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General relaxation équations for soils 
Equations générales pour la relaxation des sols

Eulalio Juérez-Badillo — Graduale School ot Engineering. National University o! Mexico

A B STR A C T: T he princip le o f  natural proportionality  that has already provided m any general equations to describe the  m echanical 

behaviour o f  geom aterials is applied  to obtain general equations to describe the relaxation behaviour in the pre and postpeak regions 

o f  so ils in general and to a frozen sand in particular. T h is particular frozen sand had an “ inverted” stress-strain  behaviour in the 

p repeak  region. A  general stress-strain  equation for it and general equations to describe the volum e change behaviour in the pre and 

postpeak  reg ions are included. The strength and tim e o f  failure relationship is also included.

R ESU M E: Le principe de la proportionnalité naturelle qui a déjà fourni de nom breuses équations générales perm ettant de décrire le 

com portem ent m écanique des géom atériaux est ultilisé pour décrire la relaxation dan les dom aines antérieur e t postérieur au p ic  de 

résistance des sols en général e t d ’un sable congelé en particulier. Ce sable congelé présente un com poirtam ent “ inverse”  avant le pic. 

Des équations générales décrivant les relations constraintes-déform ations et les variations de volum e son t présentées. U ne relation 

entre la résitance e t le tem ps de rupture est égalem ent incluse.

1. IN TR O D U C T IO N

T he princip le  o f  natural proportionality  postulated in 1985 

(Judrez-B adillo  1985) is a unifying principle from  w hich m any 

general equations, used to describe the m echanical behaviour o f  

geom aterials, have  em erged. This tim e the stress-strain , volum e 

change and relaxation  behav iour in the pre and postpeak regions 

o f  a  frozen sand are analyzed and described with already know n 

as well as new  general equations provided by the principle o f  

natural p roportionality . A  special characteristic o f  this frozen sand 

is that it show ed  an “ inverted” stress-strain  behaviour in the 

p repeak  region. T his experim ental data has already been 

published by (Ladanyi and B enyam ina, 1995).

2. ST R ESS-ST R A IN  EQ U A TIO N S IN T H E  PRE A ND 

P O SPEA K  R EG IO N S

Figure 1 show s the experim ental points and the theoretical 

curves o f  three short-term  triaxial com pression tests w ith frozen 

O ttaw a sand  carried  ou t at -5 ° C  and a strain rate o f  0 .016 m in '1. 

F igure 1(a) show s the results o f  the three tests. F igure 1(b) show s 

the result o f  only  one test; the resu lts o f  the o ther tw o tests have 

been deleted  to gain clarity since they w ere very sim ilar to the one 

show n (cr3 = 100 kPa). From  figure 1(a) it is obvious that w e have 

tw o m echanical phases; the prepeak  and the postpeak regions 

w here the  peak  strength  appears to occur for a failure deviatoric 

natural strain  eaj  = -3 .0  %. (The com m on axial strain t a w ill be 

considered  as being very close to the axial deviatoric natural 

strain  ea). For the prepeak region if  w e take (cti -  a 3) and e„ as 

the p roper variables, the corresponding proper funtions are 

(cj| -  ct3) and l /e a -  \le af and the equation given by the 

p rincip le o f  natural proportionality  is (Juarez-B adillo  1985, 

1992):
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I f  w e use the characteristic stress (a ,  -  a , ) '  = 3.0 M Pa for 

the strain  ea =  'A eaf we m ay w rite equation (1) as:
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w here v is the shear exponent (Juarez-B adillo  1994 b, 1995 a).

Figure 1(a) show s equation (2) that appears to describe the 

prepeak behaviour for the three confining pressures o f  100, 200 

and 300 kPa w ith the values noted above and w ith v =  1.

A com m on value o f  the shear exponent for drained tests on 

clays, sands and concrete is also v =  1. F or undrained  tests on 

clays a com m on value is v = 2 (Juarez-B adillo  1994 b, 1995 a, 

1996 a. b).

For the postpeak  region the equations are sim pler. N ow  the 

p roper functions are the p roper variables and the equations are o f  

the form  (Juarez-B adillo  1996 b).

cr -cr.

(o, "Ob),
(3)

w here [ ( o i - a 3)i, eai] is a  know n po in t and again v =  1. The
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Fig 1 Results o f three short-term triaxial compression tests 

with frozen Ottawa sand at -5° C and 0.016 min '.

(a) Stress-strain curvcs. (b) Volume strain curves.
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corresponding equations for a 3 = 100, 200 and 300 kPa are with 

the known points [(CT|-ct3)i, e„i] = (5, -4.0), (5, -5.0), and (5, -5.6) 

respectively .

-0 .1 5

10 - 0 . 0 3 - e
-1 (10)

3. VOLUME CHANGE EQUATIONS FOR THE PRE AND 

POSTPEAK REGIONS

A general volume change equation in the prepeak region for 

clays has already been postulated (Juarez-Badillo 1969, 1975), 

(Juarez-Badillo and Rico-Rodriguez 1975). A similar equation has 

already been postulated for sands, concrete and rocks (Juarez- 

Badillo 1996 a, b, 1999, 2000). It is also usefiil for our case. It 

reads:

v _ [ crc.„ + A a, - a(am - aa, )y
(4 )

Figure 1(b) shows equation (10) in a discontinuous curve. We 

need now to determine the parameters a , p and e a .They can be 

determined from de postpeak behaviour. For this region the final 

equation introducing equation (10) into equation (7) with the 

limiting value of ea = em. = -2.2% we obtain (a e0 = 10 MPa and 

0̂  = 0.1 MPa)

AV
=  —  = 1 .2 7 5 -c a 0 .9 9 ~
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where V = volume, V0 = initial volume, a„, = initial equivalent 

consolidation pressure, a co = initial consolidation pressure, Aa, = 

isotropic pressure increment, y = compressibility coefficient and y  

= sensitivity function given the equation

y  =

l

i +

/  \

\ e a J

(5 )

where ea = characteristic ea such that y  = 'A for ea =  ea and 

(3 = a pore pressure coefficient.

Equation (4) has as assumption that CT„, is much greater than 

Gco and with y  given by equation (5) includes the postpeak region, 

that is, when ea varies from 0 to oo.

Equation (4) may be written as a function of strains only. 

From equation (2) we get:

a ,  - a } = (cr, - e r j

\ l / v

\ e °f

(6)

Introducing equation (6) into equation (4) we get (v = 1 )

From the final part of the experimental curve ea is large, y  is 

close to unity and the value of a  was found equal to a  = 0.95 (It 

should always be less than 1). Using the experimental curve for y  

= '/: the value of e„ = -3.6% was determined and using the 

complete experimental curve was found the value p = 3.

For the prepeak and postpeak regions the final equation is:
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Figure 1 (b) shows in a continuous curve the theoretical curve 

given by equations (11) and (12) with the values a  = 0.95, p = 3 

and e„* = -3.6%.

It should be observed, however, that the values o f the 

parameters a  and y are highly dependent on the value of crc„ . The 

value of y is directly proportional to a ^  (equation 9) and the value 

of a  is approximately inversely proportional to The correct 

determination of needs tests at high values of o c0.

v =L M

K 3 cr.
(7 )

However, due to the “inverted” characteristic of the prepeak 

region, equation (7) is to be used only in the prepeak region for e a 

from 0 to a critical strain eac corresponding to the maximum 

experimental value of ct, - = 8 MPa. From equation (2) we 

obtain e ac = -2.2%.

For shear strains grater than e ac. = -2.2%, equation (7) is to be 

used with this value of e a = eac in its first term. At the start of the 

test, say, from a , - ct3 = 0 to 3 MPa the change in volume is 

mainly due to Aa,. This fact permits calculate y given a e0 in 

equation (4). In this zone we have:

, dV  1 ¿/(cr.-cr,)
dev = —  = - - y  v J------u  (8)

V  3 a

that

y_

cr.

From the experimental data in figure 1 it was found, therefore,

de,.
=  -3

d(a, -fj3)
= 3*0.005=0.015M /V

(9 )

The author found convenient to use 0 «, =10 MPa and y = 0.15 

with am= 100 kPa = 0.1 MPa. With these values and (a, - a3)* = 

3MPa and eaj  = -0.03 equation (7) with only the first term 

becomes

4. RELAXATION EQUATIONS FOR THE PRE AND 

POSTPEAK REGIONS

The principle of natural proportionality has already provided 

general equations for creep (Juarez-Badillo 1994 a). General 

equations for relaxation may be obtained proceeding in a very 

similar way: to attain a given shear strain at / = 0 it is needed a 

value of a , -a3 = oo. As time elapses the value of CT| - a 3 relaxes 

such that at t = °c the value of ai - a 3 = (a, - a^* . Assuming that 

these concepts are proper variables their proper functions are t and 

(a, - a 3) -  (a | - a 3)x. The relation between them according to the 

principle of natural proportionality should be:

[ fo  -  a 3 ) -  (^l -  ^3 L  Y  = C0nstant (13)

where (; = shear fluidity whose value should be the same than for 

creep tests according to the same principle .

If (a, - Ctj )* = 0 as it appears to be for ice and frozen soils 

(Juarez-Badillo 1993 a, b, 1995 b) then equation (13) may be 

writen as:

(T, - £ 73 =(CT, (14)

where [tj, (ai - a 3)|] is a known point.

The correct application of equations (13) and (14) as well as 

the correct application of the general creep equations needs, 

however, a correct time scale . An error that we all still make is to 

divide strains in instantaneous or initial and differed (creep) as
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well as with loads: instantaneous or initial and relaxed. Nothing 

can happen in time zero, all strains and all loads are time 

consumming. This needs to be taken into account in all creep 

tests as well as in all relaxation tests. This fact has caused some 

misunderstanding in the past (Juirez-Badillo 1993 a, b).

Figure 2 shows the stress-strain curves with seven relaxation 

stages and figures 3 and 4 show the prepeak and the postpeak 

relaxation curves in log-log plot. From figure 3 it appears, that the 

authors of the experimental curves measured the times from the 

moment they arrived at the specified strain with the noted strain 

rate of 0.016 min'1. It is necessary, therefore, to take a part (that 

resulted of the order of 75%) of the time needed to arrive to the 

specified strain to define the “theoretical origin” of the time scale. 

Let t0 be these quantities. The relaxation curves, therefore, will 

take the form given by the equation:

r, - o - 3 = ( e r , - a , ) ,
'  t  + t n v i

\ t \  ^0 J

(1 5 )

Taking ti = 10,000 sec the author found values of ^ = 0.16 and 

0.18 (with one value of 0.11). The values of the different 

parameters are: t, = 0 .11, 0.16, 0.18, 0.16, 0.16, 0.16; (ai - 03)1 = 

0.31, 0.72, 1.35, 2.00, 2.50, 2.80; t0 = 20, 30, 50, 50, 80, 90 for the 

axial strains -0.5, -1, -1.5, -2, -2.5 and-3%  respectively.

Figure 4 shows the postpeak relaxation experimental points 

and the theoretical curves given by equation (15) with S, = 0.18, t0 

= 0 and the values o f (cti - a 3)i at t = 10,000  sec given by the 

following equations for the axial strains ea = -4 and -10%  

respectively:

cr, -  <j 3 =  2 .20
10,000

cr, = cr3 = 0.95
10,000

(16)

(17)

Note that for the postpeak region t0 = 0. It remains to find out 

why here it is so.
For creep tests, the complementary equation to equation (14) is 

(Juarez-Badillo 1994 a)

e =  e
t

- 1 (18)

where fy= time of physical failure (e„ = 00) and ea = characteristic 

ea for t = I/2 tj.

Figure 2 also shows the same theoretical curve given by 

equation (2) for the prepeak region as well as as the final postpeak 

theoretical curve given by the equation:

Time (s)

Fig 3 Test 6 : prepeak relaxation curves in log-log plot

Time (s)

Fig 4 Test 6 : post-pcak relaxation curvcs in log-log plot

* „ (% )  = - 8 .0

cr, -  cr,
(19)

Note that the strain -8.0% for the stress 5 Mpa is now higher 

than -5.6%  in figure 1 due to the path and history dependence. 

Note also the influence of the early relaxation stages on the final 

ones in the prepeak region.

5. STRENGTH-TIME EQUATION

All geomaterials when loaded present two zones with respect 

to strength. If the load is sufficiently small the strains will 

continue as time elapses (creep) asymptotically to a final value at 

/ = 00. The general equation for creep is (Juirez-Badillo 1994 a):

Axial strain. £„(%)

Fig 2 Test 6 : frozen Ottawa sand at -5° C. Stress-strain curve 

with 7 relaxation stages

=

1 +

r t \ s
(20 )

V» /

where ea} = final value of ea at / = 00 and t' = characteristic time 

for ea = Z2 eaJ.
If the load is sufficiently large the strains are described by 

equation (18) until failure at time iy. The time of failure tf 

decreases as the load increases. There is a threshold of the load, 

(a 1 - a j ) ^  such that the failure occurs at t = a>. If (a, - a,) < ( a, - 
O jj^w e are in the stable zone. If (a, - ct3) > (a, - CTi)^. we are in

TEST 6

300 kPa

-• — •- Experimental points 
(After Ladanyi and 
Benvamina)

— Theoretical curves
3 % ,  ( t r , -< T » r *3 M P a
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the unstable zone. The relationship between a failure load (cti - 

CTj)y and time of the failure If provided by the principle o f natural 

proportionality is (Judrez-Badillo 1994 a):

( °~1 ) j
■ =  1 + (2 1)

V» /

where C, = strength fluidity and t -  characteristic time for which 

(a, - ct3)/=  2 (a,

If (a  | - CTj)y„= 0, equation (21) becomes:

(CTi - ° ) ) f  = ( o -  - < 7 3) / 1

f  \~s 
t

\ t \  J

(22)

where [/i, (cti - a 3)/y] is a known point.

It appears that for ice and frozen soils (ct i - tfj)/» = 0 (Juirez- 

Badillo 1993 a, b, 1995 b).

Juárez-Dadillo, E. 1995 b. Shear and strength fluidities of ice. X  

Panamerican Conference on Soil Mechanics and Foundation 

Engineering. Guadalajara, Jal., México, Vol. 1: 2IS-222.

Juárez-Badillo, E. 1996 a. General equations to describe the mechanical 

behaviour o f concret. Pending of publication.
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6 . CONCLUSIONS 

The main conclusions are:

1.- General equations to describe the relaxation behaviour in the 

pre and postpeak regions o f geomaterials have been presented.

2.- A general equation for the “inverted” stress-strain behaviour 

in the prepeak region of a frozen sand has also been presented.

3 -  A general volume change equation for the pre and postpeak 

regions of the above mentioned frozen sand has also been 

presented.

4.- An important point in creep and relaxation tests is to properly 

define the theoretical origin of the time scale since all strains and 

load changes are time consuming, that is, instantaneous or initial 

strains or loads do not exist. Nothing happens in time equal zero.

5.- A general strength-time of failure equation for frozen soils is 

included.
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