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Interaction between two piles inclined in any direction 
Interaction entre deux pieux inclinés dans une direction quelconque

J.L. justo & J.M.Sánchez Langeber — Department of Continuum Mechanics, University of Seville, Sevilla, Spain

ABSTRACT: The boundary elements method has been used to analyze groups of raked piles in homogeneous soil by Baneijee & 

Driscoll (1976) and in heterogeneous ground by Baneijee and Davis (1980). In both cases the method is cumbersome and lengthy, and 

more adequate for research than for applications. The principle of superposition (based upon the interaction between two piles) has 

been used to reduce the number of equations (v. Pichumani & D ’Appolonia, 1967). In this paper the interaction between two piles 

inclined in any direction in a homogeneous soil has been solved. It is shown that Poulos & Davis (1980) and Randolph’s (1980) 
hypotheses with respect to this interaction are not fulfiled.

RESUME: La méthode des éléments de frontière a été apliquée par Baneijee et Davis (1976) à l’analyse de groupes de pieux 

inclinés dans un sol homogène et par Baneijee et Davis (1980) dans un sol sol heterogène. Dans les deux cas la méthode est 

ennuyante, d’exécution lente, et plus approprié pour la recherche que pour les applications practiques. Pur réduire le nombre des 

équations, le principe de superposition basé sur l’interaction ente deus pieux, a été employé (v. Pichumani et D ’Appolonia, 1967). 

Dans cette comunication on a résolu, l’interaction entre deux pieux inclinés dans n’importe quelle direction, dans un sol homogène. 

On a démontré que les hypothèses de Poulos et Davis (1980) et Randolph (1980) sur l ’interaction ne sont sont pas accomplis

1 INTRODUCTION

One established procedure to analyze the displacements and 

stresses in a single pile or a group of piles is based upon the as
sumption of linear elastic behaviour. The elastic problem may be 

solved by the boundary element method. The surface of the pile 

is divided into boundary elements (Figure 1). The stress at each 

element is assumed constant, and the displacements of the soil 

and the pile at the centre of the elements are equalized. In a ho

mogeneous soil Mindlin equations are used to find the displace

ments produced by stresses at the boundaries. This method was 

initiated by Salas & Belzunce (1965) and Thurman & 

D’Appolonia (1965) in a single vertical pile, and has been devel

oped by Poulos, Davis and coworkers through several important 

papers since 1968.

Baneijee and Driscoll (1976) have used this method for the 

analysis of groups of raked piles in homogeneous soil and 

Baneijee and Davis (1980) in heterogeneous ground. In both 

cases the method is cumbersome and lengthy and more adequate 

for research than for applications.

To apply this method to more than two piles, several 

simplifying assumptions are required to reduce the number of 

equations. Pichumani & D’Appolonia (1967) and Poulos &

Davis (1968) also solve the problem of interaction between two 

vertical piles under vertical load using the boundary element 

method, and Poulos (1971) solves the same problem under 

lateral load. For a group of piles they apply the principle of 

superposition, and, in this way, drastically reduce the number of 

equations. This principle is not rigorously correct, because the 

addition of a pile involves a change in the stiffness of the overall 

elastic system. Solutions or symmetrical groups show that the 

principle of superposition is almost exact (Poulos & Davis, 

1980) for displacements, although there are slight alterations in 

the shear stress distribution, and the proportion of load taken by 

the base increases as the number of piles in the group increases.

The applicability of the superposition principle to 

symmetrical groups suggests that it may be applied to general 

pile groups.

Poulos & Davis (1980) study the interaction between two 

piles raked in the same plane, and reduce it to the problem of 

two equivalent vertical piles by making assumptions about the 

magnitude and direction of the head displacements. It is assumed 

that an axial load on pile j  will cause a deflection of pile i that is 

in the axial direction of pile i, and equal to the axial deflection of 

pile j  under this axial load multiplied by the interaction factor, 

supposing that both piles are vertical. Similarly, it is assumed 

that a normal load on pile j  will cause a deflection of pile i, that 

is in the normal direction of pile and equal to the normal 

deflection of pile j  under this normal load multiplied by the 

interaction factor, also supposing that both piles are vertical. To 

solve the problem of the change of distance between two raked 

piles with depth, Poulos & Davis (1980) assume that the 

equivalent distance is the centre-to-centre distance at one third 

the vertical depth of the piles. The interaction between two 

vertical piles is solved by Randolph & Wroth (1979) for vertical 

loads, using an approximate closed form solution. Randolph 

(1981), uses simple algebraic solutions obtained from finite 

element studies for horizontal loads. The principle of 

superposition is also applied for the group of piles. Randolph 

(1980) reduces the problem of interaction between two battered 

piles to the interaction between vertical piles, adopting the 

assumption of Poulos & Davis (1980) with respect to the
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direction of displacement, but taking the distance at the top as 

equivalent distance.

The true interaction between two piles inclined in any 

direction, in a homogeneous linear-elastic soil, has been solved 

by the authors of this paper using the boundary element method. 

This has allowed comparison with results obtained using Poulos

& Davis (1980) and Randolph’s (1980) hypotheses.

2 METHOD OF ANALYSIS

The soil is modeled after a Boussinesq half space with an 

elasticity modulus E, and a Poisson’s ratio v. There are two piles 

extending from the surface of the soil of the same diameter, d, 
length, L, and elasticity modulus, Ep. It is assumed that the 

presence of the piles does not modify the soil properties, so that 

Mindlin equations continue to be valid, and there is rough 

contact between the soil and piles.

It is assumed that the axial displacement under axial load or 

the normal displacement under a normal load or a moment at the 

top are the same in a single raked pile as in a vertical pile. Poulos 

and Madhav (1971) have compared this method with the 

procedure of decomposing the unknown force at each element 

into vertical and horizontal forces, finding the displacements at 

the centre of each element using Mindlin equations and 

recomposing them. For rakes up to 30° the difference is very 

small. It is assumed that normal and axial stresses only produce 

displacements in its direction (v. Poulos & Davis, 1980).

2.1 Displacement o f a single raked pile

Figure 1 shows the battered pile, and the sets of perpendicular 

local axes (x,y,z) and general axes (X,Y,Z). The z axis lies in the 

axial direction of the pile, the Z axis is vertical and H  is the 
projection of z on the horizontal plane. The load acting on the 

head of the pile is decomposed into its components following the 

local axes.

As indicated under section 2, the axial displacement under 

axial load is treated as if  the pile were vertical. It is necessary to 

consider only the compatibility of axial displacements (v. Mattes 

and Poulos, 1969). The shaft is divided into n equal cilindrical 

elements (Fig. 1) and the base into m circular crowns of equal 

area.
In this paper, the calculation scheme of Mattes & Poulos 

(1969) for a compressible pile is followed, with some variations 

indicated below.

The displacement of the soil at the centre of an element is:

d U Z _ 4 Pz

dz2 dE„

J q ¿ _

7cd2Ep

n+m

Q‘ - i r r ^ ,A* p-

where uj0 and q2 are the axial displacement and load at the top of 

the pile, a¡ and Az0 coefficients depending upon i and j  (v. 

Sánchez Langeber, 2000), and 8= Un.
Equalizing the soil and pile displacements (1 and 3), n+m 

equations are obtained. Using the equilibrium equation they 

allow the n+m+1 unknowns (pzj and uz0) to be found.

Now the displacements of the pile in the x  direction will be 

found, which is subject to a load q„ in this direction and a mo

ment, of axisy. As indicated in section 2, the x  displacement 

is treated as if the pile were vertical. The calculation scheme of 

Poulos (1971a) is followed, with some variations indicated be

low. The x  displacement of the soil will be given by equation (1) 

for k=x.
The equilibrium of the differential pile element subject to a 

normal load at the shaft, px, gives:

d 4ux

~dS

Pxd

Eplp
(4)

Integrating equation (4), an integral equation is obtained (v. 

Sanchez Langeber, 2000). Introducing boundary conditions at 

the top of the pile, integration constants are found. If the stress px 
at each element is assumed constant, the x displacement at the 

centre of the i element can be obtained:

= “,o+u',o { i - 0 - 5 ) - j £ - { i - 0 .5 Y  + 

+ ^ ( i - 0 . 5 Y + ^ - ± A luPlJ
6EpI p Eplp j=i

(5)

where ux0 is the x  displacement at the top of the pile, and is a 

coefficient dependent upon i and j  (v. Sánchez Langeber, 2000).

Equalizing the soil and pile displacements in the x-direction 

(equations 1 with k=x and 5), n equations are obtained. 

Combined with the two equilibrium equations they allow the 

n+2 unknowns (pxj, ux0 and u ’IO) to be found.

Exchanging x for _y, the stresses and displacements of the pile 

in thejy direction are obtained.

For small rotation angles, the slope may be substituted by the 

angle in radians. The rotation angle with respect to the axis will 

be named 6y0 = -u ’y0 and with respect to they  axis 9x0 = u ’x0.
A system formed by the 3n+m+5 equations solves the 

problem of a raked pile subject to any load on the top and 

moments with respect to axes perpendicular to the pile. The 

system may be expressed in matrix form (v. Sánchez Langeber, 

2000):

«to = k=z
j=i

For j  <n p2j = shear stress at j element 

For j  > n p2j = normal stress at j element 

Fy = Mindlin function

The equilibrium of the differential pile element subject to an 

axial load gives:

(1) [<f\{p\u M M , (6)

where the subscript indicates the order of the vectors, [0] is a 

square matrix, [5] a (3n+m+5)x5 matrix, and:

(2)

where:
u2 = axial displacement 

p2 = shear stress on pile surface

Integrating equation (2) twice, an integral equation is 

obtained.

Introducing the boundary conditions at the top of the pile, 

integration constants are found. If the stress at each element is 
now assumed constant, the displacement at the centre of the ; 

element is obtained (Sánchez Langeber, 2000):

{p '« o } =

f t ,

Uy0

@y0

k ) „ +,

(7) (8)

The solution is:

(8)

(3)
If only the 5 rows corresponding to movements at the top of
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the pile are taken, the following equation is obtained (Sánchez 

Langeber, 2000):

where:

M s  =

ux0

0XO m„

UyO

■ 
S

.

II qy

QyO my

uz0 A .

T \Z

x T f

where [%] is a null matrix, and [7] is the transform matrix for 

forces.

cosXcosy/ -sinX  cosXsiniy 

sinXcosif/ cosX sinXsin y  

-s in  i// 0 cosy/

(16)

UL = Z 7£ p i  + Z  Z BZuP2« (20)

B,h nij

g=X,Y,Z
(21)

(10)

The rotation at the top produced by a torsional moment, Mz, 

has been obtained by Poulos (1975):

(11)G,d

An analytical expression approximating Ie has been obtained 

by Sánchez Langeber (2000). In this way equation (9) may be 

extended to six variables including Gz0 and mz.

( 12)

An exchange of axes allows appliance of movements to 

global coordinates:

W = K | M 5 (13) 

( i4)
[/“] is a 6 x6 overall transformational matrix that allows con

version of coordinates from local to global axes:

where:

I kg ~ kg component of [L] matrix

Equalizing the soil (20) and pile displacements (3 or 5), 3n+m 

equations are obtained, that must be added to the five 

equilibrium equations. The same number of equations is 

obtained from pile 2. This allows the 6n+2m+10 unknowns (p'y, 

p2ij, {u0} '5, {Uo}25) to be found. In matrix form:

[*] { ^ = m ) s (22)

(15)

2.2 Interaction between two raked piles

It is assumed that the two piles have the same components in 

local axes. Soil displacement in the k direction, at the centre of 

the i element in pile 1 will be:

uL = uU+u'kf (17)

where w11*, and unki are the displacements produced by the 

stresses transmitted by pile 1 (equation 1) and pile 2 respec

tively.

To find u12*, it must be assumed that both piles are reduced to 

their axes. The global components of stresses acting on the j  
element of pile 2  are:

Z ‘L ^ p 2ru (18)
m=x,y,z

where k = X, Y, Z

th„ = km component of the transform matrix (16) of pile 2 

c^  = area that multiplies the stress p2mJ 
p mJ = stress at element j  of pile 2 in the direction of the m-axis 

It is assumed that P \  produces displacements in pile 1 only 

in the k direction. In global coordinates:

UL2 = Z G ^  (19)
J

where G]2k„ is a Mindlin function

Now U ¡a is transfered to local coordinates using the inverse 
of[7'], [L], Substituting (19), (18)and(l)in to(17):

The solution is obtained multiplying both members by 

If only the ten rows containing top movements are taken, and 

it is supposed that rotation, 9zo, with respect to the z  axis is pro

duced only by the mz moment of each pile, equation ( 12) may be 

used. In this way the 6x6 flexibility matrices [f12j] and [f21,] that 

relate movements and actions at the top in each pile in local co

ordinates may be found:

f c M f ! % \  (23)

for pile 2 , 1 and 2  are switched.

2.3 Interaction matrix between two piles

Applying the principle of superposition, the movement at the top 

of pile 1 subject to loads {q } in pile 1 and {q2} in pile 2 will be:

(24)

where f 21 is the interaction matrix of pile 2 on pile 1.
When {q1} = {<j2} then equation (23) holds. Then equalizing 

expressions (23) and (24):

(25)k l - k ’l - M

In global coordinates, the corresponding expressions are:

(26)

k]=[r;][//][̂ r (27)

3 RESULTS AND DISCUSSION

So as to test the hypotheses presented by other authors, the 

case in which two piles are inclined in the same plane will be 

presented here. The rake angle will be i ' i n  both piles but in op

posite directions.

Figures 2 and 3 show the interaction on pile 2 of normal and 

axial forces (respectively) acting on pile 1, where s2 is the set

tlement of a single pile under a unit axial load, for s/d = 25 and 

K = 1000, where 

E I
K = -*-$■ (28)

E jJ

The full line results are presented for two values of L/d, and 

rake angles of 0°, 5°, 10°, 15° and 20°, and compared with the 

hypotheses of Poulos & Davis (1980) and Randolph (1980), 

represented with broken lines.

The vertical displacement under axial load nearly coincides 

with that obtained through the hypotheses of Poulos & Davis 

(1980), and the results for '¥= 0 evidently coincide. With this 

exception, the results widely diverge, specially with those of 

Randolph (1980). Pile length has little influence in the vertical 

displacements under normal using the hypotheses of Davis &
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Figure 4. Displacements at the top o f  pile 2 produced by a normal force 

acting on pile 1 for different s/d  values (v =  0.5)

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 

AU, /  (H sz)

Figure 2. Comparison between the displacements, obtained with different 

hypotheses, at the top o f  pile 2 produced by a normal force acting on pile 

1.

Figure 3. Comparison between the displacements, obtained with different 

hypotheses, at the top o f  pile 2 produced by an axial force acting on pile 

1.

Poulos (1980), but is very significant in the authors method 

(Figure 2). Both methods predict similar horizontal displace

ments under axial load, but in opposite directions (Figure 3) 

Figure 4 shows the same results obtained by the authors in 

Figure 2, but for U d  = 25, K = 1000 and different values of s/d. 
Figure 5 shows the influence of a variation in s/d on the interac
tion under axial load.

A U ,/ ( V Sl)

Figure 5. Displacements at the top o f pile 2 produced by a axial force 

acting on pile 1 for different s/d  values (v=  0.5)
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