INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND
GEOTECHNICAL ENGINEERING

SIMSG [} ISSMGE

s

This paper was downloaded from the Online Library of
the International Society for Soil Mechanics and
Geotechnical Engineering (ISSMGE). The library is
available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands
of papers published under the Auspices of the ISSMGE and
maintained by the Innovation and Development
Committee of ISSMGE.



https://www.issmge.org/publications/online-library

Underground pillar stability: A probabilistic approach
La stabilité de pilier souterraine: Une approche de probabilistic
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ABSTRACT: The majority of geotechnical analyses are deterministic. in that the inherent variability of the materials is not
modeled directly. rather some “factor of safety” is applied to results computed using “average” properties. In the present
study. the influence of randomly distributed shear strength is assessed via numerical experiments involving the compressive
strength and stability of pillars typically used in underground construction and mining operations. The model involves
combining random field theory with an elasto-plastic finite element algorithm in a Monte-Carlo framework. It is found that
the “average” shear strength of the rock is not a good indicator of the overall strength of the pillar. The results of this study
enable traditional approaches invalving “factors of safety” to be re-interpreted in the context of reliahility based design.

RESUME: La majorité de geotechnical analyse est déterministe. dans que la variabilité inhérente des matériels n'est pas
directement modelée . plutét quelgque “factor de sireté” est appliqué aux résultats “average caleulés qui utilisent” les pro-
priétés. Dans I'étude actuelle. I'influence de force de cisailles au hasard distribuée est évaluée via les expériences numériques
qui impliquent la force de compressive et la stabilité de piliers typiquement utilisé dans la construction souterraine et creuse
des opérations. Le modéle implique combiner la théorie de domaine faite au hasard avec un algorithme d’élémeunt fini elasto-
en matiére plastique dans une structure de Monte-Carlo. Il est trouvé que le “average” la force de cisailles du rocher n’est
pas un bon indicateur de la force générale du pilier. Les résultats de cette étude rendent capable des approches impliquer
“factors de slireté” a est re-interprété dans le contexte de fiabilité conception basée.

1 INTRODUCTION A typical finite element mesh is shown in Figure | and con-
sists of 400 8-node plane strain quadrilateral elements. Each
A review and assessiment of existing design methods for esti- olement is assigned a different c-value based on the underly-
mating the factor of safety of coal pillars based on statistical ing lognormal distribution. At each Monte-Carlo simulations.
approaches was covered recently by Salamon (1999). This the block is compressed by incrementally displacing the top
paper follows this philosophy by investigating in a rigorous qyrface vertically downwards. Following each displacement
way. the influence of rock strength variability on the overall jncrement. the nodal reaction loads are summed and divided
compressive strength of rock pillars typically used in mining by the width of the block B to give the average axial stress.
and underground canstruction. The technique merges elasto- The maximum value of this axial stress gy is then defined as
plastic finite element analysis (e.g. Smith and Griffiths 1998) +he compressive strength of the block.
with random field theory (e.g. Vanmarcke 1984. Fenton 1990)
within a Monte-Carlo framework. The rock strength is char-
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distribution with three parameters as shown in Table 1.
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Table 1. Input parameters for rock strength ) S A
Units B e
Mean se | kKN/m? 1 7
Standard Deviation a. | kN/m? {41 B T A O O
Spatial Correlation Length | i ¢ m S80I ) Gt 1 6 I

The Spatial Corrclation Length describes the distance over
which the spatially random values will tend to be correlated in
the underlying Gaussian field. Thus, a large value willimply a — o I
smoothly varying ficld. while a small value will imply a ragged ‘
ficld. Initial studics on a similar problem were reported by

Paice and Griffiths (1999).
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In order non-dimensionalize the input, the rock strength vari- 777777777 777777
ability is expressed in termis of the Coefficient of Variation rigid rough bottom surface
C.0.V..=o./u.. and a normalized spatial correlation length

0. = b,/ B where B is the side length of the pillar. Figure 1. Mesh used for FE pillar analysis.
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This study focuses on the dimensionless “bearing capacity values of §.. As shown in Figure 3b. however. mu_ reaches
factor” V. defined at each of the n,i,» Monte-Carlo simulationa minimnum at about #. = 0.2 and starts to climb again. It
as: could be speculated that in the limit of 6. = 0. there are no
“preferential” paths the mechanism can follow. and the mean
bearing capacity factor will return once more to the deter-
ministic value of 2. This hypothesis can only be tested with

e a extremely fine mesh and is currently under further investi.
The N values are then analysed statistically to enable proba- gation.

bilistic statements to be made about the compressive strength
of the pillar.

Ni=qhipte. i= 1.2 i Ryim &)

For a homogeneous rock. N, = 2. so for a given level of rock
strength variability. it will be important for design to estimate
the factor of safety required to reduce the probability of failure
to acceptable levels.

2 PARAMETRIC STUDIES

Analyses were performed with input parameters within the s .
following ranges: ' —

01<8, <2 - it

0125< C.O0.V..< 4

For cach pair of valucs of C.0.V.. and 6. num (=2500) - el
Monte-Carlo simulations were performed. and from these the
estimated statistics of the bearing capacity factor were com-
puted leading to a mean my_ and standard deviation sy, .

Figure 2 shows a typical deformed mesh at failure with —~ -
a superimposed greyscale in which lighter regions indicate -
stronger rock and darker regions indicate weaker soil. It is
clear in this case that the weak (dark) region has triggered a
quite irregular failure mechanism. In general. the mechanism
1s attracted to the weak zones and “avoids™ the strong zones.

0.V

Figures 3a.b. Vanation of my, with C.0.V.. and 8

Also included on Figure 3a is the horizontal line correspond
oy ing to the solution that would be obtained for §. = oc. This
hypothetical case implies that each realization of the Monte
Carlo process involves essentially homogeneous soil, albeit
with properties varying [rom one realization to the next. In
2.1 Mecan of N, this case. the distribution of gy will be statistically similar
to the underlying distribution of ¢ but magnified by 2. thus
my, = 2 for all values of b,.

Figure 2. Typical deformed mesh and grey scale at failure.

A summary of the mean bearing capacity factor {mny,) com-
puted using the values provided by equation (1) for each sim-
ulation is shown in Figures 3a and 3b. The plots confirm that 9 9 Coefficient of Variation of N,

for low values of C.0.V... my. tends to the deterministic value

of 2. As the C.0.V.. of the rock increases, the mean bear- Figure 4 shows the influence of §. and C.0.V.. on the co-
ing capacity factor falls quite rapidly. especially for smallereflicient of variation of the estimated bearing capacity fac-

1344



tor, C.O.V.n_ = sn, /mn,. The plots indicate that C.0.V.,
is positively correlated with both C.0.V.. and 6., with the
limiting value of . = oc giving the straight line C.0.V.. =
COV.n,.

rfovy

Figure 4. Variation of C.O. with C.0 and

3 PROBABILISTIC INTERPRETATION

Following Monte-Carlo simulations for each parametric com-
bination of input parameters (§. and C.0.V..). the suite of
computed bearing capacity factor values from equation (1)
was plotted in the form of a histogram. and a “best-fit” log-
normal distribution superimposed. An example of such a
plot is shown in Figure 5 for the case where §, = 0.2 and

COV.=05.

Figure 5. Histogram and lognormal fit for the computed bear-
ing capacity factors.

Since the lognormal fit has been normalized to enclose an
area of unity. areas under the curve can be directly related
to probabilities. From a practical viewpoint it would be of
interest to estimate the probability of “design failure” . defined
here as occurring when the computed coinpressive strength is
less than the deterministic value based on the mean strength
divided by a “factor of safety” F i.e.
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“Design failure” if gy < 2u./F (2)
In the interests of brevity. only the case corresponding to
F = 2 will be presented here. Let the probahility of “design
failure” be p(N. < 2/F), hence from the properties of the
underlying normal distribution we get:

For the particular case shown in Figure 5. the fitted lognormal
distribution has the properties my, = and sy, =. hence the
underlying normal distribution (see e.g. Griffiths and Fenton
1997) is defined by mi, v, = and sz N, =. Fquation (3)
therefore gives p(N. < 2/F) =. indicating an % probability
of “design failure™ as defined ahove.

4 CONCLUDING REMARKS

In2/F — 1wy N,
SIn N,

p(N, < 2/F) = @ ( (3)

where @ is the cumulative normal function.

The paper has shown that rock strength variablility in the
form of a spatially varying lognormal distribution can signif-
icantly reduce the compressive strength of an axially loaded
rock pillar.

The following more specific conclusions can be made:

1. As the coefficient of variation of the rock strength in-
creases. the expected compressive strength decreases.
The decrease in compressive strength is greatest for
small correlation lengths.

. As the correlation length is further decreased however.
the compressive strength appears to reach a minimum
and start to increase. It is speculated that as the corre-
lation length becomes vanishingly small and approaches
the limiting value of zero (white noise). the compressive
strength tends to approach the deterministic value once
more.

The coeflicient of variation of the compressive strength
was obscrved to be positively corrclated with both the
spatial carrelation length and the coefficient of variation

of the rock strength.

By interpreting thc Monte-Carlo simulations in a prob-
abilistic context. a dircet rclationship between factors
of safcty and probability of failurc could be cstablished.
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