INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND
GEOTECHNICAL ENGINEERING

SIMSG [} ISSMGE

s

This paper was downloaded from the Online Library of
the International Society for Soil Mechanics and
Geotechnical Engineering (ISSMGE). The library is
available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands
of papers published under the Auspices of the ISSMGE and
maintained by the Innovation and Development
Committee of ISSMGE.

The paper was published in the proceedings of the
20t International Conference on Soil Mechanics and

Geotechnical Engineering and was edited by Mizanur
Rahman and Mark Jaksa. The conference was held from
May 15t to May 5t 2022 in Sydney, Australia.



https://www.issmge.org/publications/online-library

Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering— Rahman and Jaksa (Eds)
© 2022 Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-9946261-4-1

Evaluation of residual strength of rocks based on acoustic emission data using Al

Evaluation de la résistance résiduelle des roches sur la base des données d’émission acoustique
al'aide de I'lA

Negin Yousefpour
Infrastructure Engineering Department, The University of Melbourne, Australia, negin.yousefpour@unimelb.edu.au

Mehdi Pouragha
Civil and Environmental Engineering Department, Carleton University, Canada

ABSTRACT: Acoustic emission (AE) is one of the most common sensing methods for monitoring the behaviour of brittle materials
such as rock and concrete. This study uses Discrete Element Method (DEM) simulations to correlate the pre-failure AE data to the
post-failure characteristics such as residual strength. The deep learning method using the Long Short-Term Memory algorithm
(LSTM) has been adopted to learn from the data set created via parametric DEM simulations. Various configurations of the LSTM
algorithm were trained considering multiple combinations of input features, i.e. strain, stress and AE energy records. The prim Al
models have shown promising accuracy in prediction of residual strength decay with strain, based on patterns in AE energy records.
The results indicate that the pre-failure AE energy patterns indeed encapsulate information about the developing failure mechanisms
and the post-failure response, which can be captured by Artificial Intelligence.

RESUME : L’émission acoustique (AE) fait partie des mesures les plus pratiques pour surveiller le comportement des matériaux fragiles
tels que la roche et le béton. Cette étude utilise des simulations de la méthode des éléments discrets (DEM) pour corréler les données AE
prédéfaillance aux caractéristiques postrupture telles que la résistance résiduelle. La méthode d’apprentissage en profondeur utilisant
I’algorithme de mémoire a long terme (LSTM) a été adoptée pour apprendre a partir de I’ensemble de données créé via des simulations
DEM paramétriques. Diverses configurations de 1’algorithme LSTM ont été entrainées en tenant compte de multiples combinaisons de
caractéristiques d’entrée, c’estadire des enregistrements d’énergie de déformation, de contrainte et d’EA. Les modeles Al prim ont
montré une précision prometteuse dans la prédiction de la décroissance de la résistance résiduelle avec la déformation, sur la base des
modeles dans les enregistrements d’énergie AE.Les résultats indiquent que I’AE prééchec encapsule en effet des informations sur les
mécanismes de défaillance en développement et la réponse postdéfaillance qui peut étre capturé par I’intelligence artificielle.

KEYWORDS: Residual Strength, Acoustic Emission, Discrete Element Method, Artificial Intelligence, Long Short-Term Memory.

1 INTRODUCTION.

Design of engineering structures supported by rock formations,
such as tunnels and mines, relies heavily on accurate assessments
of the strength characteristics of rock masses. The knowledge of
rock mass behavior becomes also essential in other fields such as
reservoir engineering, seismology, and plate tectonics. Such
brittle materials are prone to multiple plausible modes of failure
that are affected by their complex loading history as well as the
presence of heterogeneous micro-cracks and joints (Lawn 1993;
Rao et al. 2003). Moreover, the interplay between the mechanical
properties and the spatial heterogeneity can lead to progressive
failure mechanisms along the path of least resistance (Mortell,
Tanner, and McCarthy 2016; Prudencio and Jan 2007; Yang,
Xue, and Zhang 2018).

Such particularities in failure mechanisms justifiably
necessities the design process to be complemented by
appropriate ongoing monitoring methods that provides
continuous feedback for reevaluating the analysis and design
assumptions (Stanchits, Burghardt, and Surdi 2015). Given its
accessibility, acoustic emission (AE) is an apt practical candidate
for such a measure that can be easily recorded and tracked in situ,
as well as in the laboratory and numerical simulations. The
acoustic energy release can well indicate processes such as crack
initiation, propagation, and failure in rocks (see Figure 1).
Indeed, AE sensors have been widely used in a variety of
laboratory tests and field measurements, to capture the
progression of rock failure, see Feng et al. (2019) and the
references therein for a complete review of the literature.

5113

100 16

90 \,
2 Crack Closure Stable Crack wre
80 ;
3 Propagation Failure
g o
= c
T g & Fe——————», 10 _
% ! Unstable Crack I
50 " =
§ Propagation <
€ 40 $
2 6 5
% 30  Crack initiation o
2
E
3 o ,
10 \ /
Dt

50

200

100 150 250

Time (s) ® Normalised AE Counts

Figure 1. A stress and accumulative AE counts vs strain, from a
unconfined compression test on a Brown Coal sample (Vishal, Ranjith,
and Singh 2015).

The strong sensitivity of failure mechanisms and
characteristics to the samples particularities seriously hinders an
experimental parametric study (Xia et al. 2000). This, however,
can be overcome by resorting to appropriate numerical
simulations. In this regard, the Discrete Element Method (DEM)
has been successfully adopted in recent years for numerical
simulation of rocks. The original procedure developed for
granular materials was further extended in Potyondy and Cundall
(2004) where a rock medium is simulated as an assembly of
tightly packed particles that are bonded to each other via
cohesive interactions. The significant body of literature that
followed have convincingly shown the DEM to be capable of
capturing the salient mechanical aspects of rock and concrete
media based on simple microscopic parameters such as



interparticle contact stiffness and bond strength (Jing and
Stephansson 2007; Scholtés and Donzé 2012; Pouragha,
Eghbalian, and Wan 2020).

DEM simulations are particularly useful for the study of AE
since they provide access to microscale data that is often not
casily accessible in experiments. Among such data, is the
information about the bond breakage and the associated released
energy in the form of acoustic emission. DEM has been recently
adopted as a convenient and powerful tool to study the
characteristics of AE events in rocks (and concrete) prior, during
and after failure (Caulk 2020; Xie et al. 2020; Gao et al. 2019;
Ma et al. 2020).

Following the discussion above, the current study aims at
predicting the post-failure behavior, and in particular residual
strength of rock formations based on their pre-failure behavior
by using AE recordings in DEM simulations. The deep learning
method using the Long short-term memory (LSTM) algorithm
has been adopted in processing the data. The hypothesis here is
whether pre-failure patterns in AE signal data can be correlated
with the post-failure behaviour, i.e. the gradual decay of post-
peak strength with strain. To generate diversity in the data, the
inter-particle friction, which is activated after bond breakage, is
varied over a range, while the inter-particle cohesive bond
strength is kept constant across different samples. The AE data
obtained from synthetic compression tests simulated through
DEM is used to develop and validate the Al algorithms,
establishing predictive relations between AE energy variation
patterns and post-failure stress-strain behavior of rock samples.

2 METHODOLOGY

2.1 DEM Simulations

The open-source YADE software (Smilauer et al. 2010) has been
used in this study to carry out two dimensional DEM simulations
on assemblies of circular particles with a uniform particle size
distribution betweenrj,andryay With 75,45 /Tmin = 2.0. The
elastic contact stiffness follows a linear model with the same
stiffness along the normal and tangential directions, calculated as
k = 2Eryr,/(ry +1,) for a contact between two particles with
radii of r; and r,, where E is a stiffness parameter. All the
samples have 1-to-2 aspect ratios and are confined by frictionless
rigid walls. The sample was first compacted under 2D
hydrostatic  confinement stress po=5kN/m  which,
considering the average particle size of 1 mm, is equivalent of
5 MPa in 3D. No interparticle friction or cohesion is considered
in this stage to obtain a dense sample. After reaching the desired
stress, the cohesive bonds are activated at all existing contact
points. The strength of these bonds are the same along the
tangential and tensile pormal directions and is calculated as
fnax = C (min(rl, rz)) with the stress-like parameter ¢
determining the bond strength. After a bond is broken, a
Coulomb friction law is activated restricting the tangential force
with the interparticle friction of p.

In these simulations, the dimensionless initial confining
pressure is po/(ET) = 5e —2 with 7 being the average
particle radius, and the dimensionless bond cohesion is c/E =
2.17 e — 2. Considering that the behaviour of contacts after
bond breakage is controlled by the interparticle friction, the value
of u was varied between 0.01 and 0.5 to capture the effect of
friction on the post-peak response. A total of 17 simulations were
carried out: 10 simulations by starting from similar initial
arrangement of 10,000 particles and NS
{0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10 }, and 7
simulations by starting from another initial arrangement of
20,000 particles and neE
{0.05,0.10,0.15,0.20,0.30,0.40,0.503}.

The biaxial quasi-static deviatoric compression loading was
performed by applying a constant compressive strain rate to the
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top and bottom walls while the stress on the lateral walls were
kept constant via a servo-control mechanism. Upon the breakage
of'a bond, the released elastic energy is measured as:
fa )ia

2k,

AE =
2ky,

(M
where AE is the released energy due to the breakage of the bond
with stiffness of k,, and k; along the normal and tangential
directions (which are the same for our simulations), and f,, and
f¢ are the normal and tangential components of the contact force
prior to the bond breakage. The total elastic energy released was
calculated by accumulating the energy of broken bonds during
intervals of the axial strain.

2.2 Biaxial Compression and AE Test Data

Figure 2 presents the stress-strain and AE evolution for various
values of interparticle friction, p. Both peak and residual
strength values increase for larger p. While the simulations were
run up to an axial strain of 25%, only the results for the first 2.5%
of axial strain has been used for training and validation of the Al
algorithms, as the residual strength remains relatively stationary
after this strain level. The two sets of data from DEM
simulations, i.e. stress-strain and records of AE events versus
strain were merged based on the strain intervals where AE events
were captured. The “AE counts” reflects AE event counts (bond
breakage) per unit volume at each strain interval which scales
linearly with AE energy.
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Figure 2. Example of DEM simulation data. (top) AE counts vs axial
strain, (bottom) axial stress vs axial strain

2.3 Deep Learning Using LSTMs

LSTM networks were developed in this study to forecast the
trends of post-failure stress-strain variation based on pre-failure
AE data. LSTM networks belong to the broader class of
Recurrent Neural Networks (RNNs) with special internal
memory units that can be updated, erased or read out (Hochreiter
and Schmidhuber 1997; Ordoiez and Roggen 2016).

These networks have proven particularly successful for
recognizing temporal patterns in time-series data. In addition to
feed-forward connections, computational units (neurons), RNNs
have recurrent connections where the output of a unit is fed back
to itself with a weight and a time delay, which provides the
algorithm with a memory of past activations. Stacking memory
units in such networks enables learning higher levels of temporal



patterns in sequential data. LSTMs have been successfully
applied in stock market forecast, as well as in text, language and
voice recognition (Ray, Rajeswar, and Chaudhury 2015). LSTMs
have been also recently used in forecast applications in
infrastructure and geotechnical engineering (Yousefpour et al.
2021). Figure 3 provides a diagram of the developed LSTM
architecture in this study.

LSTM Memory Unit
hy h, M hy h,
Initial € _, —» Final
e L MR = site
NN
B Features
S \\ o~ — T
e L T T ~
1 2 3 t s
Time Steps
Forget Q
Gate
@- ) ©. @ Input Gate:
fiann] - Controls what new information is added to cell
o ° state (memory) from current input.
Forget Gate:
Lol [o] [e] - Controls what information to throw away from
@ L @ the cell state (memory).
- Output Gate:
- Decides which part of the current cell state
Input Output (memory) makes it to the output.
@ Gate  Gate
LSTM Memory Unit

Figure 3. LSTM network architecture; (top) LSTM unit unfolded in time,
(bottom) LSTM memory unit and gates.

2.3.1 LSTM Model Configuration

A grid search was performed to find the best configurations of
the LSTM algorithm and the optimum values of the
hyperparameters. The hyperparameters include the number of
LSTM units, number of hidden neurons, optimization algorithm,
initial gradient decay rate, maximum number of epochs, training
and test data size, and number of sequences (sequence length).
The range of values tested for each hyperparameter and the
selected values are given in Table 1.

2.3.2 Data Partitioning

Various data partitioning methods were experimented to ensure
models were properly trained. The division that best captured the
pre-failure in training and post-failure in validation/testing was
found to be 80, 15, 5% for training, testing and validation,
respectively. The performance of LSTM models during training
was monitored based on the validation dataset; training stopped
when error over the validation dataset consistently increased for
a certain number of epochs (stopping criteria). The test dataset
was used to evaluate the overall performance of the models for
unseen data. Figure 4 shows an example of data partitioning.
Note that the data has been normalized before training.

Table 1. LSTM hyperparameters.

Parameter Tested Range Selected Value
# of LSTM Units 1,2 1
# of Hidden Neurons 32, 64,128 64
Initial Gr;‘;itznt Decay 4,01, 0.005, 0.001 0.005
Dropout Ratio 0,0.2 Variable
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Figure 4. Data partitioning for Al training.

2.3.3  Training and Data Slicing

To train the LSTMSs, data first needs to be sliced into smaller
sequences through a sliding window. In each slice, a certain
number of time steps are treated as input (input length) to the
network while a number of time-steps into the future are
predicted (label). The total sequence length is the sum of the two
time-steps (see Figure 5).

Single-Shot (ssh) and Feedback (fb) methods were considered
herein for training the LSTMs. In single-shot training, all the
time-steps were predicted at once, as shown in Figure 6. In this
example, the model predicts the next 24 steps based on the same
time-span input. In the Feedback method, instead of the actual
reading, the prediction at each time-step is input in the next time-
step.

Input width = 6 offset = 1
A ~—"—
t=0 | t=1 | t=2 | t=3 | t=4 | t=5 | t=6
\W_}
Label width = 1
o
Total width = 7

Figure 5. Definition of input and label in data slicing.

2.3.4 Feature Selection

As presented in Table 2, four combinations of features have been
considered to compare the performance of the Al models under
various scenarios. The most challenging, and most practically
valuable scenario is when the pre-failure strain-stress is not
available and the only available input feature is the AE readings.
Also, the scenarios without AE as input were analysed to better
understand the impacts of AE on post-failure patterns recognition
by Al The strain intervals in the data were gradually increasing
towards the failure point to keep up with the increase in the rate
of AE events around the stress peak, therefore the significance of
including strain as an input feature was also evaluated.

Table 2. LSTM Input Features

Parameter Tested Range Abbreviation
[strain, stress, AE], [SSAE],
Input Features [strain, stress], [SS],
[stress], [S],
[AE] [AE]
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Figure 6. LSTM Training Methods (Google 2020); (top) Single Shot,
(bottom) Feedback.

3 RESULTS AND DISCUSSIONS

3.1 Grid Search and LSTM Configurations

The key results from grid search analyses are compiled in
Figure 7. The name of each LSTM configuration follows the
following pattern: “Feature Combination - Training Method -
(Input, Label) - No. of Hidden Units - Drop Out”. The
performance measurement metric was the mean absolute error
(MAE) of predictions over the label length. Among various
factors, the input-label (slice) length showed the most significant
impact on the LSTM performance, followed by the training
method and the number of the LSTM units. For each feature
combination, the optimum input-label length was identified; for
models including all three features, increasing the input length to
80 significantly improved the prediction power, whereas
increasing the input length from 20 to 50 resulted in only slight
improvements. A similar trend was observed for the other models
involving stress-strain features. For the models with AE as the
only input feature, MAE showed a declining trend with the input
length, reaching its minimum range at 50. Increasing the input
length to 80 and then 100 significantly reduced the prediction
accuracy.

Single Shot training method showed to slightly outperform
the Feedback method, although this pattern was not found in all
the feature combinations. Increasing the LSTM units from one to
two, did not result in significant performance improvements.
Also, the optimum number of hidden neurons was found at 64.
Adding a dropout of 20% during training, showed to increase the
variability in MAE within the reputations, but the mean value did
not show a decreasing trend.

3.2 Al Predictions

The post-failure predictions for various feature combinations are
compared in Figure 8 for the input-label length = (80,60). Feature
combinations including stress [SSAE, SS, S] show much greater
accuracy in predictions compared to [AE]. This trend indicates
the insignificant impacts of AE when strain-stress trend is
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available as an input feature. However, the Al model with only
AE as the input feature can still predict the post-failure stress-
strain trends, with reasonably accuracy. Figure 9 shows how
maneuvering around input-label length can improve the
performance of the Al models and that even with AE alone a
significantly improved accuracy can be achieved at the optimum
input-label length [(50,10)].
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Figure 7. The performance of LSTM configurations, features= [SSAE],
(top) Feedback, (bottom): Singleshot.

4 CONCLUSIONS

This study introduces an innovative Al approach to predict the
post-failure behaviour and residual strength of rocks based on the
pre-failure patterns of AE energy. LSTM algorithms were
implemented and properly trained using data generated through
DEM simulations of rock under biaxial compression loading. A
total of 17 DEM simulations were considered with varying
interparticle friction values and constant interparticle bond
cohesion. The results indicate that patterns of AE events prior to
failure indeed contain valuable information about the emerging
failure mechanisms leading to the post-failure decay in rocks,
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and that LSTM algorithms can capture these complex
correlations. Given the significance of the residual strength as a
design parameter, this research puts forward a novel method to
provide more reliable, dynamic estimates, by combining AE
sensors and Al technology. The outcome shows the remarkable
potential of deep learning methods for capturing complex
patterns in the response of heterogeneous geo-materials.
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