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Artificial neural network prediction of the water retention curve from physical soil
parameters: comparing continuous and pointwise approaches

Prédiction par un réseau de neurones artificiels de la courbe de rétention a partir des paramétres
physiques du sol : comparaison des approches continue et par points

Adel Abdallah
Université de Lorraine, CNRS, LEMTA, Nancy, France

ABSTRACT: The soil water retention curve (SWRC) is a key characteristic for solving unsaturated transient hydraulic and coupled
hydromechanical problems in geotechnical applications. Its determination in the laboratory is however still costly, time-consuming,
and uncertain. Several pedo-transfer functions able to predict the SWRC based on the soil physical properties were developed but
their applicability is generally restricted by the limited locally or regionally available soils data. With the recent developments, the
availability of large international databases and the bringing into the practice of machine and deep learning algorithms, allowed the
elaboration statistics-empowered predictive functions for the SWRC with improved performance. In this paper, two Artificial Neural
Networks are trained to predict the curve using data extracted from the UNSODA database (Leij et al. 1996). The original dataset
includes drying and wetting tests’ data covering over 790 different soils from all over the world. The prediction of fitted van
Genuchten (1980) model’s parameters (continuous) is compared with a pointwise prediction network for which the soil suction is
added to the predictors. The results show a better performance of pointwise prediction when comparing the global metrics but an
advantage in the favor of the continuous prediction in terms of curve consistency.

RESUME : La courbe de rétention de I’humidité du sol (CRHS) est une caractéristique clé dans la résolution des problémes
géotechniques dans le domaine non saturé (hydrauliques ou hydromécaniques). Sa détermination est cependant encore couteuse, longue
et incertaine. Plusieurs fonctions de pédo-transfert afin de la prédire en se servant de paramétres physiques du sol mais leur applicabilité
est restreinte par la représentativité locale ou régionale des données ayant servi a leur détermination. Récemment, la disponibilité de
larges bases de données et la mise en pratique des algorithmes d’apprentissage automatique et profond, ont permis de proposer des
fonctions prédictives plus performantes et basées sur les statistiques. Dans cette communication, deux réseaux de neurones artificiels ont
été entrainés pour prédire la CRHS en utilisant des données extraites de la base de données UNSODA (Leij et al. 1996) représentant plus
de 790 sols. La prédiction des paramétres du modele continu de van Genuchten (1980) est comparée avec une prédiction point par point
qui considére la succion comme un prédicteur additionnel. Les résultats montrent une meilleure performance de la prédiction point par

point pour les indicateurs globaux mais donnent un avantage a la prédiction continue en termes de consistance de la courbe prédite.
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1 INTRODUCTION

The soil water retention curve (SWRC) refers to the function
describing the evolution of the soil’s volumetric water content
(alternatively degree of saturation) vs. suction (or pore-water
potential). This function is of primary importance in various
geotechnical engineering problems involving unsaturated soils.
Its determination from laboratory or field hydraulic tests is
however still costly and often tricky requiring the combination of
different suction measurement or imposing techniques to cover
the entire suction range. The highly non-linear shape of this
function has led to the development of multi-parameter
mathematical models to complete the description of the SWRC
for the numerical modelling requirements. The high relative
errors associated with suction measurement/imposition, the
overlapping of techniques with varying accuracy, and the limited
number of experimental points, frequently complicate the
optimization process of the models’ parameters. An additional
complexity rises from the non-univocity of the SWRC depending
on the followed path (wetting or drying).

Many researchers (Rawls et al. 1982, Schaap et al. 2001,
Nemes et al. 2006, Baker 2008, Ghanbarian-Alavijeh & Millan
2010, etc.) had developed alternative mathematical relations to
predict either the SWRC models’ parameters, or pointwise
SWRC based on physical and geotechnical routine identification
tests as the soil bulk/dry densities, consistency limits for fine-
textured soils, and the parameters of the particle-size distribution
as clay/silt/sand percentages. These so-called Pedo-Transfer
Functions (PTFs) are formulated using various statistical
regression techniques, and more recently Artificial Neural
Networks (ANNs). They are convenient in practice, but their use
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is often limited by the soils range covered by the dataset on which
they were calibrated.

An Artificial Neural Network (ANN) is a computational
method based on the simplified functioning of biological neural
cells. The network is an assembly of an input layer, one or more
hidden layers, and an output layer of artificial neurons. Each
artificial cell, receives several input parameters, computes a
weighed linear combination (with weights and bias terms), and
generates an output using an activation function. The output is
transmitted as an input to the next neuron until reaching the
network output layer. The weights and bias terms of all cells are
gradually optimized by scanning the training dataset and using
the algorithm of back-propagation of error gradient, this step is
referred to as the training phase. ANNs have been shown to be a
very efficient technique for classification, clustering and
regression tasks in different engineering and science fields. They
are at the heart of Artificial Intelligence (Al) developments.

Recently, advances in using Al-based methods stimulated
their application to the SWRC prediction from routine
geotechnical identification parameters (essentially dry/bulk
density and grain-size fractions). Large datasets issued from
international databases have been used for training and testing
the developed models. The SWRC is predicted using statistics-
based regression algorithms with the selected most significant
predictors available in the training dataset. Pham et al. (2019)
thoroughly analysed ANN-based PTFs for SWRC prediction.
Indeed, they compared different network architectures and
various training algorithms and concluded that the Bayesian
Regulation method outperformed the Levenberg-Marquardt and
Conjugate Gradient Descent methods whatever the used
architecture. Bayesian Regulation is a probability-based



optimization algorithm offering the advantage of not requiring a
validation subset of data as do other training methods, but its
computational cost is slightly higher. Moreover, they compared
using the full available dataset and a processed dataset from
which outliers have been withdrawn. The ANNS trained using the
processed dataset showed enhanced performance compared to
the ANNSs trained on the full dataset. The authors concluded that
the data quality significantly influences the obtained results.
Typically, two different approaches have been notably used:
continuous and pointwise predictions.

The continuous approach assumes that the SWRC can be
described using a mathematical equation selected among the
various ones available in the literature, the van Genuchten (1980)
equation being the most popular function (designated here by
vG). The developed model is then designed to predict the
equation’s parameters using several selected input parameters.
The continuous approach’s main advantages are its suitability for
incorporation in available numerical simulation codes and
guarantee of curve shape consistency. Their drawbacks are (i) the
lack of flexibility to adapt to SWRC non-standard shapes (bi- or
multimodal) and to non-monotonous paths (including alternation
of drying and wetting steps) and (ii) the incorporation of
additional errors relative to model adequacy and to the
parameters’ fitting procedure.

The pointwise approach is on the contrary suited for adapting
to the effective soil behavior and is theoretically able to integrate
the hysteretic wetting-drying alternate paths. Nevertheless, when
it is based on machine learning methods which are subject to the
well-known issue of overfitting, a particular attention should be
put on checking their capacity to generalize to unseen data
patterns which lie out of the ranges covered by the training
dataset. In the pointwise approach, the suction is used as an
additional input to predict the corresponding volumetric water
content resulting in a SWRC point prediction. Pros and cons,
literature

This paper aims at comparing the performance of the two
approaches using a SWRC dataset extracted from the UNSODA
unsaturated soil hydraulic database (Leij ez al. 1996).

2 MATERIALS AND METHODS

UNSODA contains data from 790 different soils including point
records of the SWRC and hydraulic conductivity/diffusivity
along with basic identification parameters as grain-size
distribution data, particle density, porosity, saturated volumetric
water content, efc.) whenever available. Abdallah (2019) by
testing different machine learning algorithms concluded that the
quality of data corresponding to the wetting path in UNSODA is
neither quantitatively, nor qualitatively, sufficient for predicting
the SWRC. Only the data issued from laboratory water retention
drying tests are considered in this study. The data were mainly
obtained from pressure plate and tensiometer measurements.
These methods cover different ranges and have different
accuracies which leads to relatively high variance in the data. As
per soil classification, sands are over-represented in the database
(Leij et al. 1996).

2.1 Data preparation

Based on the correlation coefficients between the candidate
parameters and the target (volumetric water content), five
predictors were selected (Abdallah 2019): suction, porosity, and
clay/silt/sand fractions. The originally extracted dataset had to be
reorganized to make it convenient for the regression analysis. For
instance, redundant points, rows missing the main predictor
(suction), soils with more than 50% missing data were deleted.
The cleaned dataset resulted in 1551 records corresponding to
203 different soils. To avoid any effect of the variables’ different
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magnitude, the dataset was normalized by applying the minmax
scaling.

2.2 Network architecture and training

In this study, a standard ANN architecture in Matlab® was used.
It consists of a one 10-neuron hidden layer with hyperbolic
tangent (tanh) activation functions for all nodes. The network is
trained by the Bayesian Regulation algorithm (Mathworks 2020),
using a random partition of the data to 80% for training, 20% for
testing.

2.3 Pointwise SWRC prediction

To improve the dataset quality, soils with more than 50% records
containing missing parameters were deleted. The cleaned dataset
is composed of 1159 records corresponding to 144 different soils.
Figure 1 shows a simplified flowchart of the pointwise prediction
model.

2.4 Continuous SWRC prediction

For each soil in the dataset, the vG model (equation 1) parameters
«a and n, were fitted to the suction-volumetric water content data
using the Levenberg-Marquardt algorithm (Mathworks 2020).

n-—1

1 )T (1)

1+(a s)™

6=0,+(6; -6,

with s, being the suction while 6 and &, are the saturated and
residual volumetric water content values, respectively.

When missing, & was assumed equal to the porosity and 6 was
fixed to 0.1. Lower/upper bounds: 0.03 < @ <5 kPa!,and 1 <n
<5, were imposed to keep the physical meaning of the optimized
parameters based on literature (Carsel & Parrish 1988). Fittings
resulting in a coefficient of determination R? lower than 0.75
were rejected. This process ended up with 103 records of fitted
curves. Six predictors (porosity, clay/silt/sand fractions, &, and
&) and two targets (o and n) were selected for the regression.

Different configurations have been tested for the ANN
architecture and the best performance was obtained when two
connected networks were used. The first standard network was
used to predict n using the six predictors. The second standard
network used the six predictors plus the previously predicted n,
to predict a. Figure 2 shows the simplified flowchart of the
prediction vG continuous model.

3 RESULTS AND DISCUSSION

In this section, the overall regression performance of the two
models is evaluated on the entire dataset through the coefficient
of correlation (R) and the Root Mean Standard Errors (RMSE) as
metrics. Afterwards, the predicted SWRC on three selected
reference soils are compared and discussed.
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Figure 1. Flowchart of the ANN pointwise prediction model.
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Figure 2. Flowchart of the ANN vG continuous prediction model.

3.1 Pointwise SWRC prediction

The predicted @ is plotted against the target value on figure 3.
With a RMSE of 0.027, the performance of the pointwise
prediction model is globally satisfactory. It is worth noticing
however that the residual prediction error appears to be too high
for certain points (up to 0.14). Higher residual errors concentrate
around 0.35 target value which corresponds to the median 6
value in the dataset. It is well known that suction measurement
accuracy is lower for near-saturation states and this could explain
this observation.

05 & = L
8o
R?=0975
RMSE = 0.027 O ¢ 4
04 a
= oo
= (o]
E [x
23] &
B @
o Q
0.2 & G ©
n G0
C o
2 o
0 -
D
o
la)
0 = o L L L L i
[i} 0.1 0.2 03 0.4 a5
Target ¢

Figure 3. ANN point-wise predicted values of soil volumetric water
content vs. measured values in the UNSODA drying laboratory tests
cleaned dataset.

3.2 Continuous SWRC prediction

Figure 4 compares the predicted and target values of the vG
parameter 7. The overall performance of the model appears to be
poor with a RMSE of 0.326 as compared to the median value of
n in the dataset (1.38). This likely results from the combination
of the data error with additional errors relative to the vG model
adequacy and the fitting procedure.

Figure 5 shows the predicted and target values of the vG
parameter . The global performance of the model with a RMSE
of 0.458 is quite acceptable if one omits the data points with the
target value of 5 which is the upper bound imposed in the fitting
procedure. A major part of the error for these points can probably
be attributed to the fitting over the SWRC data series. The vG
model was likely inconvenient to correctly fit the data for the
corresponding soils.

3.3 Discussion

To further discuss the obtained results and comparatively
evaluate the two approaches’ performance, three reference soils
(Table 1) were selected in the dataset. These soils represent at
most to the maximum clay, silt, and sand contents, respectively.
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The position of these soils with respect to all the soils in the
cleaned dataset are shown on the ternary textural diagram
(Figure 6). Table 1 summarizes the main parameters of the
reference soils. Given that the dataset is mainly dominated by
sandy soils, the regression performance on the reference sand is
expected to be better than on the references clay and reference
silt.
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Figure 4. Continuous ANN predicted values of the n vG parameter vs.
fitted values on soils’ data from the UNSODA drying laboratory tests
cleaned dataset.
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Figure 5. Continuous ANN predicted values of the o vG parameter vs.
fitted values on soils’ data from the UNSODA drying laboratory tests
cleaned dataset.

Table 1. Reference soils parameters.

Reference soil Clay Silt Sand
Sand fraction (%) 33 32 97.3
Silt fraction (%) 13 46 02
Clay fraction (%) 34 22 25
Porosity (-) 0.58 0.356 0.361
6 () 0.577 0.356" 0.361
() 0.1" 0.1" 0.024

“fixed to the lower or upper bound.

Figures 7 to 9 compare the measured SWRC data with the
pointwise predictions (markers) and the vG fit on measured data
with the vG continuous predictions for the reference clay, silt,
and sand respectively (lines). The main outcome is that the two
models captured the shape of the SWRCs and successfully
reproduced the range of 6. For the reference clay and silt,



pointwise prediction tended to overestimate & while the vG
continuous predictions were likely to underestimate it. These
trends are more pronounced on the reference clay than the on the
reference silt.
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Figure 6. USCS-SCS ternary diagram for textural classification of the
UNSODA drying laboratory tests cleaned dataset (represented using
Graham & Midgley 2000).
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Figure 7. Comparison of the measured and fitted SWRC with the
pointwise and continuous vG predicted SWRC for reference clay.
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Figure 8. Comparison of the measured and fited SWRC with the
pointwise and continuous vG predicted SWRC for reference silt.
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Figure 9. Comparison of the measured and fited SWRC with the
pointwise and continuous vG predicted SWRC for reference sand.

Clay soils being under-represented in the training data, the
accuracy and consistence of the predictions are low as it could
expected. On the reference sand, the models’ predictions are
quite comparable. However, even if the data is dominated by
sands, the SWRC predicted by the pointwise model for the
reference sand exhibits a local discrepancy around 10 kPa of
suction. This kind of error is avoided when using a continuous
function prediction ensuring the consistency of the predicted
curve.

The use of the vG theoretical equation is shown to efficiently
accommodate data imprecision. Considering the general
appreciations on the entire curve’s representation, the pointwise
approach although having demonstrated acceptable performance,
appears to be subject to local inconsistency. The use of the
continuous prediction based on a mathematical model can
address this issue by guaranteeing the SWRC shape theoretical
compliance.

4 CONCLUSIONS

In this paper, two different approaches were used and compared
for predicting the SWRC from basic geotechnical parameters.
The Dataset used for training the two models was extracted from
the UNSODA database and includes drying laboratory test data.
The two models used feedforward ANNSs trained using Bayesian
Regulation algorithm. The first model (pointwise) used
geotechnical parameters and suction to predict the volumetric
water content providing one point of the SWRC at a time. The
second model (continuous vG) used two connected ANNs to
predict o and n vG parameters from geotechnical inputs.

The preliminary analysis and cleansing on the original data
lead to drastically decrease the size of the dataset to favor the
data quality.

Considering the standard metrics for evaluation the prediction
performance on the training-testing data (i.e., R and RMSE), the
pointwise prediction outperformed the continuous vG prediction.
This can be attributed to the difference in the size of the datasets
and to the additional errors introduced by the fitting of the vG
model on experimental data series of each soil in the database.

However, after analyzing and comparing the predicted curves
by the two models with the corresponding original inputs, it
appeared that the continuous vG approach provided more
consistent results even for all reference soils selected in the
database.

Further investigations are required for improving the
developed continuous vG model. Improvements could include:
the use of alternative SWRC equations and selection of
the model based on the best fit;



- investigation of using the data fitting evaluation (R?) as
an indicator for modulating the weight of the records
according to the associated confidence level.
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