 𝑒𝑒3 (1 + 𝑒𝑒)⁄ , parameter in 
Kozeny-Carman relation proposed by Kozeny (Kozeny, 1927) 
and improved by Carman (Carman, 1937), was evaluated in C#6. 
As a result, the prediction of k was most plugged in the actual 
value based on the MLP model. To evaluate the performance of 
the model, the root mean squared error (RMSE) have been used 
(Figure 4). For determination of the best-fitting model, MLP and 
LR are show the best performance in terms of RMSE index. In 
addition, C#6 (e, SS, D10, D50, D60) and C#7 (e, SS, D10, D50, D60, 
P#200, 𝑒𝑒3 (1 + 𝑒𝑒)⁄ ) show the best performance, which indicates 
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that global porosity and grain size distribution are required to be 
considered together for input information. 

Moreover, the conventional correlations by references (Ren 
and Santamarina, 2018; Kozeny-Carman equation) are 
calculated. And the RMSE are also compared with the fitted 
regression models. As a results, the most of regression model’s 
RMSEs are lower than Kozeny-Carman’s RMSE, except the 
KNN method. The models having lower RMSE than in case of 
Ren and Santamarina (2018) were LR, SVR, and MLP, applying 
for C#1, C#2, C3, C#6, and C#7. Thus, these fitted models (LR, 
SVR, and MLP) were mostly verified as the better model than 
classical equations about i. 

 

 
Figure 3. K-fold validation results based on the best-fitting model and 
input attribute combinations. Comparison between measured and 
predicted k with: (a) C#1; (b) C#2; (c) C#3; (d) C#4; (e) C#5; (f) C#6; 
(g) C#7. The blue symbol indicate the best-fitting model having the 
highest accuracy. 

 

 

Figure 4. Prediction and validation results based on the best-fitting model 
and input attribute combination. Comparison of RMSE (ln(k)) according 
to seven combination. 

4.2  Performance evaluation with the randomized test data 

Using the six modelled regression algorithms, the seven input 
combinations were trained and verified with K-fold cross-
validation, simultaneously. The averaged residuals between 
predicted and actual k value (Figure 3) were calculated for each 
cross-validation. The validation data for the model is then 
considered to be a single sub-sample and the remaining K-1 
samplings are used as training data. Figure 3 presented the best-
fitting model (blue dot) having the averaged lowest residuals d 
for each combination after 10-fold cross-validation.  

The best regression model and combination of index 
properties for predicting k are determined in case of C#7 (e, SS, 
D10, D50, D60, P#200, 𝑒𝑒3 (1 + 𝑒𝑒)⁄ ), after the likewise deletion 
method, using MLP based best-fitting model. In this study, to 
validate the best fitted model for the test datasets, which are out 
of the central trend of train and validation datasets (Figure 2), the 
k were predicted for test datasets. To de-trend the separated 
correlations between k and index properties in test datasets the 
large deviation of index properties according to the reference, ten 
datasets for each combination are randomly selected. 

The best-fitting models for each combinations, having the 
lowest RMSE (Figure 4), are used for predicting k using ten test 
datasets. Since the test datasets have a relations of the relatively 
lower k when e is larger compared with train and validation 
datasets, the regression model for C#1 and C#2 predicted the 
lower k than measured value. The other regression results show 
the similar pattern with K-fold cross-validation for train datasets 
(Figure 3). The best model and combination of index properties 
in test datasets was MLP application for C#6 having the lowest 
average residuals.  

Likewise the verification of the trained regression model, 
three error indices (RMSE, MSE, MAE) for each best model and 
combination were compared (Table 2). The k value predicted by 
MLP in case of C#6 has the lowest average residuals. The MLP 
model generally play a principal regression algorithm for 
predicting k. And the classical models of k of geomaterial were 
also computed. Then, the performance of these models are 
compared with the best regression model and combination. As a 
results, the most of average residuals applying regression models 
are lower than the application of classical equation.  

 
Table 2. Metrics for ten test datasets applying the best-fitting model and 
the classical equation for determining k. 

Combination 
Best-fitting 
model 

RMSE MSE MAE 

C#1 Decision tree 0.34 0.12 0.23 

C#2 MLP 0.74 0.55 0.36 

C#3 
Linear 

regression 
0.28 0.08 0.26 

C#4 Random forest 0.35 0.12 0.19 

C#5 MLP 0.34 0.11 0.29 

C#6 MLP 0.12 0.01 0.10 

C#7 MLP 0.24 0.06 0.19 

Hazen (1930)’s equation 0.89 0.66 0.29 

Kozeny-Carman’s equation 0.77 0.59 0.28 

4951



 

 

5  CONCLUSIONS 

The hydraulic conductivity of sandy soils have been 
experimentally determined by stochastic functional computation 
of partial index properties. Multi-variables about pore structures 
are only used in archived resources and considered without the 
interactive weighting of the influential parameters. In this study, 
the data-driven methodology was proposed and applied for 
predicting the hydraulic conductivity of sandy soils using 
different references. The optimized models and related tuning 
procedures provides the relative reliable hydraulic conductivity 
in condition at various input combinations of index properties 
database. In specific, the investigation concludes with the 
following remarks: 
 The data preprocessing of index properties database was 

conducted for refinement of database, handling missing values, 
feature scaling, feature selection, splitting the dataset into 
training and test datasets. 

 The regression algorithms was modeled with linear regression, 
K-nearest neighbors, decision tree, random forest, support 
vector regression, multilayer perceptron. 

 The best-fitting model and combination of index properties 
was multilayer perceptron application for e, SS, D10, D50, D60 in 
training and test datasets, having the lowest average residuals. 
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