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ABSTRACT: The determination of appropriate support patterns using the geological surveys at the design stage and interpretation 
of rock conditions can prevent tunnel collapse and rock falling accidents during tunnel excavation. The rock mass rating (RMR) 
method for characterizing rock structure requires time and skilled techniques to observe the orientation, length, and spacing of rock 
joints exposed to the tunnel face. The convolutional neural network (CNN), based on a deep artificial neural network composed of 
multiple layers of convolution and pooling, shows outstanding performance even in complex images. In this study, a deep learning-
based model is developed to classify rock grades by image-based tunnel face analysis. The model constructed using transfer learning 
achieved the effective classification performance even though the number of tunnel face images was not sufficient. It is conjectured 
that the accumulation of tunnel face images with additional tunnel excavation sites can not only improve the generalized performance 
of the classification model but also develop it into a real-time rock mass classification method. 

RÉSUMÉ: La détermination de modèles de support appropriés à l'aide des études géologiques au stade de la conception et de 
l'interprétation des conditions de la roche peut empêcher l'effondrement du tunnel et les accidents de chute de pierres lors de 
l'excavation du tunnel. La méthode d'évaluation de la masse rocheuse (RMR) pour caractériser la structure rocheuse nécessite du 
temps et des techniques qualifiées pour observer l'orientation, la longueur et l'espacement des joints de roche exposés à la face du 
tunnel. Le réseau neuronal convolutif (CNN), basé sur un réseau neuronal artificiel profond composé de plusieurs couches de 
convolution et de mise en commun, affiche des performances exceptionnelles même dans des images complexes. Dans cette étude, 
un modèle basé sur l'apprentissage en profondeur est développé pour classer les grades de roche par une analyse de la face du tunnel 
basée sur l'image. Le modèle construit à l'aide de l'apprentissage par transfert a atteint les performances de classification efficaces 
même si le nombre d'images de face de tunnel n'était pas suffisant. On suppose que l'accumulation d'images de façade de tunnel avec 
des sites d'excavation de tunnel supplémentaires peut non seulement améliorer les performances généralisées du modèle de 
classification, mais aussi le développer en une méthode de classification de masse rocheuse en temps réel. 
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1  INTRODUCTION 

Complex geotechnical material has a high spatial uncertainty 
while the predictability seems low, therefore the necessity of 
technical alternatives to prevent safety accidents in large-scale 
construction projects increases. In particular, during tunnel 
construction, it is necessary to determine an appropriate support 
pattern through observation of the tunnel face during 
construction to minimize the loss of life and property due to 
tunnel collapse accidents in hazard sections such as rock 
formation change sections, relaxation, and fault fractured zones. 

The determination of the rock mass classes of the tunnel 
section is directly related to the selection of support patterns, and 
representative rock mass classification methods include the rock 
mass rating (RMR) system and the Q-system. The RMR 
classification evaluates the rock mass condition in detail 
according to six elements and classifies the rock mass into five 
grades using the sum of each score (Bieniawski, 1989). The total 
score is distributed between 0 and 100, and the higher the value 
of RMR the better the rock mass conditions from the engineering 
point of view. The six elements of the RMR classification are as 
follows, and the state of the rock mass is classified according to 
the value of RMR as shown in Table 1; the unconfined 
compressive strength of the intact rock, the rock quality 
designation (RQD), the spacing of the discontinuities, the 
condition of the discontinuities, the groundwater conditions, and 

the correction for the orientation of discontinuities. The Q-
system is a method to perform quantitative rock classification 
based on the following six variables, considering the spacing and 
conditions of the discontinuities more important than the 
orientation of the discontinuities (Barton et al., 1974); the rock 
quality designation (RQD), number of joint sets, the roughness 
of the most unfavorable joint, degree of alteration of filling along 
the weakest joint, water inflow, and stress reduction factor 
(SRF). Since it is difficult to grasp all the ground characteristics 
through surveying and site investigation at the design step, it is 
needed to perform the identification of the rock characteristics 
and reinforcement through real-time rock classification based on 
face mapping of the tunnel face exposed during construction. 
Nevertheless, observation of the tunnel face requires skilled 
technology and a lot of time, and the acquired data has a limit in 
which the subjectivity of field experts is reflected. 
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Table 1. Description of rock mass quality based on RMR. 
 

 
The recent image recognition technology based on artificial 

intelligence (AI) has developed to a level that imitates human 
visual recognition ability. Also, the development of deep 
learning-based autonomous driving technology and the smart 
city establishment, and active introduction to the medical field as 
auxiliary means to increase the accuracy of diagnosis are being 
made. This study aims to develop a technology to rapidly analyze 
rock features from tunnel face images by using a convolutional 
neural network (CNN) of deep learning method that effectively 
performs the object recognition through extraction and 
combination of features such as edges, corners, and lines within 
images. 

2  MATERIALS AND METHODS 

2.1   Dataset preparation 

Tunnel face images were taken with a mobile phone at a total of 
10 different tunnel sites, and face mapping data were manually 
recorded by experts at the site for rock mass classification using 
the RMR method. A total of 3318 images of the tunnel face were 
obtained, and each image was labeled with five rock mass 
classes. Figure 1 shows representative tunnel face images 
according to the rock mass class. The input image for model 
training was cropped to remove unwanted objects or irrelevant 
noise and resized to a fixed size of 400×800. 
 

 
Figure 1. Typical tunnel face images by rock mass class and the 

corresponding value of RMR. 

 
A total of 2654 images were used for training the 

classification model (80% of the total data) and the data 
augmentation technique was applied only to the training data to 
achieve effective rock mass classification performance for an 
insufficient number of training data. Since the image includes the 
tunnel lining shape like a half-circle, only data augmentation by 
the left and right reverse (i.e., mirror mode) is allowed, and the 
number of original data is doubled. In addition, 332 validation 
images (10% of the total data) were separately prepared to 
prevent overfitting of the model and adjust the hyper-parameters 
of the model to achieve optimal performance. Another 332 test 
images (10% of the total data) not participated in model training 
were used to evaluate the classification accuracy of the trained 
model. The dataset used for each step was randomly selected 
from the total data, and the split ratio for each rock mass class 
was equally applied. Table 2 shows that the number of images 
for each rock mass class included in each dataset. 
 

 

Table 2. Number of data by rock classification criteria for training, 

validation, and test for the deep learning-based rock classification 

model 
 

 
Class 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Training 9 454 1043 1038 112 

Validation 2 56 130 129 14 

Test 2 56 130 129 14 

 

2.2   Rock mass classification model 

The CNN consists of several convolutional layers and pooling 
layers, and the quality of features extracted from input images 
varies depending on the structural arrangement of the layers or 
the algorithm selected and applied for learning optimization. The 
convolution filter slides the entire input image while moving by 
a specified interval called stride, and the convolution operation 
between the input image and the filter generates a feature map. 
Therefore, since the values in the convolution filter are shared 
weights across the input data, it has advantages of training time 
and computation memory by using fewer parameters compared 
to conventional artificial neural networks such as a fully 
connected layer that connects every pixel of the input data with 
the next nodes. Also, CNN learns low-level features such as edge 
and curve at layers close to the input, and as the layer deepens, 
they can learn the spatial hierarchy of patterns by recognizing 
high-level features such as texture and object parts. This causes 
the output layer of CNN to perform complex inference, such as 
classification of input data, recognition, or detection of objects. 

Through a contest called ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC), CNN models with 
outstanding image recognition and classification performance 
are selected and released annually. It is possible to utilize the 
parameter weights of the pre-trained model from the ImageNet 
dataset consisting of 14 million different types of images and 
1000 classes by transfer learning. The VGG network series 
which is simple and intuitively structured, and convenient to 
transform was used as the base model of the feature extractor in 
this study (Simonyan and Zisserman, 2015). In consideration of 
the appropriate model may vary depending on the problem to be 
solved and the type of input data, the classification performance 
was compared using models with different depths (i.e., VGG16 
and VGG19). In addition, the classification performance for 
models with added batch normalization layers was verified to 
reduce learning instability due to the distribution of inputs 
changing as the layers are deepens (i.e., VGG16 and VGG16 
with batch normalization, VGG19 and VGG19 with batch 
normalization). The classifier was constructed by connecting 4 
fully connected layers to the image feature extractor composed 
of the VGG network series and connected the Softmax layer as 
the last activation function so that it leads to classifying into 5 
rock mass classes from the extracted features of the tunnel face 
image. 

3  RESULTS AND DISCUSSION 

3.1   Training experiment with hyper-parameter adjustment 

To implement the pre-trained CNN model to each own problem, 
re-training through fine-tuning of model weights should be 
performed (Chollet, 2018). Batch size, which affects learning 
speed and stability, is a variable that is dominantly determined 
on computation power, so that batch size 8, the maximum usable 
size in this study, was applied. The direction and size of model 
weight adjustment for training are determined by the types of loss 
function, optimizer, and learning rate. In the image classification 

 Rating 

RMR 81-100 61-80 41-60 21-40 ≤20 

Class Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Rock quality Very good Good Fair Poor Very poor 
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task, a cross-entropy loss is used because the loss function is 
defined as whether the label predicted by the matches the target 
actual label. The optimizer and learning rate generally select 
efficient values without overfitting the model to the training data 
through observation of training and validation loss during model 
training. The training loss acquired at every epoch is indicated by 
a solid line according to the types of the optimizer (i.e., 
Stochastic Gradient Descent (SGD) and Adam) and learning rate, 
and the validation loss is expressed by a dotted line as shown in 
Figure 2. The validation loss of the model using the Adam 
optimizer shows the severe overfitting of the model, and the SGD 
optimizer shows fast and stable convergence of loss when the 
learning rate is 1E-04. 
 

 
Figure 2. Comparison of training and validation loss of rock mass 

classification model by optimizer and learning rate. 

3.2   Classification results 

To maximize the effect of training of a deep learning-based CNN 
model, securing a sufficient number of data is most important, 
thus data augmentation technology is mainly used. Table 3 shows 
the difference in model classification accuracy before and after 
data augmentation for 80% of the total data split for training. To 
confirm the effect of data augmentation, other variables were 
fixed as follows: VGG19 model with batch normalization layers 
and SGD optimizer with 1E-04 of learning rate. According to the 
number of data for each rock mass class mentioned in Table 2 
above, it can be inferred that the classification accuracy is 
underestimated because the number of tunnel face images in 
Class Ⅰ is too small. Therefore, the classification accuracy for the 
test data except for the tunnel face with Class Ⅰ is also shown. 
The model trained with data doubled by data augmentation 
showed remarkably excellent rock mass classification accuracy 
as 84.64%, and a slight increase in classification accuracy was 
observed when Class 1 was excluded. 

 
Table 3. Rock mass classification accuracy results by data augmentation. 
 

 

Classification results 

Accuracy 

[%] 

Accuracy 

excluding Class Ⅰ 
[%] 

Data 

augmentation 

Before 

(2654) 
77.71 78.18 

After 

(5308) 
84.64 85.15 

 
The VGG network set as the backbone network of the feature 

extractor uses the same size of 3x3 convolution filters for all 
convolutional layers. Comparing the two results using VGG16 
and VGG19 as backbone networks, only the effect of depth 
change of CNN on classification performance can be confirmed. 
Because the conventional VGG network does not include a batch 
normalization layer, if the data distribution is rescaled to an 
extremely narrow range while the input image is passed through 
the convolutional layers, so there is a limitation in that proper 

learning not be performed. Therefore, the effect of the batch 
normalization layer was proved in the classification problem in 
this study by calculated the accuracy of rock mass classification 
using models that placed batch normalization layers in the middle 
of the conventional VGG networks as a feature extractor. The 
loss of the two models without batch normalization converges 
quickly, but the rebound of the validation loss was observed so 
that the early stopping algorithm for the purpose of preventing 
overfitting was activated (Figure 3). In the case of two models 
with batch normalization layers, the validation loss also 
converges along with the training loss that gradually decreases. 

 

 
Figure 3. Comparison of training and validation loss of rock mass 

classification model by the depth of CNN model and application of batch 

normalization layer. 

 
The classification accuracy of each model by hyper-parameter 

adjustment to optimize the learning process and produce the best 
results is shown in Table 4. All of the classification accuracies 
were measured on separated test data in advance, and the results 
are for the final models determined by early stopping which 
terminates training early before model overfits. 

It can be seen that the case of using SGD as the optimizer 
performs better class prediction than the case of applying Adam, 
and at the same time, the classification accuracy can be improved 
most effectively when using the learning rate of 1E-04. In the 
results of four different models comparing the depth of the CNN 
model and the appropriateness of applying regularization during 
training by batch normalization, it is confirmed that using the 
batch normalization layers with the conventional VGG19 
network shows the best performance. As previously speculated, 
the classification accuracy for test data except for Class 1 data is 
always higher than when all classes are included. 

 
 
Table 4. Rock mass classification accuracy results by types of optimizer 
and learning rate, and CNN model. 
 

 

Classification results 

Accuracy 

[%] 

Accuracy 

excluding Class Ⅰ 
[%] 

Optimizer 

(learning rate) 

SGD (1E-04) 84.64 85.15 

SGD (1E-05) 79.22 79.70 

Adam (1E-04) 78.31 78.79 

Adam (1E-05) 74.70 75.15 

Model 

VGG16 81.63 82.12 

VGG19 82.23 82.73 

VGG16+BN 84.04 84.55 

VGG19+BN 84.64 85.15 

 
Figure 4 shows the confusion matrix used as a classification 

model performance evaluation indicator for the model that 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

≤

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ
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achieved the highest classification accuracy. The confusion 
matrix tabulates the number or probability that the targeted actual 
class and the class predicted by the model match. Since there are 
only two images of Class 1 of the tunnel face included in the test 
dataset, representing the prediction results for Class 1 as a 
probability is meaningless. Therefore, the results for the 
remaining four rock mass classes are expressed as color gradients 
with probability. Compared to Class 2, 3, and 4, which contain 
50 to 100 or more, the classification result for a small number of 
data Class 5 also shows a relatively low accuracy of 64.3%. For 
all of the tunnel face images of Class 2, 3, and 4, it showed 
outstanding prediction accuracy of over 84%. Also, it is 
confirmed through the diagonal matrix in Figure 4 that the 
misclassified cases were also classified into an adjacent class. 
 

 

Figure 4. Confusion matrix for the performance evaluation of the rock 

mass classification model. 

4  CONCLUSIONS 
 
This study developed a model that classifies the tunnel face 
images into 5 rock mass classes using the deep learning 
technique. The pre-trained VGG network series were used as the 
backbone networks of the feature extractors, and rock mass was 
classified with the highest predictive accuracy when batch 
normalization layers were applied to the conventional VGG19 
network. Data augmentation by the left and right reverse of 
tunnel face images effectively improves classification accuracy 
by doubling the training data during model training. A tendency 
to always predict adjacent classes has been observed even when 
rock mass classes are incorrectly predicted, so it is speculated to 
help determine the support patterns by rock mass classification 
during tunnel construction. Also, it can be expected to be utilized 
as a real-time rock mass classification method by reducing 
subjective evaluation by experts and the evaluation time of rock 
characteristics and through more data accumulation. 
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