
INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

https://www.issmge.org/publications/online-library


Advanced characterization of granular material behavior using artificial neural 

networks

Caractérisation avancée du comportement de matériel granulaire sous l’emploi des réseaux artificiels 

neurologiques
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H.Ceylan & U.Seyhan -  Graduate Research Assistants, Department of Civil S Environmental Engineering, University of Illinois at Urbana-

Champaign

ABSTRACT: Artificial neural network (ANN) based granular material modulus models have been developed and compared for 

performance using the previously reported test data o f  Boyce (1976), Pappin (1979), and Tutumluer & Seyhan (1999). The pri­
mary goal has been to properly characterize the loading stress path dependent resilient behavior from advanced repeated load tri­
axial tests that can simulate in the laboratory the actual moving wheel load conditions. Due to the complex loading regimes fol­
lowed in the laboratory tests, ANN characterization models that altogether considered as inputs the static and dynamic 

components o f  the applied mean and deviator stresses and the loading stress path slope produced the greatest accuracy. Such ad­
vanced models can better describe the granular material behavior under the actual field loading conditions.

RÉSUMÉ: Les modèles de module du réseau artificiel neurologique (ANN) basé sur les matériels granulaires ont été développés 

et comparés pour leur performance avec l ’application des données des essais préalablement citées de Boyce (1976), Pappin 

(1979) et de Tutumluer et Seyhan (1999). Le but principal a été de bien caractériser le comportement résilient qui dépend de la 

voie d’accès de chargement basé sur des essais d’examens avancés et répétés à trois axes qui peuvent simuler dans le laboratoire 

les conditions véritables de chargement mobiles de roue. A cause des régimes complexes de chargement suivis dans les essais 

en laboratoire, les modèles de caractérisation de ANN qui considéraient entièrement comme données les composants statiques et 
dynamiques des efforts appliqués de moyen et de déviation ainsi que la pente de voie d ’accès d’effort de chargement 
produisaient la plus grande exactitude. De tels modèles avancés peuvent mieux décrire le comportement matériel granulaire 

sous les conditions véritables de chargement.

1 INTRODUCTION

Unbound granular materials commonly used in bases/subbases 

o f  pavements serve the primary purpose o f  load distribution 

through aggregate interlock that is essential to the integrity o f  

the pavement. The resilient (elastic/recoverable) response o f  

these granular materials to dynamic wheel loading is typically 

attained in the field after a shakedown state is reached. In 

triaxial conditions, the resilient modulus has been best
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obtained from the repeated load test data when both the mean 

pressure p = (C| + 2o3)/3 and the deviator (shear) stress q = 

(0 | -  o 3) are included in the material characterization. To 

better characterize the behavior o f  unbound granular layers, 
however, it is important to properly simulate in the laboratory 

the actual field loading conditions including the effects o f  

moving wheel loads. Recent studies on pavement 
analysis/modeling at the University o f  Illinois have recognized 

the effects o f approaching and departing loads (rotation o f
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Figure 1. Training Progress Curves for ANN Models 1 and 7 for the Tutumluer & Seyhan Data
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principal stresses) along with identifying directional variation 

(anisotropy) in material properties.
This paper presents the results o f  a modeling study recently 

undertaken at the University o f  Illinois to develop artificial 
neural network (ANN) based advanced characterization mod­
els for granular materials. The primary goal is to properly 

characterize the loading stress path dependent resilient behav­
ior from advanced repeated load triaxial tests that can simulate 

in the laboratory the actual moving wheel load conditions. Ar­
tificial neural network (ANN) material models have been de­
veloped and compared for prediction performances using the 

previously reported stress path test data o f  Boyce (1976), Pap- 
pin (1979), and Tutumluer & Seyhan (1999). The test data are 

obtained from comprehensive laboratory-testing programs in 

which tests were conducted to apply various stress path load­
ings on the granular material specimens. ANN models are 

studied to capture the effects o f  static and dynamic bulk and 

shear stresses and the loading stress path.

2 FIELD AND LABORATORY STRESS STATES

The pavement in the field is usually loaded by moving wheel 
loads, which at any time impose varying magnitudes o f  

vertical, horizontal, and shear stresses in the aggregate layer 

accompanied by the rotation o f  the principal stresses. This 

type o f  dynamic loading can not be ideally simulated in the 

laboratory by the constant (sialic) confining pressure (CCP) 
type repeated load triaxial tests, which have been commonly 

used in the United States since late 1960s and recognized as 

the standard procedure (AASHTO T294-94). In the CCP 

tests, it is only possible to apply one constant stress path 

(Aq/Ap = 3) representing those stress states that occur directly 

under the wheel loading. Yet, due to the moving nature o f  the 

wheel load, the major principal stress is often not aligned in 

the vertical direction, but rotates in the direction o f  the applied 

load. Depending upon the location, the total principal stresses 

on a pavement element rotate by a certain rotation angle as the 

wheel load passes.
The variable (dynamic) confining pressure (VCP) type 

repeated load triaxial tests, on the other hand, offer the 

capability to apply a wide combination o f  stress paths by 

pulsing both cell pressure and vertical deviator stress. Such 

stress path loading tests better simulate actual field conditions 

since in the pavement structure the confining stresses acting on 

the material are also cyclic in nature. Typically, some radial 
distance away from the centerline o f  loading, the horizontal 
component o f  the dynamic wheel load can become greater in 

magnitude than the vertical component. In that case, an 

extension type o f  loading can be more critical on top o f  the 

base.

3 STRESS PATH TESTS ON GRANULAR MATERIALS

Three sets o f  complete triaxial test data obtained from testing 

aggregates under various realistic in-situ stress paths due to 

moving wheel loading were analyzed (Boyce 1976, Pappin, 
1979, and Tutumluer & Seyhan, 1999). Resilient (elas­
tic/recoverable) behavior was typically determined during re­
peated load triaxial tests after shakedown was reached. In all 
o f  these tests, both axial and radial deformations o f  the re­
peated load triaxial specimens were measured to individually 

account for the resilient response o f  the granular materials to 

combinations o f  both radial and vertical pulse loadings. A 

large number o f  VCP tests were conducted on a well-graded 

crushed limestone by Boyce (1976) and subsequently by Pap­
pin (1979) at the University o f  Nottingham in the UK. Sam­
ples having maximum particle sizes o f  38-mm (1.5-in.) were 

subjected to wide ranges o f  static and simulated traffic loading 

stresses by varying stress path slopes. Tests performed by 

Pappin (1979) also considered the additional effects o f  varying 

moisture conditions for dry, partially saturated, and saturated 

states.

More recently, Tutumluer & Seyhan (1999) used an ad­
vanced triaxial testing machine, referred to as University o f  Il­
linois FastCell (UI-FastCell), for determining in the laboratory 

the resilient properties o f  a crushed aggregate. Having inde­
pendent loading capabilities in the vertical and horizontal di­
rections, the UI-FastCell is ideally suited for simulating dy­
namic field stresses on the sample and for studying the effects 

o f  anisotropic, stress path dependent aggregate behavior. A se­
ries o f  combined CCP and VCP type stress path tests were 

performed on a crushed aggregate using the UI-FastCell. With 

the major stress direction conveniently switched, both com­
pression and extension type dynamic stress stales were ade­
quately applied on the triaxial samples. A total o f  six stress 

path tests were conducted on the crushed aggregate samples 

for the selected constant stress path slopes.
In general, the results o f  the testing revealed that the resil­

ient strains were affected by the mean normal stresses and the 

ratios o f  the deviator stress qdymmic to mean normal stress pdy. 
namic. i.e., stress path slopes “m” selected in the testing pro­
gram. The different conditions for the static (overburden) 
stress states defined by p„alic and qSUIic were also considered by 

including either a hydrostatic stress state or a Kn (= horizontal 
effective stress divided by the vertical) type condition.

4 NEURAL NETWORK MODELING OF RESILIENT 

BEHAVIOR

The resilient moduli (MR) for the various stress path tests con­
ducted by Boyce (1976) and Pappin (1979) and Tutumluer and 

Seyhan (1999) were computed from the measured axial and 

radial strains using axisymmetric stress-strain relations and as­
suming isotropic material properties. Considering the three- 
dimensional nature (3-D) o f  the static and dynamic stresses 

applied in the VCP tests, the resilient modulus (MR) can be 

best obtained from the experimental data when both the mean 

pressure p = I]/3 = 0/3 (0 = bulk stress) and the shear stress q 

= (3J2)v = (3Tncl/V2) (toc1 = octahedral shear stress) are in­
cluded in the material characterization models. Such models, 
proposed previously by Lade and Nelson (1987) and Uzan et 
al. (1992) represent the stress dependency o f  the resilient 
granular material behavior as power functions o f  the 3-D stress 

states.
A total o f  seven different ANN based characterization 

models, which account for the static, dynamic, and total stress 

states and the stress path slope m, were studied and compared 

for performance in predicting the output, experimental Mr  

from the works o f  Boyce (1976), Pappin (1979), and Tutum­
luer and Seyhan (1999). The input variables o f  these models 

are given as follows:

ANN Model 1: 0Iora]
ANN Model 2: 6 sl01lc and 0 , ^ ^
ANN Model 3: 0,olal and (Toc,),0,al 
ANN Model 4: 0slolic, and ( V ,)'01“1

ANN Model 5: 0 lolnl, (T„c, r ,ic, and (Tpc,)dynamic 
ANN Model 6 : 0staIic, 0dynamic, (xMf  "c, and (xoc,)dymm,c 
ANN Model 7: 0slalic, 0dynamjc, (T «)“ "', ( v , ) dyn“m,c, and 

“m”

where 0  (= C| + 2 o 3) is the bulk stress, t oci (= ^2/3 q) is  the oc­
tahedral shear stress, and m is the stress path slope used in the 

models.

4.1 Back-Propagation Artificial Neural Networks

Back-propagation type ANN models were trained in this study 

by using the delta-bar-delta-bar learning rule proposed by 

Ochiai, et. al. (1993) using laboratory MR data. An independ­
ent testing data set was used to check the prediction perform­
ances o f  the different ANN models. Back-propagation ANNs 

are very powerful and versatile networks that can be taught a 

mapping from one data space to another using examples o f  the 

mapping to be learned. The term “back-propagation network”

794



actually refers to a multi-layered, feed-forward neural network 

trained using an error back-propagation algorithm. The learn­
ing process performed by this algorithm is called “back- 
propagation learning,” which is mainly an error minimization 

technique (Haykin, 1999; Hecht-Nielsen, 1990; Parker, 1985, 
Rumelhart et al., 1986; & Werbos, 1974).

As with many ANNs, the connection weights in the back- 
propagation ANNs are initially selected at random. Inputs 

from the mapping examples are propagated forward through 

each layer o f  the network to emerge as outputs. The errors be­
tween those outputs and the correct answers are then propa­
gated backwards through the network and the connection 

weights are individually adjusted to reduce the error. After 

many examples (training patterns) have been propagated 

through the network many times, the mapping function is 

learned with some specified error tolerance. This is called su­
pervised learning because the network has to be shown the 

correct answers for it to leam. Back-propagation networks ex­
cel at data modeling with their superior function approxima­
tion capabilities (Haykin, 1999; and Meier & Tutumluer, 
1998).

4.2 Neural Network Design and Training

An adaptive method o f  architecture determination was em­
ployed to train the seven different ANN based characterization 

models (Ghaboussi et al., 1997 and Ghaboussi & Sidarta,
1998). Number o f  nodes in the input layers varied from 1 to 5 

as given previously and MR was the only node in the output 
layers for all network architectures trained. Only single hid­
den layer networks were considered due to the not very com­
plex nature o f  the function approximation (modulus charac­
terization) performed on the laboratory data.

In the adaptive method o f  architecture determination, the 

training starts with a small number o f  nodes in the hidden 

layer. The rate o f  learning is monitored as the training pro­
gresses. After a certain amount o f  learning cycles the network 

approaches its capacity and new hidden nodes are added at this 

point to generate new connections. The new cycles o f  learning 

after the addition o f  new nodes are only done with changing 

the new connection weights while the old connection weights 

are kept constant. Then, the additional cycles o f  learning take 

place by allowing all the connection weights to change. This 

procedure is repeated each time the network reaches its capac­
ity and the additional hidden nodes are added. The suitable 

network architecture is therefore automatically determined at 
the end o f  the training process. For all the seven ANN models 

trained in this study number o f  neurons in the hidden layer 

was started from 1 and increased up to 30 hidden neurons.
To train the ANN models, first the entire training data sets 

were randomly shuffled and divided into training and testing 

data sets. A  total o f  28 different data sets were used for the 

test data o f  (1) Boyce, (2 & 3) Pappin -  dry & partially satu­
rated materials - ,  and (4) Tutumluer &  Seyhan; each used to 

train the 7 ANN models. The number o f  individual test results 

varied from 75 and 150 in these data sets. About 80% to 90% 

o f  the data were used in each data set to train different network 

architectures while the remaining patterns were used for test­
ing to verify the prediction ability o f  each trained ANN model. 
Since ANNs leam relations and approximate functional map­
ping limited by the extent o f  the training data, the best use o f  

the trained ANN models were achieved in interpolation.
An adaptive type back-propagation ANN program devel­

oped by Sidarta (2000) was used for the training process, 
which consisted o f  iteratively presenting training examples to 

the network. Each training epoch o f  the network consisted o f  

one pass over the entire training data sets. The testing data sets 

were used to monitor the training progress. Figure 1 depicts 

for Tutumluer & Seyhan (1999) data the training progress 

curves obtained from ANN models 1 and 7 for a total o f  30 

different network architectures. After a certain number o f  

learning cycles the mean squared error (MSE) values leveled 

o ff for both models and adding more nodes to the hidden layer 

did not help further reduce the MSE values. MSE is defined as

the sum o f  the squares o f  the differences (error) between the 

predicted and actual moduli values for the given data set 
(training or testing). Figure 1 clearly shows that the more so­
phisticated the models get (model 7 with 5 input parameters), 
the lower MSE values are obtained when compared to the 

simpler ones (model 1 with a single input parameter). The 

very close MSE values obtained from the training and testing 

sets for model 7 (see Figure 1) is also a good indication of 

proper network training, in other word, the trained network ac­
tually learned the nonlinear relationship between the inputs 

and the output MR for the given data set.
For almost all o f  the ANN models trained in this study, the 

MSE values for both training and testing sets leveled off  

within the first 100  learning cycles with relatively small num­
ber o f  hidden nodes. For the simpler models (models 1, 2, and 

3), increasing the number o f  hidden nodes and continuing the 

training until a higher number o f  learning cycles did not help 

reduce the MSE values. The MSE values decreased more 

gradually and then leveled o ff for more sophisticated models 

(models 5, 6 , and 7).
Figure 2 depicts the prediction ability o f  ANN models 1 

and 7 trained using Tutumluer & Seyhan data (1999). As can 

be clearly seen in Figure 2, MR predictions from model 7 are 

much closer to the line o f  equality than the prediction from 

model 1. The average absolute error (AAE) for the 15 individ­
ual test results used as the testing data set for model 7 is 4.5% 

while the corresponding AAE value for model 1 is up to 

20.0%. The maximum absolute error (MAE) values obtained 

for models 7 and 1 are 13% and 65%, respectively.

Figure 3 shows the MSE values o f  the seven different ANN  

models trained in this study for each o f  the three different ex­
perimental studies. In all o f  the ANN trainings, very low val­
ues o f  MSEs were consistently obtained for the more sophisti­
cated ANN models, i.e., models 6  and 7. When the bulk 

stresses, 0 , were separated into static and dynamic components 

only (model 2 ), the predictions improved for the results o f  all 
three studies. A  closer look at the MSE values indicates that 
the octahedral shear stresses, t oc„ when they too were sepa­
rated into static and dynamic components, typically produced 

expressions with greater accuracy. The models therefore re­
vealed a trend in producing significantly better predictions 

(thus very low MSE values) when bulk and shear stresses, 0 

and toe, were both analyzed separately in static and dynamic 

components (model 6 ) rather than as a single total 0 and Tt*,. 
The inclusion o f  stress path slopes (model 7), in a way repre­
senting the direction o f  loading in the field, increases further 

the prediction performances and results in the greatest accu-

Laboratory Measured Moduli (MPa)

Figure 2. Comparison o f  Measured and Predicted Moduli 
for Tutumluer & Seyhan Data
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racy especially for Tutumluer and Seyhan data (1999) since 

changing the applied principal stress ratio has the most signifi­
cant effect on the directional dependency o f  the resilient prop­
erties. It is also interesting to note that the MSE values for all 
four o f  the data sets matched closely for models 6 and 7. This 

is probably due to the fact that trained ANN model 6 could 

capture in its connections the various stress path slopes m, 
which is a dependent variable and can be expressed as a func­
tion o f  the dynamic components o f  the bulk and shear stresses.

5 SUMMARY/CONCLUSIONS

A modeling study has been undertaken at the University o f  Il­
linois to develop artificial neural network (ANN) models for 

advanced characterization o f  granular materials used in the 

base and subbase courses o f  flexible pavements. The primary 

goal has been to properly characterize the loading stress path 

dependent resilient behavior from advanced repeated load tri- 
axial tests that can simulate in the laboratory the actual mov­
ing wheel load conditions. The ANN modulus models were 

developed using the previously reported stress path test data o f  

Boyce (1976), Pappin (1979), and Tutumluer & Seyhan 

(1999); comprehensive laboratory-testing programs in which 

tests were conducted to apply various stress path loadings on 

the granular material specimens. Due to the complex loading 

regimes followed in the laboratory tests, ANN models that 
analyzed simultaneously the static and dynamic components o f  

the applied mean and shear stresses produced significantly bet- 
•ter predictions. The inclusion o f  stress path slopes, in a way 

representing the direction o f  loading in the field, increased fur­
ther the prediction performances since changing the applied 

principal stress ratio has the most significant effect on the di­
rectional dependency o f  the resilient properties. Such ad­
vanced models better describe the granular materia] behavior 

under actual field loading conditions.
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