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Road construction on a soft organic subsoil 
Construction d’une route sur un sol organique mou

I.Herle — Institute of Theoretical and Applied Mechanics, Czech Academy of Sciences 

V.Herle -  SG-Geotechnika, Geologickâ 4, 15000 Praha 5, Czech Republic

A B ST R A CT : Th e  design and the const ruct ion of  a  service road to the build ing  site of a new  bridge in W estern Bohe m ia 

¡ire descr ibed. T h e  ext rem ely sof t  organic subsoil (peat )  reaches a m ax im um  depth of  alm ost  4 m  at  the const ruct ion site. 

Thus, based oil in sit u invest igat ions and laboratory experim ents, it  w as decided to put  a cushion of crushed gravel in a 

reinforcement geotext ile as a subgrade below  the const ruct ion layers of  the road. Th e  cushion w as placed d irect ly on the 

"■round surface since it  w as not  possible to access the area w ith any vehicles pr ior  to the soil im provem ent . A  cont inuous 

monitoring of the surface deform at ion w it h hor izont al inclinom eters revealed set t lem ents exceeding 90 cm . M ore t h an  a 

half of t h is value w as reached af ter the road const ruct ion. T h e  m ax im um  m easured set t lem ent  w as sub st an t ia lly  higher 

lluui the in it ia l predict ion. Therefore a num er ical analysis w it h f inite elem ents w as used in order to exp lain  the dif ference.

RESU M E: L'é t ude  et la const ruct ion d ’une route d'accès au chant ier  d ’un nouveau pont  sur  une aut oroute en Bohèm e de 

l'ouest sont  évoqués ci dessous. Sur  le chant ier , le sous sol organique ext rêm em ent  m ou ( tourbe)  at t e int  une profondeur 

di- presque 4 m. Ses caract é r ist iques m écaniques ont été étudiées par  essais sur  p lace et en laborato ire. Co m m e support  

de const ruct ion pour la route, la so lut ion proposée a été la créat ion d ’une couche de gravier  concassé enveloppé par  un 

géot.extile de haut e  résistance en t ract ion. La  couche renforcée a été placée directem ent  sur  la surface du t errain , de par 

le fait que aucun véhicule  ne peut  accéder au chant ier  avant  la m ise en place du géotext ile. La  surve illance  (m onit or ing)  

conlinu(t ')  du tassem ent  en surface par  inclinom èt re  hor izont al a enregist ré un tassem ent  excédent  90 cm . Plu s de la 

moitié du tassem ent  m esuré s’est  m anifesté une fois la const ruct ion de la route t erm inée. Le  tassem ent  m esuré a été de 

beaucoup supér ieur  aux  prévisions. Une analyse num érique par  les élém ents f inis a  été ut ilisée pour  expliquer  la dif férence.

1 I N T R O D U C T I O N

A new t em porary service road has been b uilt  dur ing  t he con­

st ruct ion of  the m otorw ay bridge on the Rad b u za  near the 

city of Plzen , W estern Bohem ia. A  non-st andard  approach 

was needed due to the ext rem ely soft  organic subsoil (peat ) 

leaching dow n to the m ax im um  depth of 3.8 0  m. Below  this 

soil layer a lluv ia l deposits of  m edium  dense sand formed a 

prart icall.v incom pressible bot tom  layer.

Although the planed em bankm ent  reached the m axi­

mum height, of  only 1.4  m . a geotext ile reinforcem ent  w as 

proposed. T h e  geotext ile w as intended to inh ib it  pushing 

ol I lie em bankm ent  m at er ial into the subsoil and to prevent

1 lie excessive lateral spreading of  the em bankm ent .

2 SO I L I N V E S T I G A T I O N S

Several in sit u  and laborat o ry invest igat ions of the subsoil 

«’ere done pr ior  to the design of  the em bankm ent .

Shallow  test  p it s revealed t hat  below  a t h in  st if f  earth 

crust (about  0 .2 m ) there is a t h ick layer of  organic soil 

!|»'ai)  w ith rests of p lants. Th e  groundw ater level w as 

Id i i i i c I at 1.1 m below  the ground surface.

W ith help of  a light  dynam ic penet rat ion using a  10  kg 

'am it w as possible to locate the m ax im um  depth of the 

soft layer equal to 3.8  m. Th e  cone resistance in the soft 

layer rem ained in the range betw een 0 .2 and 0.4  M Pa  (com ­

pared w ith the earth crust : 2 to 4 M Pa) . Below  the soft 

layer a layer of  a st if f  a lluv ia l deposit  (m edium  dense sand, 

more than 10  M Pa)  represented an alm ost  incom pressible 

boundary.

U ndrained cohesion cu «  23 k Pa  w as determ ined from 

field vane tests in the dept hs betw een 0 .6 and 1.3  m . Eve n  

lower values of  cu ~  12  k P a  w ere obt ained f rom  laborat ory

vane tests on undist urbed sam ples f rom  the dept h 1.2  m . A  

sim ilar  value cu =  10  k Pa  w as m easured in unconsolidat ed 

undrained t r iax ia l tests.

Soil com pressib ilit y w as invest igated in st andard  oe- 

dom eter tests. T h e  oedom etr ic m odulus Eoe<t ranged f rom  

0 .13 M Pa  at  o„  =  20 k Pa  to 0 .20  M Pa  at  av =  40 k Pa.

Th e  drained shear st rengt h w as m easured in a series 

of  isot rop ically consolidated undrained t r iax ia l tests (at  

oy =  10 , 30 , 50 k Pa) : <p =  2 7 °,  c= 6  k Pa.

3 R O A D  C O N S T R U C T I O N

Th e  sequence of the const ruct ion of  the em bankm ent  and 

of  the road can be w ell descr ibed w it h help of  photographs 

( Figures 1-3 ) .

T h e  geotext ile G E O L O N  P P  50 0 /4 0  w as placed d irect ly 

on the ground w it hout  rem oving the grass ( Fig ur e  1) . T h is 

w as necessary because of  the low  shear st rengt h and high 

com pressib ilit y of  the peat  layer. Th e  grassy crust  enabled 

w alking on the ground and laying of  the geotext ile sheets 

but  it  w as im possible to approach the area w it h vehicles.

T h e  f irst  em bankm ent  layer of  0 .4  m  t hickness w as 

dum ped on the geotext ile and spreaded w it h a bulldozer 

w it hout  com pact ion ( Figures 1 and 2) . Th e  geotext ile 

sheets w ere then folded over the top of  t h is layer  ( Figure  3) .

Fur t he r  layers of  crushed gravel w ere p laced on the geo­

t ext ile cushion reaching the em bankm ent  height  1.4  m  at 

the end of the const ruct ion How ever, due to large set t le ­

m ents already dur ing  the const ruct ion stage ( Figure  4) the 

total t hickness of  the em bankm ent  reached 1.8 5 m. 

Set t lem ent s m easured by a  ho r izo nt al inclino m e t e r  beneat h 

t he em bankm ent  show  a  cont inuous increase of  t he ve r t ical 

deform at ion af ter t he end of  the co nst ruct io n  ap p ro x i ­

m at e ly d ur in g  one year , see Fig u r e  4. A  slight  heave of

2081



F ig u re  1: G e o te x tile  p la c e m e n t on th e  g ra ss  an d  sp re a d in g  of th e  

g ravel w ith  a  bu lld o zer.

4 .1 Pr el i mi nar y est i mat i ons
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F ig u re  4: M e asu red  s e ttle m e n ts  b e n e a th  th e  e m b a n k m e n t a t  the 

e m b a n k m e n t ax is  a n d  s e ttle m e n t profiles a t  d iffe ren t tim es .

D u r in g  t he design of  t he e m bankm e nt  it s sh o r t -t e r m  sta­

b ilit y  w as considered. A cco r d in g  to t he sim p lif ie d  bearing 

cap acit y  equat ion

Q m a x  —  (2 7 r ) C u (1)

F ig u re  3: G e o te x tile  sh e e ts  fo lded  over th e  firs t em b an k m en t 

layer.

the ground af ter anot her  year  dep ict s t he un lo ad ing  due to 

t he rem oving of  the m ost  of  t he f ill af ter the service  p er iod 

of  t he road. T h e  n o nsym m e t r ic set t lem ent  prof ile can  be 

eit her  due to the inhom ogeneous subsoil ( var y in g  layer 

t h ickness)  or due to the insuf f icient  m e asur ing  d ist ance  

f rom  the em bankm ent  ax is on t he lef t  side.

4 N U M E R I C A L  A N A L Y S E S

Ca lcu la t io n s presented in  t he sequel t ake into  acco unt  only 

t he overall behavio ur  of  t he e m bankm e nt . T h e  design of 

the reinf orcem ent  can  be found elsew here (H e r le  19 9 7) .

it  co uld  be expected t h at  the m a x im u m  load gm al should 

not  exceed 50  or 10 0  k Pa , respect ively. Fo r  t he u n it  weight 

of  the crushed gravel 2.0  t / m 3 t he m a x im u m  height  of  the 

co nst ruct io n  layer  w as lim it e d  to 0 .25 or 0 .5 m , respect ively. 

I t  w as assum ed t h at  t he p e r m e ab ilit y  of  t he o rganic layer 

is high enough an d  the generated excess pore pressures can 

suf f icient ly d issip at e  dur in g  the co n st ruct io n  t im e  of  each 

em bankm e nt  layer  ( such an assum p t io n  co uld  be just if ied 

only due to t he low er im p o r t ance  of  t he t e m p o r ar y st ruc­

t ure) .

Fro m  the back an a lysis of  t he cont inuous m easurem ent  of 

the set t lem ent  ( Fig u r e  4) it  can be seen t h at  5 0 % of the 

m ax im um  set t lem ent  w as reached at  the end of  f illing, i.e. 

in 10  days. T h u s, t he co nso lidat io n  coef f icient  c,. could be 

est im at ed  as

cv
z T  

t

( 3 .8 /2 ) 2 x  0 .2 

10
0 .0 72 m 2/ d  «  10 -6  m 2/s.( 2)

T h is value  is close to other  values report ed in  the literature 

for sim ila r  peat y soils ( Ko g ur e  19 9 9 , M at su d a et  al. 1999).

A n  e st im at io n  of  the m ax im um  set t lem ent  w as im por ­

t an t  for t he design of  the em bankm e nt  volum e. Neverthe ­

less, dur in g  t he design stage it  w as not  possible to perform 

a de t ailed  num e r ical an a lysis and t hus o n ly a compression 

co rresponding to the oedom et r ic co ndit io ns w as ca lcu la ted :
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Il 7 : 1.8 5 x  20. x 3.6  

20 0 .
0.666 in (3)

The oedom et r ic m o d ulus of  the sof t  layer  E =  0 .2 M Pa  w as 

judged to be conservat ive  enough for the average ver t ical 

effective st ress in the m idd le  of  the sof t  layer:

av = 71 h +  72 z/2 +  73 d -  (4)

=  20. x  1.8 5 +  10 . x  3 .6 / 2  +  0 .2 x  15  =  58 k Pa

(71. . .  e m b ankm e nt , 72. . .  peat , 73. . .  crust ) . M oreover, in 

situ condit io ns d e p ar t ing  f rom  t he oedom et r ic st ress d ist r i ­

but ion and t he  h igh st if fness of  t he em bankm e nt  com pared 

to the sof t  subso il w ere assum ed to f ur t her  d im in ish  the 

calculated value  of  smax-

A cont inuous m e asur ing  of  the ve r t ical deform at ion 

beneath the em bankm e nt  show ed, how ever, t hat  the 

est im ated value  of  smax w as surpassed by alm ost  5 0 % 

and the m ax im u m  set t lem ent  reached 0 .9 m . T h u s, a F E  

analysis w as perf orm ed in  order to e x p lain  the dif ference.

4.2 FE si mul at i on

It  m ay seem  t h at  the f in it e  elem ent  an a lysis of  the above 

described p roblem  is st raight f orw ard. How ever, m any ques­

tions ar ise if  look ing in t o  det ails.

In the sequel, all ca lcu lat io n s w ere perform ed 

w ith a general-p urp o se  F E  code Tochnoc; w hich 

is availab le  under  t he G N U  p u b lic license (see 

ht t p ://t o chno g .so ur ce f o rge .ne t ). T h e  f in it e  elem ent  

mesh w as com posed of  line ar  t r iang le  and q uadr ilat e ral 

elements. D u e  to the lin e ar it y  of  e lem ents, a very dense 

mesh w as assem bled. A n  im p licit e  in t egrat ion  of  the state 

variables w as perf orm ed.

A  short  t erm  st a b ilit y  of  t he em bankm e nt  is of ten im ­

portant  d ur ing  t he co nst ruct io n . I t  w as already show n in 

the preceding sect ion t hat  t he em bankm e nt  st a b ilit y  m ay 

be vio lat ed in  t h is case. M oreover, a f u lly  undraine d  an a l ­

ysis ( using un d r ain e d  cohesion c„ )  need not  be suf f icient  

and need not  cap t ur e  t he m ost  dangerous st at es. In  order 

to judge the overall sit uat io n , a  coupled an alysis is needed 

w hich t akes in t o  account  a  sim ult ane o us generat ion and  d is­

sipat ion of  pore pressures. U n f o r t unat e ly, an ad d it io n al nec­

essary soil p aram et er  ( p e rm e ab ilit y )  w as not  m easured and 

could be b ut  e st im at ed . Theref ore , t he coupled calcu lat io n  

is not considered in  t h is paper  and t he presented analysis 

concent rates on the lo ng -t e rm  set t lem ent  p redict ion.

Th e  m e chan ical b e havio ur  of  so ils is usually  descr ibed 

w ith an e last ic-p e r f e ct ly  p last ic M o h r -Co u lo m b  m odel for 

pract ical purposes. Co nsequent ly, the soil rem ains e las­

t ic inside the lim it  st ress envelope and p last ic st r a in s are 

generated o n ly at  the m ax im um  shear st resses. Such  a 
model can be used o n ly for m onot onic load ing  w hen un ­

loading/re loading cycles need not  be t aken into  account . 

The list  of  t he subsoil p aram et ers for t h is case is given in 

Tab. 1.

There are several possible  approaches how  to sim ulat e  

num erically t he set t lem ent  induce d  by load ing  due to the 

em bankm ent  co nst ruct io n  ( Fig u r e  5) . I t  w ill be show n 

in the follow ing sect ions t h a t  t he scat t e r  of  t he obt ained  

num erical result s can be very large.

Table 1: P a ra m e te rs  o f th e  subso il used  in F E  ca lcu la tio n s .

Layer E 1/ v> c i> 7

[M Pa] H [°] [M Pa] [°] [ t /m 3]

C rust 20. 0.3 27. 0.025 0. 1.5

Peat 0.2 0.1 27. 0.006 0. 1.0

Sand 20. 0.3 35. 0.001 10. 1.7

(•) 0»

F ig u re  5: P oss ib le  ap p ro ach es  to  th e  n u m erica l m o d e llin g  o f th e  

e m b a n k m e n t se ttle m e n t.

4 .3 Oedomet r i c condi t i ons

O ne can  st ar t  w it h q uasi-o e do m et r ic co nd it io ns in order  to 

check the n um e r ical m odel and  to com pare  it  w it h  a n a ly t ­

ical ca lcu lat io n  ( Fig ur e  5a) . T h e  calcu lat e d  set t lem ent  is 

unif o rm  in  t h is case and  t he value  0 .65 m  agrees w it h  t he 

in it ia l est im at e . How ever, t h is value  w as o b t aine d  using the 

com m on smal l  st rai n approach w hich is r at he r  quest ionab le  

for such large set t lem ent s ( ve r t ica l st r a in s reach 18 %) .

T h e  Updat ed Lagr ange m et ho d result s in  so -calle d  log ­

a r it h m ic st r a in s p ro ducing  t he m ax im um  set t lem ent  0 .51 

m . T h u s, t he dif ference in  result s of  bo t h  m et hods even for 

linear  e last icit y  exceeds 20%.

A no t he r  u n ce r t a in ly  re lat ed to the ca lcu la t io n  is due to the 

m at e r ial m odel. A  const ant  value  of  t he e last ic m o dulus 

E  does not  respect  t he result s of  lab o r at o ry exper im ent s 

show ing an incease of  E  w it h increasing  st ress. A  pow er- 

law  m odel in form

E =  Eo(  cr / ao ) n (5)

w ould be m ore appropr iat e . T h is re lat ion  w as already 

proposed by O hde  in t he t h ir t ie s ( for n =  1 it  r esult s in  the 

Te rzagh i sem ilo gar it hm ic com pression law )  an d  it  is a  p ar t  

of  several m ore advanced co n st it u t ive  m odels. In se r t in g  

the m easured values of  E  for corresponding values of  a,  one 

o bt ains n «  0 .6. T h e  ap p licat io n  of  t he  pow er-law  m odel 

in  t he U p d at e d  Lagr ange  f ram ew ork yie lds t he set t lem ent  

1.0 2  m . In  sp it e  of  a  slight  overpred ict ion, t h is value  is 

rat her  close to the m easured one.

4 .4 Tr apezoi dal  l oadi ng

T h e  t rap ezo idal load d ist r ib u t io n  ( Fig u r e  5b)  resem bles 

m ore the loading sit ua t io n  in  t he  f ie ld. I t  co rresponds to 

the em bankm ent  w it h  zero st if fness. T h e  calcu lat e d  set t le ­

m ent  is no m ore unif o rm  and  p ure ly ver t ical. O edo m et r ic 

condit io ns can  be assum ed o n ly close to t he em bankm ent  

sym m e t r y  ax is. In  order  to avo id  t ensile  st ra ins at  t he in ­

f lex p o int  of  t he set t lem ent  prof ile, no t ensile st resses w ere 

allow ed even in  the e last ic calculat io ns.

M ax im u m  values of  the set t lem ent  are sim ilar  to the 

oedom et r ic case b ut  t he set t lem ent  d ist r ib u t io n  becom es 

b e ll-sh ap e d  ( Fig u r e  6) . T h e  p last ic calcu lat io n  produces 

alm ost  tw ice as high set t lem ent s as t he e last ic one. T h is 

is the consequence of  the p ronounced lat e ral spreading 

of  the soil beneat h  the em bankm ent  in  case of  p last ic 

def orm at ion. Fur t he rm o re , t he set t lem ent  prof ile changes 

d ist in ct ly  and  the m ax im um  set t lem ent  is not  reached at 

t he sym m e t r y  ax is. T h is ef fect  can  be observed in t he f ield 

m easurem ent s ( Fig ur e  4) as w ell.

4 .5 Compr ehensi ve anal ysi s

In clu d in g  the co nst ruct io n  of  the em bankm ent  into  the nu ­

m e r ical sim u lat io n  ( Fig u r e  5c)  can  be considered as the m ost 

ap p ro p r iat e  ( b ut  the m ost  d if f icult )  st rategy. A d d it io n a ly  to
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horizontal distance [m]

F ig u re  6: S e ttle m e n t d is tr ib u tio n  in  case o f th e  tra p e z o id a l su r ­

face load .

F ig u re  7: S im u la tio n  o f  th e  geo tex tile .

the already discussed problems one must take into account 

the interface behaviour between soil and geotextile.

When performing a FE calculation with such a model, 

even embankment layers without geotextile work as a re­

inforcement since the elastic stiffness allows large tensile 

stresses within the embankment. Thus, tensile stresses in 

the soil must be prohibited in the calculation.

Within the T o c hno g  code, trussbeam elements with zero 

compressive forces and zero bending stiffness were applied 

for the modelling of the geotextile (Figure 7). The yield 

stress ay =  50 MPa and the elastic modulus E g = 500 

MPa were derived from the tensile strength 500 kN/m being 

reached at 10 % elongation (tor the thickness of the geotex­

tile 0.01 m). Interface behaviour between soil and geotextile 

was assumed to be perfectly plastic governed by the angle of 

internal friction 10° (geotextile-subsoil) and 25° (geotextile- 

embankment), respectively. Thus, a different friction along 

two opposite sides of one geotextile was prescribed. Con- 

tactspring elements worked as interface elements in the cal­

culations.

The loading process due to the embankment filling resulted 

from a gradual increase of the material density with cal­

culation time. The crushed gravel from the embankment 

was considered elastic (£= 50 MPa, i/=0.2) with no tension 

stresses allowed. The subsoil was described with elasto- 
plastic model (power-law elasticity) in the Updated La­

grange framework.
The simulation results in Figure 8 show a different set­

tlement profile than in case of the trapezoidal load. The 

maximum settlement is smaller but it is distributed over 

a wider area. This can be explained by a stiffer contact 

between the subsoil and the embankment due to the 
geotextile cushion.

5 CONCLUSIONS

The case study of the embankment on a very compressible 

peaty soil shows difficulties related to the prediction of set­

tlements. There are several engineering approaches possible 

which yield different results. The numerical analysis should

horizontal distance [m]

F ig u re  8: S e ttle m e n t d is tr ib u tio n  w ith  a n d  w ith o u t th e  geotextile 

cush ion .

therefore respect in a maximum possible way laboratory ex­

periments. The decisive role plays the nonlinearity of the 

soil behaviour which can be captured by a stress-dependent 

elasticity modulus. Including the limit shear stresses (per­

fect plasticity) enables to reproduce a realistic shape of the 

settlement profile at the surface.

The results of numerical simulations coincide well with 

the in situ measurements. Nevertheless, the applied ap­
proach can predict only maximum settlements disregarding 

the short-term stability. A more comprehensive analysis 

of the problem should also involve time effects (coupled 
consolidation and creep).
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