This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE.
Deformation of embankments on soft ground – Better computer simulation resulted from input data closer to the reality -

H. Ohta & T. Takeyama
Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro, Tokyo, 152-8552, Japan

T. Mizuta
Japan Highway Public Corporation, 1-4-2, Tenjin, Chuo, Fukuoka, Fukuoka, 810-0001, Japan

M. Nabetani
Sato Kogyo Co.Ltd, 4-12-20, Nihonbashihonmachi, Chuo, Tokyo, 103-8639, Japan

Y. Nishida
Asway Co.Ltd, 5-4, Nishiekimae, Ibaraki, Osaka, 567-0032, Japan

ABSTRACT

The mechanical behaviour of 5 pre-loading highway embankments placed on very uniform soft Ariake Clay is analysed by employing the soil/water coupled finite element programme DACSAR coded by Iizuka and Ohta (1987) incorporating an elasto-viscoplastic constitutive model proposed by Sekiguchi and Ohta (1977). A series of computer simulation confirms that a set of input data closer to the reality results in the better performance of the computer simulation especially in calculating the lateral movement of subsoil beneath the toe of the embankments.

1 INTRODUCTION

Computer simulation of the mechanical behaviour of soft subsoil during and after construction using soil/water coupled FEM is expected to reliably work when a set of input parameters close to the one representing the actual soil properties and initial and boundary conditions is chosen. In this paper, a trial series of computer simulation is made aiming at demonstrating that the choice of input parameters is amazingly influential on the computed results.

2 SITES SIMULATED (5 EMBANKMENTS ON A UNIFORM ARIAKE CLAY)

Analysed are the settlement of the ground surface, pore water pressure generated and lateral displacement during construction of 5 pre-load embankments placed at Takeo-Kitagata interchange of Nagasaki Highway shown in Figs.1 and 2. The clay layer is so uniform that the soil parameters must be identical in all the cases of 5 embankments. Therefore it is practically impossible to intentionally select the soil parameters of Ariake Clay in such a way that computed results match well with the mechanical quantities monitored at each of 5 embankments.
In this investigation, employed is a programme called DACSAR incorporating an elasto-viscoplastic constitutive model proposed by Sekiguchi and Ohta (1977). The outline of this constitutive model is shown in Fig.3.

As widely known, the change in void ratio due to loading under conditions of constant stress ratio \(\alpha / \rho' \) is derived as Eqs.(1) and (2) in Fig.3 from the \(e - \ln \rho' \) linear relationship. It is assumed that the change in void ratio represented by the normal consolidation line is elasto-plastic while the change in void ratio represented by swelling line is elastic. Change in void ratio \(d e_0 \) due to isotropic and/or anisotropic consolidation is described by \(d e_0 = d e_e' + d e_p' \), where the subscript \(c \) denotes the component due to consolidation, the super scripts \(e \) and \(p \) denote elastic and plastic components. Change in void ratio \(d e_0 \) under conditions of constant \(\rho' \) is called dilatancy (or contractancy) and is assumed to be irreversibly as shown by Eqs.(3) and (4), where \(D \) is coefficient of dilatancy proposed by Shibata (1963) and the subscript \(d \) denotes dilatancy. Ohta (1971) assumed that change in void ratio consists of components due to consolidation (Eqs.(1) and (2)) and dilatancy (Eqs.(3) and (4)) resulting in the total change in void ratio described by Eqs.(5) and (6). Eqs.(5) and (6) are integrated with the pre-consolidated state \((e_0, \rho_0', q_0)\) as the boundary conditions. The yield function \(f \) is obtained as Eq.(9) in which the plastic volumetric strain \(\epsilon''_v \) plays a role of hardening parameter while the volumetric strain \(\epsilon_v \) is defined as \(\epsilon_v = \epsilon - \epsilon_0 \). Eq.(9) is extended and generalized as Eq.(10) by Sekiguchi and Ohta (1977). The governing equations of a soil/water coupled initial/boundary value problem are (i) equations for soil skeleton (equation of consolidation, constitutive equation and equation describing strain-displacement relationship), (ii) equations for the pore water (continuity equation and Darcy’s law) and (iii) an equation for both of soil and pore water (definition of effective stress). The constitutive model (Eq.(10)) is incorporated in DACSAR as the stiffness matrix derived by spatial and time discretization of the weak form of equations of continuum and continuity. The construction sequence is described in the computer simulation as the change of boundary conditions and hence is required to be specified in detail close to the actual construction sequence.
At the site investigated, the paper drains (square spacing, 0.8m pitch) were installed to accelerate the consolidation settlement due to embankment loading. The installation of paper drains is supposed to have resulted in 30% of reduction of coefficient of consolidation c_v due to disturbance. Adopting the method proposed by Yoshikuni (1979), the apparent increase in coefficient of consolidation due to disturbance is supposed to have resulted in 30% of reduction of coefficient of consolidation c_v due to the shortening of drainage time both of Barron's horizontal-radial water flow and Terzaghi's one dimensional vertical water flow become to coincide. Table 2 summarizes the factor F_p to be multiplied to the coefficient of permeability for each pre-loading embankment.

<table>
<thead>
<tr>
<th>Table 1: Summary of input parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Factor to be multiplied to coefficient of permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-load</td>
</tr>
<tr>
<td>thickness of clay layer (m)</td>
</tr>
<tr>
<td>factor F_p</td>
</tr>
</tbody>
</table>

5 RESULT OF ANALYSIS

A series of computer simulation is carried out in 4 steps by using 4 sets of input data stepwisely getting closer to the reality of the construction work.

5.1 First step (Input parameters listed in Table 1)

The results of computer simulation on 5 embankments performed by using a set of input parameters listed in Table 1 are shown in Figs. 6 through 10 respectively for 5 embankments P1, P2, P3, P4 and P6.
In each of these figures, the mesh in vicinity of the embankment is shown at the upper right. The region of mesh formation actually used in the analysis is much wider than these figures in order to eliminate the influence of the boundary on computed results.

The graph at the upper left shows the input fill height of the embankment and the monitored fill height. The other two graphs in the lower part of each figure compare the computed values with monitored values of settlement, pore water pressure and lateral movement at the positions shown in figure of mesh. Results of the first step simulation are shown by ▲, indicating tolerable agreement between computed (▲) and monitored (represented by a curve without plots) values despite relatively simple procedure of the parameter estimation.

5.2 Second step (Analysis considering actual fill load)

The height of the fill is measured relative to the original ground surface and is not directly related to the thickness of the fill that is the height of the fill being added by the settlement of the fill. In the first step of the simulation, the fill load is calculated by simply multiplying the unit weight of the fill body and fill height together. In this second step the actual fill thickness is taken as the load rather than the fill height resulting in the computed values shown by ●. It is understandable that both of the computed settlement and the computed lateral movement are larger than the results ▲ obtained in the first step.

5.3 Third step (Analysis considering buoyancy)

The pore water expelled during consolidation was drained through the net work of the drainage channel being combined with shallow wells, however after the pumps in the wells stopped working, the ground water level recovered and came back to the original height of G.L.+0.0m resulting in the additional effect of buoyancy that reduces the fill load. Taking the effect of recovery of ground water level, the third step of the simulation is carried resulting in the computed values shown by ▼ which are closer to the monitored values except in the case of P1 embankment.

5.4 Fourth step (φ′-parameter estimated from triaxial test)

In the previous steps φ′-value of Ariake Clay is estimated as φ′= 23.3 and 24.5 (M =0.91 and 0.96) using Eq.1 in Fig.4 based on the plasticity index \(I_p \). because triaxial tests were not carried out on undisturbed samples taken from the site.

Matsumura and Miura (1990) reviewed the critical state parameter M of Ariake Clay sampled from various sites and concluded that M =1.065 ~ 1.622. In the fourth step of simulation, the authors assume that M=1.4 for Ariake Clay at the site and obtain the results shown by ● which are much closer to the monitored values compared with the computed results in the previous steps for all cases of P1 to P6. The excessive estimate of the lateral movement of the soft foundation loaded by an embankment was widely experienced by many research workers triggering discussions about the proper estimate of material parameters especially those related to anisotropy of the clay as well as the discussions on the actual reliability of the lateral displacements monitored by inclinometers. In the fourth step of the simulation, the increase in M successfully but unexpectedly results in much better agreement between monitored and computed values. This suggests that the general trend of estimating excessive lateral movement might have been generated from modelate estimate of shear resistance of clays and encourages more frequent usage of triaxial tests.

6 CONCLUSIONS

It is confirmed that computer simulation using the finite element programme DACSAR is primarily reliable enough to be used in engineering practice because the choice of input parameters closer to the reality both of material parameters and boundary conditions results in the computed values closer to the monitored values of settlement, lateral movement and pore water pressure during and after construction works.

It should be noted here that the first step of simulation in this paper has already been reported by Ohta et al. (1991) demonstrating the usefulness of the plasticity index \(I_p \) in parameter determination. This paper provides further information how the parameter estimation can be made closer to the reality and what the consequence of better choice of parameters is.

REFERENCES

Shibata,T: On the volume change of normally consolidated clays, Disaster Prevention Research Institute Annuals, Kyoto University, No.6, pp.128-134, 1963 (in Japanese)

Yoshikuni,H: Design and construction control of vertical drains methods, GIHODO SHUPPAN, 1979