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ABSTRACT: A thorough investigation on the application of neural computing methods in prediction of liquefaction potential o f soils 
has been performed. The emphasis was on obtaining optimized neural network architecture to model the complex relationship be­
tween the seismic parameters, soil parameters, and the liquefaction potential. A Probabilistic Neural Network (PNN) with anew  algo­
rithm for adapting the smoothing variable, a Recurrent Neural Network (RNN) and a neuro-fuzzy network were employed for this in­
vestigation. Different combinations o f input parameters and other network features were tried for each network. Performance of the 
network and its simplicity (minimum number o f input parameters) were two main criteria in order to arrive at an optimum network. 
Results were then compared with empirical methods. The comparison indicates improvements in accuracy o f the liquefaction poten­
tial assessment

RÉSUMÉ: La potentielle de la liquefaction est evaluee par les reseaux neurals et neuro-fuzzy. Le but est de trouver le reseau opti­
mum pour ce sujet. Afin d ’arriver a ce but, different types des reseaux tel que les reseaux probabilistique (PNN), recurrent (RNN), et 
neuro-fuzzy sont examines avec different combinaison des donnees. La comparaison montre la supériorité de cette approche.

1 INTRODUCTION

Earthquakes are one o f the most destructive natural hazards. N ii­
gata earthquake o f 1964 was among the early events showing the 
destructive effects that may result from liquefaction o f the 
ground. The liquefaction phenomenon may cause various ad­
verse effects ranging from sand boils and ground displacements 
to loss o f bearing capacity. The occurrence o f liquefaction is af­
fected by soil properties, geological conditions and ground mo­
tion characteristics.

To date, numerous investigations have been performed for 
determination o f liquefaction potential and several assessment 
methods have been developed. Empirical correlations between 
the soil properties and seismic characteristics and the occurrence 
o f liquefaction have been established using actual field records 
for liquefied or non-liquefied sites. A commonly accepted index 
indicating resistance o f soil to liquefaction is the standard pene­
tration test (SPT). For example, Tokimatsu & Yoshimi (1983), 
Seed et al. (1983), and Ambraseys (1988) have used the SPT and 
the cyclic stress ratio induced under an earthquake to evaluate 
the liquefaction potential. Berrill et al (1988) compared effective 
overburden pressure with the increase in pore water pressure that 
may result from an earthquake event to evaluate liquefaction po­
tential. It was considered that the increase in pore water pressure 
is proportional to the seismic energy dissipated.

Another major approach for modeling the complex relation­
ships o f effective factors and the occurrence of liquefaction is by 
Artificial Intelligence methods such as neural networks or fuzzy 
methodologies. Works by Dou & Berrill (1993), Goh (1994) and 
Habibagahi & Katebi (1996), fall within this category.

Neural Networks (NN) have recently received lots o f atten­
tion and contributed in a wide variety o f applications in civil en­
gineering as well as in other fields. They have been found to be 
useful for modeling the complex relationships involved in physi­
cal phenomena and used in place o f equation-based models. A 
neural network is a massively parallel-distributed processor 
made up of simple processing units, which has a natural propen­
sity for storing experiential knowledge and making it available

for use. This paper studies the performance of various types of 
these networks to verify their feasibility and performance.

2 NEURAL NETWORKS

Due to the everyday growing o f neural networks applications, 
today the concept o f the neural network is widely known and can 
be considered a matter o f  general information. Therefore, in this 
paper the features o f the networks used are described briefly.

2.1 Back-Propagation Neural Networks (BPNN)

These are networks o f layered neurons with massive intercon­
nections. A numerical weight is associated to each connection, 
which determines the nature and strength o f the influence be­
tween the interconnected neurons. The weighted sum o f the in­
puts is then transmitted through an activation function. Figure 1 
shows the architecture o f a typical BPNN (often called feed­
forward network) composed o f three layers. The input layer pre­
sents the data and the output layer holds the response o f the net­
work. It may have one or more hidden layers.

Input layer 0H idden layer O u tp u t layer

Figure 1. Typical feed-forward neural network architecture

The weights assigned to each connection are modified 
through a learning process in which a series o f patterns com-
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posed o f pairs o f input and target is fed to the network. This 
learning process (training) tends to adjust the weight matrices of 
the network in order to minimize the error measure o f the net­
work, defined by:

£  = (1) 
 ̂ i

where t| is the target o f the i* input pattern and out; is the output 
o f the network for the same input pattern

A common training algorithm is the back-propagation model 
(Rumelhart et al 1986). Back-propagation is an iterative algo­
rithm that uses a gradient descent method to calculate the 
changes in the weights and ultimately to reduce the error to an 
acceptable value. Weight updates may be performed each time 
an input is presented to the network (online method) or the error 
may be averaged and weights changed over all input patterns 
(batch method). Details o f the back-propagation method can be 
found in the related publications. Figure 2. B lock diagram for PNN (with two class decision making)

2.2 Recurrent Neural Networks (RNN)

These networks are fundamentally very similar to the feed­
forward networks. It is now recognized that RNNs are usually 
superior to other kinds o f networks in learning sequential (or 
time varying) patterns since their hidden nodes can transmit their 
outputs to both input and output layers simultaneously (Zhu, et al 
1998). In this study, a simple recurrent net was used, which can 
be considered, as a “partially recurrent” net in which, only the 
outputs from hidden neurons were fed-back to the input layer. 
The process o f training a recurrent network is identical to what 
was discussed previously for feed-forward networks with back- 
propagation o f errors (BPNN).

2.3 Probabilistic Neural Networks (PNN)

The probabilistic neural net is constructed using ideas from clas­
sical probability theory, such as Bayesian classification, and 
classical estimators for probability density functions, to form a 
neural network for pattern classification. Compared with back- 
propagation, PNN offers major advantages such as rapid train­
ing, easy data add or remit, and guaranteed convergence. The 
PNN is a direct outgrowth o f earlier works with Bayesian classi­
fiers. Bayesian classification requires a pdf (probability density 
function) for each class. Parzen (1962) developed such a tech­
nique to estimate the pd f from sparse, real-world data sets, which 
are commonly called the method o f Parzen windows. A unit area 
Gaussian curve (basis function) is drawn for each sample in the 
training set (in that class) centered at the value o f the feature. All 
o f the curves are then added to produce the composite curve. 
Parzen showed that with a large number o f samples and suitable 
scaling, the composite curve approaches the true pdf. The multi- 
category classifier may be expressed as follows (Wasserman, 
1993):

D( X )  = G r ^ f j h ; > f Jh; (2)
1=1 i= l

h; = e x p [ - ( X - Y ; ) r ( X - Y ; ) / 2 a 2] (3)

for all classes o f r not equal to s, where

D(X) = the decision on test vector X
0 r = Class r
X = Test vector
Y|r = ilh training vector o f class r (center o f basis function)
n, m = training vectors in classes r and s respectively 

PNN is a network representation o f this approach, shown in Fig­
ure 2.

2.3.1 Training the p d f  Shapes

It is possible to improve accuracy by adjusting the shape o f the 
basis function. This may be accomplished by generalizing the 
exponential function o f equation (3) to the following:

h ' = e x p [- (X  -  Y ; ) r  K (X  -  Y,r ) /  2] (4)

where K  = the inverse o f  the covariance matrix o f the input 
vectors

2.4 Adaptive Network-based Fuzzy Inference System (ANFIS)

ANFIS is a fuzzy inference system employing fuzzy if-then rules 
proposed by Jang (1993). It can model the qualitative aspects of 
human knowledge and reasoning processes without employing 
precise quantitative analyses. ANFIS can serve as a basis for 
constructing a set o f fuzzy if-then rules with appropriate mem­
bership functions to generate the stipulated input-output mem­
bership functions. The network is composed o f five layers as 
shown in Figure 3. Each layer performs a certain task as de­
scribed below:

Layer 1: The nodes in this layer represent the fuzzy sets as­
signed to each input variable. A bell-shaped membership func­
tion is often used. The output o f this layer is the membership 
functions evaluated for a set o f input variables. This layer con­
tains unknown parameters defining spread, center and shape o f 
the membership functions.

Layer 2: In this layer each node performs a multiplication of 
the input signals and outputs the product to the next layer. The 
number o f nodes in this layer represents the number o f fuzzy 
rules available in the network and the outputs, w represent the 
firing strength o f the pertinent rules.

Layer 3: Each node in this layer determines the normalized 
firing strength o f each rule determined by:

^  = (5) 

where N = number o f fuzzy rules available in the network
Layer 4: The output o f this layer is the product o f the normal­

ized firing strength and a function f  which is a linear combina­
tion of the input variables plus a constant term, expressed by:

O■ = w J i  = w, ( p i X x + 2 + r,.) (6)

where p„ q, and r, = unknown parameters o f this layer to be de­
termined by training the network.

Layer 5: The output layer with one node simply sums all the 
inputs from the previous layer
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Table 2. W eights for network #5

Figure 3. Typical ANFIS architecture

Table 1. Results for the selected networks

z Success Rate
Parameter

s
o
S'

Combination Network
Type

h„* Train Test
Overall

(%)

1
M, N i60,

Co, (j'o, Dso
BPNN 4 94/105 25/29 88.8

2
M, AT,60, 

o'o, D 50, Fc
BPNN 5 100/105 25/29 93.3

M, W,60, (To,

3 tf'o, D50, Fc, 
Rr

BPNN 8 55/55 10/11 98.5

M, N i60, cto,
4 a'o, D50, Fc,

R.

RNN 5 62/62 15/16 98.7

5 M, AT,60, Rc BPNN 2 72/79 19/20 91.9

6 M, W,60, Re PNN - 73/79 15/20 88.9

7 M, AT,“ , R; ANFIS - 79/79 18/20 97.8

h„ = Num ber o f  neurons in hidden layer

3 DATABASE PROCESSING

The accuracy and performance o f a neural model for any phe­
nomena is severely affected by the database on which its learn­
ing phase had been based. Firstly, a good understanding o f the 
physical phenomena is required to make use o f relevant parame­
ters in building the model. Secondly, it is very important to take 
care o f the consistency and reliability o f records when they are 
obtained from different sources. In this study, a total number of 
188 records o f liquefied or non-liquefied case histories from 
various earthquakes around the world were employed to prepare 
the necessary database. The records were compiled from works 
reported by Davis & Berrill (1982), Ambraseys (1988), Haeri 
(1991), Bartlett & Youd (1992), and Christensen (1995). Unfor­
tunately, not all o f the 169 records contained full information of 
all the effective parameters. M ost o f the records were lacking R* 
or Rf while some suffered from inexact values for D50 or Fc.

4 NEURAL NETWORK ANALYSIS

Hidden _________Connection W eights
Neurons M N ,“ R« Output

1 -0.455 -1.265 -12.94 16.79
2 16.536 -17.91 -4.31 8.755

bias - - - -6.55

Relative 
Importance (%)

22.9 27.4 49.7 -

Table 3. The empirical methods performance

M ethod Rate o f  Success (%)

Tokimatsu & Yoshimi 77.5
Seed et al. 77.2
Berrill et al 86.9
Ambraseys 81.2

cess rates were selected for further studies (networks #5, #6 and 
#7 in Table 1).

Table 2 presents the weights for the network #5 together with 
the relative importance o f various input parameters determined 
using the algorithm proposed by Garson (1991). From this Table, 
it may be concluded that the epicentral distance has the highest 
importance compared to other input parameters.

5 PARAMETRIC STUDY

In this section, the liquefaction potential is evaluated from re­
sults obtained from networks #5, #6 and #7 o f Table 1. Figures
4, 5 and 6 indicate the boundary curves separating liquefiable 
and non-liquefiable zones for networks #5, #6 and #7 respec­
tively. All graphs o f Figures 4, 5 and 6 indicate that the SPT-N 
values separating liquefaction and non-liquefaction zones in­
crease with a decrease in the epicentral distance. The figures also 
indicate that for low SPT-N  values, the epicentral distance on the 
separating curves is only a function o f the earthquake magnitude. 
These upper bounds o f epicentral distance for liquefaction, 
shown in Figure 5 are relatively consistent with the empirical the 
equation proposed by Ambraseys (1988).

6 COMPARISON WITH PREVIOUS WORKS

Conventional methods available were used to predict liquefac­
tion potential for records compiled in the database in order to 
compare their performance with that o f neural networks. These 
methods include approaches proposed by Tokimatsu & Yoshimi 
(1983), Seed et al (1983), Berrill et al (1988), and Ambraseys 
(1988). The success rates o f the above-mentioned methods are 
presented in Table 3.
It should be mentioned that the function C(N), used in the equa­

tion proposed by Berrill et al (1988), was recomputed using the 
current database. Comparison o f these results with Table 1 ind- 
cates advantage o f A l methods over conventional approaches.

As described before, four different types of neural networks of 
BPNN, RNN, PNN, and ANFIS were utilized for the present 
study. These networks with 11 combinations o f input parameters 
were used to study the liquefaction potential. Each of the four 
neural network types was examined using the above-mentioned 
combinations. For BPNN (Back-Propagation) and RNN (Recur­
rent Neural Network), various numbers o f neurons for the hidden 
layer were tried in order to achieve the best performance for the 
network. The networks with higher performances or lower com­
plexity (i.e. lesser number o f input parameters and hidden neu­
rons) were chosen for further study. These networks are shown 
in Table 1.

With increasing number o f input parameters distinct im­
provements in the performance of the networks were noticed, 
however, due to the high complexity o f these networks and the 
limited number o f records available, simple networks with 
minimal number o f input parameters and having acceptable suc-

7 SAFETY FACTOR EVALUATION

Safety factor for liquefaction has been traditionally been defined 
as the ratio o f the resisting cyclic stress ratio to the cyclic stress 
ratio induced by seismic event. It is known that in constant con­
ditions o f earthquake magnitude, depth and soil properties; the 
developed cyclic stress ratio is proportional to the peak horizon­
tal acceleration (Tokimatsu & Yoshimi, 1983). Thus, we may 
redefine the liquefaction safety factor as the ratio o f horizontal 
acceleration required to liquefy a given soil (an index o f soil re­
sistance to liquefaction) to the maximum horizontal acceleration 
experienced from an earthquake. In other words:

c  r .  _  ( a )  LIQUEFACTION (7) 
=  7-------- \ --------------------

Va max )EARTHQUAKE
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Figure 4. Prediction curves for network #5 (lower-left zones o f  each 
curve represents liquefaction)

M -5.5

0  10 20 30 40 50

M ^ 5

10 20 30 40 50

1*7.5

Figure 5. Prediction curves for network #6 (lower-left zones o f  each 
curve represents liquefaction)

8 CONCLUSION

In this paper, several types o f NN were employed to assess the 
liquefaction potential. A comprehensive database was compiled 
from available records from all over the world. NN results indi­
cate that simple NN with a minimal number o f input parameters 
(earthquake magnitude, M, epicentral distance, R*, and SPT 

value, N *°) is superior to conventional methods available for 
evaluation o f liquefaction potential. The results indicate that the 
farthest epicentral distance to liquefaction sites is independent of 
SPT values. However, this critical R* value increases with earth­
quake magnitude. Furthermore, a simple procedure was pro­
posed to evaluate the safety factor against liquefaction for a 
given site and a given earthquake.

O'------------------------  01---- ----- ----- '----------
0  10 2 0  3 0  4 0  50  0  10 2 0  30  4 0  50

N l 6“ N l “

Figure 6. Prediction curves for network #7 (lower left zones o f  each 
curve represents liquefaction)

Figure 7. Example for the calculation o f the safety factor

An appropriate attenuation law is then required to calculate ac­
celeration values versus epicentral distance to be used in con­
junction with the liquefaction prediction graphs presented in 
Figures 4, 5 and 6. The following equation is proposed for the 
correlation between R* and a.

a max=1.3328e02^ ( 1 9 .7 7 + / y - 0,M56 (8)

An example o f the safety factor computation is illustrated in 
Figure 7.
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