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ABSTRACT: Acoustic emission (AE) is one of the most common sensing methods for monitoring the behaviour of brittle materials 
such as rock and concrete. This study uses Discrete Element Method (DEM) simulations to correlate the pre-failure AE data to the 
post-failure characteristics such as residual strength. The deep learning method using the Long Short-Term Memory algorithm 
(LSTM) has been adopted to learn from the data set created via parametric DEM simulations. Various configurations of the LSTM 
algorithm were trained considering multiple combinations of input features, i.e. strain, stress and AE energy records. The prim AI 
models have shown promising accuracy in prediction of residual strength decay with strain, based on patterns in AE energy records. 
The results indicate that the pre-failure AE energy patterns indeed encapsulate information about the developing failure mechanisms 
and the post-failure response, which can be captured by Artificial Intelligence. 

RÉSUMÉ : L’émission acoustique (AE) fait partie des mesures les plus pratiques pour surveiller le comportement des matériaux fragiles 
tels que la roche et le béton. Cette étude utilise des simulations de la méthode des éléments discrets (DEM) pour corréler les données AE 
prédéfaillance aux caractéristiques postrupture telles que la résistance résiduelle. La méthode d’apprentissage en profondeur utilisant 
l’algorithme de mémoire à long terme (LSTM) a été adoptée pour apprendre à partir de l’ensemble de données créé via des simulations 
DEM paramétriques. Diverses configurations de l’algorithme LSTM ont été entraînées en tenant compte de multiples combinaisons de 
caractéristiques d’entrée, c’estàdire des enregistrements d’énergie de déformation, de contrainte et d’EA. Les modèles AI prim ont 
montré une précision prometteuse dans la prédiction de la décroissance de la résistance résiduelle avec la déformation, sur la base des 
modèles dans les enregistrements d’énergie AE.Les résultats indiquent que l’AE prééchec encapsule en effet des informations sur les 
mécanismes de défaillance en développement et la réponse postdéfaillance qui peut être capturé par l’intelligence artificielle. 
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1  INTRODUCTION. 

Design of engineering structures supported by rock formations, 
such as tunnels and mines, relies heavily on accurate assessments 
of the strength characteristics of rock masses. The knowledge of 
rock mass behavior becomes also essential in other fields such as 
reservoir engineering, seismology, and plate tectonics. Such 
brittle materials are prone to multiple plausible modes of failure 
that are affected by their complex loading history as well as the 
presence of heterogeneous micro-cracks and joints (Lawn 1993; 
Rao et al. 2003). Moreover, the interplay between the mechanical 
properties and the spatial heterogeneity can lead to progressive 
failure mechanisms along the path of least resistance (Mortell, 
Tanner, and McCarthy 2016; Prudencio and Jan 2007; Yang, 
Xue, and Zhang 2018). 

Such particularities in failure mechanisms justifiably 
necessities the design process to be complemented by 
appropriate ongoing monitoring methods that provides 
continuous feedback for reevaluating the analysis and design 
assumptions (Stanchits, Burghardt, and Surdi 2015). Given its 
accessibility, acoustic emission (AE) is an apt practical candidate 
for such a measure that can be easily recorded and tracked in situ, 
as well as in the laboratory and numerical simulations. The 
acoustic energy release can well indicate processes such as crack 
initiation, propagation, and failure in rocks (see Figure 1). 
Indeed, AE sensors have been widely used in a variety of 
laboratory tests and field measurements, to capture the 
progression of rock failure, see Feng et al. (2019) and the 
references therein for a complete review of the literature. 
 
 

 
Figure 1. A stress and accumulative AE counts vs strain, from a 
unconfined compression test on a Brown Coal sample (Vishal, Ranjith, 
and Singh 2015). 

The strong sensitivity of failure mechanisms and 
characteristics to the samples particularities seriously hinders an 
experimental parametric study (Xia et al. 2000). This, however, 
can be overcome by resorting to appropriate numerical 
simulations. In this regard, the Discrete Element Method (DEM) 
has been successfully adopted in recent years for numerical 
simulation of rocks. The original procedure developed for 
granular materials was further extended in Potyondy and Cundall 
(2004) where a rock medium is simulated as an assembly of 
tightly packed particles that are bonded to each other via 
cohesive interactions. The significant body of literature that 
followed have convincingly shown the DEM to be capable of 
capturing the salient mechanical aspects of rock and concrete 
media based on simple microscopic parameters such as 
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interparticle contact stiffness and bond strength (Jing and 
Stephansson 2007; Scholtès and Donzé 2012; Pouragha, 
Eghbalian, and Wan 2020).  

DEM simulations are particularly useful for the study of AE 
since they provide access to microscale data that is often not 
easily accessible in experiments. Among such data, is the 
information about the bond breakage and the associated released 
energy in the form of acoustic emission. DEM has been recently 
adopted as a convenient and powerful tool to study the 
characteristics of AE events in rocks (and concrete) prior, during 
and after failure (Caulk 2020; Xie et al. 2020; Gao et al. 2019; 
Ma et al. 2020).   

Following the discussion above, the current study aims at 
predicting the post-failure behavior, and in particular residual 
strength of rock formations based on their pre-failure behavior 
by using AE recordings in DEM simulations. The deep learning 
method using the Long short-term memory (LSTM) algorithm 
has been adopted in processing the data. The hypothesis here is 
whether pre-failure patterns in AE signal data can be correlated 
with the post-failure behaviour, i.e. the gradual decay of post-
peak strength with strain. To generate diversity in the data, the 
inter-particle friction, which is activated after bond breakage, is 
varied over a range, while the inter-particle cohesive bond 
strength is kept constant across different samples. The AE data 
obtained from synthetic compression tests simulated through 
DEM is used to develop and validate the AI algorithms, 
establishing predictive relations between AE energy variation 
patterns and post-failure stress-strain behavior of rock samples. 

2  METHODOLOGY 

2.1  DEM Simulations 

The open-source YADE software (Šmilauer et al. 2010) has been 
used in this study to carry out two dimensional DEM simulations 
on assemblies of circular particles with a uniform particle size 
distribution betweenrmin andrmax  with 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 2.0. The 
elastic contact stiffness follows a linear model with the same 
stiffness along the normal and tangential directions, calculated as k = 2E𝑟𝑟1𝑟𝑟2/(𝑟𝑟1 + 𝑟𝑟2) for a contact between two particles with 
radii of 𝑟𝑟1  and 𝑟𝑟2 , where 𝐸𝐸  is a stiffness parameter. All the 
samples have 1-to-2 aspect ratios and are confined by frictionless 
rigid walls. The sample was first compacted under 2D 
hydrostatic confinement stress p0 = 5 kN/m  which, 
considering the average particle size of 1 mm, is equivalent of 5 MPa in 3D. No interparticle friction or cohesion is considered 
in this stage to obtain a dense sample. After reaching the desired 
stress, the cohesive bonds are activated at all existing contact 
points. The strength of these bonds are the same along the 
tangential and tensile normal directions and is calculated as fmax = c  (min(r1, r2))2

 with the stress-like parameter 𝑐𝑐  
determining the bond strength. After a bond is broken, a 
Coulomb friction law is activated restricting the tangential force 
with the interparticle friction of μ.  

In these simulations, the dimensionless initial confining 
pressure is 𝑝𝑝0/(𝐸𝐸𝑟̅𝑟) = 5𝑒𝑒 − 2  with 𝑟̅𝑟  being the average 
particle radius, and the dimensionless bond cohesion is 𝑐𝑐/𝐸𝐸 = 2.17 𝑒𝑒 − 2 . Considering that the behaviour of contacts after 
bond breakage is controlled by the interparticle friction, the value 
of 𝜇𝜇 was varied between 0.01 and 0.5 to capture the effect of 
friction on the post-peak response. A total of 17 simulations were 
carried out: 10 simulations by starting from similar initial 
arrangement of 10,000 particles and μ ∈{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 }, and 7 
simulations by starting from another initial arrangement of 
20,000 particles and μ ∈{0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50}. 

The biaxial quasi-static deviatoric compression loading was 
performed by applying a constant compressive strain rate to the 

top and bottom walls while the stress on the lateral walls were 
kept constant via a servo-control mechanism. Upon the breakage 
of a bond, the released elastic energy is measured as: 

 Δ𝐸𝐸 = 𝑓𝑓𝑛𝑛22 𝑘𝑘𝑛𝑛 + 𝑓𝑓𝑡𝑡22 𝑘𝑘𝑡𝑡  (1) 

 
where Δ𝐸𝐸 is the released energy due to the breakage of the bond 
with stiffness of 𝑘𝑘𝑚𝑚  and 𝑘𝑘𝑡𝑡  along the normal and tangential 
directions (which are the same for our simulations), and 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑡𝑡 are the normal and tangential components of the contact force 
prior to the bond breakage. The total elastic energy released was 
calculated by accumulating the energy of broken bonds during 
intervals of the axial strain. 

2.2  Biaxial Compression and AE Test Data 

Figure 2 presents the stress-strain and AE evolution for various 
values of interparticle friction, μ . Both peak and residual 
strength values increase for larger μ. While the simulations were 
run up to an axial strain of 25%, only the results for the first 2.5% 
of axial strain has been used for training and validation of the AI 
algorithms, as the residual strength remains relatively stationary 
after this strain level. The two sets of data from DEM 
simulations, i.e. stress-strain and records of AE events versus 
strain were merged based on the strain intervals where AE events 
were captured. The “AE counts” reflects AE event counts (bond 
breakage) per unit volume at each strain interval which scales 
linearly with AE energy. 

 

 

 
Figure 2. Example of DEM simulation data. (top) AE counts vs axial 
strain, (bottom) axial stress vs axial strain 

2.3  Deep Learning Using LSTMs 

LSTM networks were developed in this study to forecast the 
trends of post-failure stress-strain variation based on pre-failure 
AE data. LSTM networks belong to the broader class of 
Recurrent Neural Networks (RNNs) with special internal 
memory units that can be updated, erased or read out (Hochreiter 
and Schmidhuber 1997; Ordóñez and Roggen 2016).  

These networks have proven particularly successful for 
recognizing temporal patterns in time-series data. In addition to 
feed-forward connections, computational units (neurons), RNNs 
have recurrent connections where the output of a unit is fed back 
to itself with a weight and a time delay, which provides the 
algorithm with a memory of past activations. Stacking memory 
units in such networks enables learning higher levels of temporal 
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patterns in sequential data. LSTMs have been successfully 
applied in stock market forecast, as well as in text, language and 
voice recognition (Ray, Rajeswar, and Chaudhury 2015). LSTMs 
have been also recently used in forecast applications in 
infrastructure and geotechnical engineering (Yousefpour et al. 
2021). Figure 3 provides a diagram of the developed LSTM 
architecture in this study. 
 

 

 
Figure 3. LSTM network architecture; (top) LSTM unit unfolded in time, 
(bottom) LSTM memory unit and gates. 

2.3.1  LSTM Model Configuration 

A grid search was performed to find the best configurations of 
the LSTM algorithm and the optimum values of the 
hyperparameters. The hyperparameters include the number of 
LSTM units, number of hidden neurons, optimization algorithm, 
initial gradient decay rate, maximum number of epochs, training 
and test data size, and number of sequences (sequence length). 
The range of values tested for each hyperparameter and the 
selected values are given in Table 1. 

2.3.2  Data Partitioning 

Various data partitioning methods were experimented to ensure 
models were properly trained. The division that best captured the 
pre-failure in training and post-failure in validation/testing was 
found to be 80, 15, 5% for training, testing and validation, 
respectively. The performance of LSTM models during training 
was monitored based on the validation dataset; training stopped 
when error over the validation dataset consistently increased for 
a certain number of epochs (stopping criteria). The test dataset 
was used to evaluate the overall performance of the models for 
unseen data. Figure 4 shows an example of data partitioning. 
Note that the data has been normalized before training. 
 
Table 1. LSTM hyperparameters. 

Parameter Tested Range Selected Value 

# of LSTM Units 1,2 1 

# of Hidden Neurons 32, 64, 128 64 

Initial Gradient Decay 

Rate 
0.01, 0.005, 0.001 0.005 

Dropout Ratio 0, 0.2 Variable 

Input-Label Length 

20,5; 20,10; 30,10; 

40,30; 50,5; 50,10; 

50,20; 80,20; 80,30; 

80,60; 100,50 

Variable 

 

 
Figure 4. Data partitioning for AI training. 

2.3.3  Training and Data Slicing 

To train the LSTMs, data first needs to be sliced into smaller 
sequences through a sliding window. In each slice, a certain 
number of time steps are treated as input (input length) to the 
network while a number of time-steps into the future are 
predicted (label). The total sequence length is the sum of the two 
time-steps (see Figure 5). 

Single-Shot (ssh) and Feedback (fb) methods were considered 
herein for training the LSTMs. In single-shot training, all the 
time-steps were predicted at once, as shown in Figure 6. In this 
example, the model predicts the next 24 steps based on the same 
time-span input. In the Feedback method, instead of the actual 
reading, the prediction at each time-step is input in the next time-
step. 

 
 

 
Figure 5. Definition of input and label in data slicing. 

2.3.4  Feature Selection 

As presented in Table 2, four combinations of features have been 
considered to compare the performance of the AI models under 
various scenarios. The most challenging, and most practically 
valuable scenario is when the pre-failure strain-stress is not 
available and the only available input feature is the AE readings. 
Also, the scenarios without AE as input were analysed to better 
understand the impacts of AE on post-failure patterns recognition 
by AI. The strain intervals in the data were gradually increasing 
towards the failure point to keep up with the increase in the rate 
of AE events around the stress peak, therefore the significance of 
including strain as an input feature was also evaluated.  
 
Table 2. LSTM Input Features 

Parameter Tested Range Abbreviation 

Input Features 

[strain, stress, AE], 

[strain, stress], 

[stress], 

[AE] 

[SSAE], 

[SS], 

[S], 

[AE] 

rmin rmax 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 2.0
k = 2E𝑟𝑟1𝑟𝑟2/(𝑟𝑟1 + 𝑟𝑟2)𝑟𝑟1 𝑟𝑟2 𝐸𝐸

p0 = 5 kN/m5 MPa
fmax = c  (min(r1, r2))2 𝑐𝑐 

μ𝑝𝑝0/(𝐸𝐸𝑟̅𝑟) = 5𝑒𝑒 − 2 𝑟̅𝑟 𝑐𝑐/𝐸𝐸 = 2.17 𝑒𝑒 − 2𝜇𝜇
μ ∈{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 } μ ∈{0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50}

Δ𝐸𝐸 = 𝑓𝑓𝑛𝑛22 𝑘𝑘𝑛𝑛 + 𝑓𝑓𝑡𝑡22 𝑘𝑘𝑡𝑡 Δ𝐸𝐸 𝑘𝑘𝑚𝑚 𝑘𝑘𝑡𝑡 𝑓𝑓𝑚𝑚𝑓𝑓𝑡𝑡

μμ
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Figure 6. LSTM Training Methods (Google 2020); (top) Single Shot, 
(bottom) Feedback. 

3  RESULTS AND DISCUSSIONS 

3.1  Grid Search and LSTM Configurations 

The key results from grid search analyses are compiled in 
Figure 7. The name of each LSTM configuration follows the 
following pattern: “Feature Combination - Training Method - 
(Input, Label) - No. of Hidden Units - Drop Out”. The 
performance measurement metric was the mean absolute error 
(MAE) of predictions over the label length. Among various 
factors, the input-label (slice) length showed the most significant 
impact on the LSTM performance, followed by the training 
method and the number of the LSTM units. For each feature 
combination, the optimum input-label length was identified; for 
models including all three features, increasing the input length to 
80 significantly improved the prediction power, whereas 
increasing the input length from 20 to 50 resulted in only slight 
improvements. A similar trend was observed for the other models 
involving stress-strain features. For the models with AE as the 
only input feature, MAE showed a declining trend with the input 
length, reaching its minimum range at 50. Increasing the input 
length to 80 and then 100 significantly reduced the prediction 
accuracy.  

Single Shot training method showed to slightly outperform 
the Feedback method, although this pattern was not found in all 
the feature combinations. Increasing the LSTM units from one to 
two, did not result in significant performance improvements. 
Also, the optimum number of hidden neurons was found at 64.  
Adding a dropout of 20% during training, showed to increase the 
variability in MAE within the reputations, but the mean value did 
not show a decreasing trend. 

3.2  AI Predictions 

The post-failure predictions for various feature combinations are 
compared in Figure 8 for the input-label length = (80,60). Feature 
combinations including stress [SSAE, SS, S] show much greater 
accuracy in predictions compared to [AE]. This trend indicates 
the insignificant impacts of AE when strain-stress trend is 

available as an input feature. However, the AI model with only 
AE as the input feature can still predict the post-failure stress- 
strain trends, with reasonably accuracy. Figure 9 shows how 
maneuvering around input-label length can improve the 
performance of the AI models and that even with AE alone a 
significantly improved accuracy can be achieved at the optimum 
input-label length [(50,10)].  

 

 

 
Figure 7. The performance of LSTM configurations, features= [SSAE], 
(top) Feedback, (bottom): Singleshot. 

4  CONCLUSIONS 

This study introduces an innovative AI approach to predict the 
post-failure behaviour and residual strength of rocks based on the 
pre-failure patterns of AE energy. LSTM algorithms were 
implemented and properly trained using data generated through 
DEM simulations of rock under biaxial compression loading. A 
total of 17 DEM simulations were considered with varying 
interparticle friction values and constant interparticle bond 
cohesion. The results indicate that patterns of AE events prior to 
failure indeed contain valuable information about the emerging 
failure mechanisms leading to the post-failure decay in rocks,  
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Figure 8. Post-failure predictions by the AI models for different input feature combinations over selected test samples; in order from top left to bottom 
right: [SSAE], [SS], [S], [AE]; mu= 0.12  

 

 

 

 

 

 

 

 

 

Figure 9. Impact of slicing length on the post-failure predictions: (80,60) [left] and (50,10) [right]; Features=[AE] and mu=0.12 

and that LSTM algorithms can capture these complex 
correlations. Given the significance of the residual strength as a 
design parameter, this research puts forward a novel method to 
provide more reliable, dynamic estimates, by combining AE 
sensors and AI technology. The outcome shows the remarkable 
potential of deep learning methods for capturing complex 
patterns in the response of heterogeneous geo-materials. 
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