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General equations to describe the mechanical behaviour of granular soils
Equations générales pour la déscription du comportement mécanique des sols granulaires

Eulalio Juarez-Badillo - Graduate School of Engineering, National University of México, Mexico

ABSTRACT: General equations already obtained from the principle of natural proportionality developed to describe the mechanical
behaviour of clays are extended to describe the mechanical behaviour of granular soils: sands. They include: shear stress-strain equations
for the pre and post-peak regions and volume change in the pre and post-peak regions as well. An analysis of the direct shear test is

included.

RESUME: Des équations générales développées précédemment a partir du principe de la proportionnalité naturelle pour décrire le
comportement mécanique des argiles sont étendues a la description du comportement mécanique des sables. Elles s’appliquent aux
relations contraintes-déformations ainsi qu’aux variations de volume dans les domaines antérieur et postérieur au pic de résistance. Une

analyse du test de cisaillement direct est également présentée.

1 INTRODUCTION

The principle of natural proportionality postulated in 1985
(Juarez-Badillo 1985) is a unifying principle from which many
general equations, used to describe the mechanical behaviour of
geomaterials, have emerged. A general deviatoric stress-strain
theory for geomaterials has already been postulated (Juarez-
Badillo 1994, 1995) and applied to clays in the pre-failure region.
This time this theory is applied to a drained triaxial compression
test on a coarse sand and the theory is extended to the post-failure
region. A general volume change theory for clays in the triaxial
tests (Judrez-Badillo 1969, 1975) is also extended to describe the
volume change in the pre and post-failure regions of the same
coarse sand. Finally, the principle of natural proportionality is
used to describe the deviatoric behaviour of a loose sand and of a
clay in the pre and post-peak regions in the direct shear test.

2 STRESS-STRAIN EQUATIONS IN THE PRE AND POST-
PEAK REGIONS

Consider a sample of sand subjected to a consolidated drained
compression test increasing the axial stress. Let o, be the all
around consolidation pressure and let 6, - o3 be the maximum
principal stresses difference. Let
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where x, = maximum x. The already postulated equation for

normally consolidated clays is (Juarez-Badillo 1994, 1995)

de,,=—lu

dx
3
1-

E— 3
x J
Xy
where e, = axial deviatoric natural strain and p and v are the
shear coefficient and shear exponent respectively representing

properties of the geomaterial.
Integration of Eq. (3) gives for v =1
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For the post-peak region the principle of natural

proportionality, assuming that x and e, are proper variables,
provides: For e, = 0, x — oo while when e, > », x > x,. e, hasa
complete domain, from O to . The proper function of x, with a
complete domain, is x - x,. Now, for e, = 0, x - x_,.— o while
when e, = o, x - x,,.—> 0. The principle of natural proportionality
provides the equation

(6)

e, (x-x,) = constant

where v has the same value than for the pre-peak region and x,,
may be evaluated from the experimental data.

3 VOLUME CHANGE EQUATIONS FOR THE PRE AND
POST-PEAK REGIONS
A general volume change equation in the pre-peak region for

clays has already been postulated (Juarez-Badillo 1969, 1975),
(Juarez-Badillo and Rico-Rodriguez 1975). It reads
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where V' = volume, V, = initial volume, o, = initial equivalent
consolidation pressure, . and o, = current consolidation and
equivalent consolidation pressures, y = sensitivity function given
by an equation of the form
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where o and B are pore pressure coefficients and y
compressibility coefficient.

Equation (7) simply states that all volume changes may be
considered as due to a dissipation of actual or virtual pore
pressures. The first term (o,) takes into account the pore pressures
due to the isotropic component of the applied stresses while the
second term consist of two parts: a positive pore pressure and a
negative pore pressure, both due to the shear strainning of the
sample. For normally consolidated clays o, = o, and there are
only positive pore pressures due to the shear strainning while for
highly preconsolidated clays the positive pore pressures are very
small compared to the negative pore pressures.

For sands, an equation similar to (7) may be postulated, as a
first step to find, in the future, a general equation. The postulated
equation is:
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where Ac; = isotropic component of applied stresses, 64 = initial
consolidation pressure. Note that Eq. (10) gives the sensitivity
function with a strains formulation instead of the stresses
formulation of Eq. (8), e,/ = ¢, at failure.

Equation (9) considers the following assumptions: 1.- The
applied stresses are very small compared to the equivalent
consolidation pressure o,q. 2.- The term Ag; represents the change
in equivalent isotropic pressure plus the positive pore pressure
due to the strainning of the sample.

For the case of a triaxial compression test increasing the axial
stress we may write Eq. (9) as
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This Eq. (11) may be written as a function of strains only,
making use of Eq. (4). From Eq. (4) we get
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where e = base of natural logarithms. We may write therefore

Eq. (11) as:
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Equation (13) may be extended to include the post-peak region
if the sensitivity function varies from 0 to 1 when e, varies from
0 to . The principle of natural proportionality gives for y the

lo, -0,
3 o,

—a O ~%w

1mn

0’:0

(12)

g

y

c0

14 (13)
0

proper function L 1. When e, =0, L 1 = o and when e, = o,
Y y

l —1 =0. Therefore the relation between them should be
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If we define the characteristic e,

constant

(14)

e,* as the e, such
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that y = % , we therefore have

&

and y results to be given by
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Equation (10) for the sensitivity function is to be used in Eq.
(13) when dealing only with the pre-failure region, but Eq. (16) is
to be used in Eq. (13) when dealing with the entire stress-strain
diagram: pre and post-failure regions.

y= (16)

4 PRACTICAL APPLICATION

The theoretical stress-strain equations as well as the volume-
change equations for the pre and post-failure regions were applied
to a compression triaxial test increasing the axial stress. Fig. 1
shows “a typical plot for a dense, well-graded, coarse sand”
(Lambe 1951). The volumetric and axial natural shear strain ¢,
and e, are given by the general equations (g, and €, = axial and
radial natural strains):

€, =€, +2¢, an
€

e, =€, —— 18

ki (18)

In the pre-failure region the shear and volumetric common
1

strains at peak were €, = -0.040 and €, = % = 0.0165
equivalent to shear and volumetric natural strains £, = -0.0408
and €, = 0.0164. In the practical application of the theoretical
equations the common and natural strains were assumed to be
equal due to their small values.

In the post-failure region the strains at “ultimate” were
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€, = -0.150 and ¢, = % = 0.0594 equivalent to g, = -0.1625

and e, = 0.0577 with a corresponding axial deviatoric natural

strain e, = -0.1817. For an intermediate point g, = -0.10,
€, = % = 0.0488 (data from Reference) and ¢, = -0.1054,

€, = 0.0477 with e, = -0.1213. The differences between €., and e,
are 0.02 for the intermediate point and 0.03 for the ultimate point.
However, the author decided not to apply these modifications to
the graphs since the main objective of the present paper is just to
show the applicability of the theoretical equations to describe the
mechanical behaviour of sands. Note that the modification in the
experimental stress-strain curve, if the horizontal scale is changed
to e,, would be a stress-strain curve a “very little” higher at the
ultimate strain, with practically no modification of the strain at
peak.

Fig. 1 shows the experimental and theoretical curves given by
Egs. (4) and (6) with the following values of the parameters:
v=1,x=42,1=0.007 and x_= 2.2, (x,, ;) = (2.8,-0.15). The
equations are, therefore, for the pre and post-failure regions:

¢, =10.007x4.21In (1—i) 19)
3 42
e, =-0.15 (M) (20)
x=-22



x, .
As the actual x,= 3.96 then we have — = s =1.06
x', 396
At peak ¢,, = 41.9° (from Reference) while at e, = o, x,, = 2.2
and ¢, =31 .6°.

Fig. 1 also shows the experimental volume changes and the
theoretical curves given by Eqs. (13) and (10) for the pre-failure
region and Egs. (13) and (16) for the entire pre and post-failure

regions.
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Figure 1. Triaxial compression test. Dense, well-graded, coarse sand.

The already known parameters are 6, = 30 psi = 207 kPa,
x;=4.2, e,,=-0.04 and p = 0.007. The remaining parameters oy,
Y, o, e,* and B were obtained as follows:

From the experimental points B 2 2 and then the influence of
the second term in Eq. (13) is small at the start of the test, say

x< % x From Eq. (11) we have that at the start of the test

dE,=—= 21
v 3 G, @l

and

X5 de 22)

G, d(c,-o0,)

and from the experimental data it was obtained
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For the application of Eq. (13) to Fig. 1 we need to write it as
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As 6, =30 psi, x,=4.2, u = 0.007 and ¥ = 606 cc, then
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The component due to the first term only is
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Any pair of values of 64 and y satisfying Eq. (23) duplicates
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1
the volume changes at the start, say x < 3 x; ,of the test. It was

considered adecuate, at this time, to use o,y = 2,000 psi = 13.8
MPa and y = 0.24. Fig. 1 shows the graph given by Eq. (26).

Fig. 1 also shows the graph given by Egs. (25) and (10)
applicable to the pre-failure region. The values of the parameters
are: G, = 2,000 psi, y = 0.24, e, = -0.04, o = 0.087 and B = 2.
The value of a was found from the experimental value at e, = ey
and the value of B from the experimental data. The final equation
is

= 2 =024

A 42 o2, 2,000- 30( e, )
V=11 2000 (i-c)-0.087 3,000 \0.04)

Fig. 1 also shows the complete theoretical curve given by
Egs. (25) and (16) for the pre and post-failure regions. The values
of the parameters are o,y = 2,000 psi, y = 0.24, e,* = -0.06,
a = 0.27 and B = 2. The value of e¢,* was estimated from the
complete experimental curve and the value of o was calculated
from the final part of the experimental curve for the case y = 1.
Finally the value of B was determined form the experimental data.
The final equation is

42 2,000 - 30
AV = 1+ ——{1- ' )-0.27 2
20000 ¢ ) 2,000
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It should be observed that many, many values of o combined
with the values of o,y and y duplicate the experimental curves
while B remains constant. This is true for Eq. (27) as well as for
Eq. (28). Table 1 shows various combinations of parameters for
the theoretical curves.



Table 1. Various combinations of parameters

G, PSi Y i a (Eg. 27) a (Eq. 28)
500 0.06 2 0.34 -

1,000 012 2 0.17 0.50
1,500 0.18 2 0.12 0.35
2,000 0.24 2 0.087 0.27
3,000 0.36 2 - 0.185
4,000 0.48 2 - 0.145

Note: 1,000 psi = 6.9 Mpa

Note also that all these values depend on the assumptions
made with respect to Eq. (9). To improve Eq. (9) tests at many
other values of the initial consolidation pressure o as well as
compression and extension tests varying only the axial stress,
varying only the radial stress and with J; = constant, are needed.

5 DIRECT SHEAR TEST

In this section is presented the application of the principle of
natural proportionality, from which all the above equations have
emerged, to the direct shear test performed on a uniform fine sand
in a loose state and to an inorganic clay from Maine (Lambe
1951).

Fig. 2 shows the direct shear test on a uniform, fine sand in a
loose state. The shear displacement at peak was 5,=0.180 in. The
stress-strain equations (4), (5) and (6) adapted to the experimental
data of Fig. 2 showed that for this test v = 2. Consequently the
adapted equations, if s is the shear displacement in inches are, for
the pre-failure region
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Figure 2. Dircct shear test. Uniform fine sand in a loose state.

s=p' E - (29)

where t'= = and u' is the coefficient of proportionality and, for
o

the post-failure region
s, )2 = constant 30)

From the experimental data it was found p’' = 0.022 and
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ty = 0.82. As the actual 1" was 0.733 we have tha
b

—I=&=1.12. For the post-peak region it was found
™, 0733

1’y = 0.63 and the known point used was ('), 5,) = (0.71, 0.34).
The corresponding equations for the pre and post-peak regions are

’

5=0.022 ‘—T 31
T 082

and

s=0.34(0.71—0.63j @)
1-0.63

The value 1, = 0.63 at s = o indicates that ¢, = 32.2°
Observe that this value of ¢, for the uniform fine sand in a loose
state is very similar to the ¢, = 31.6° found for the dense, well-
graded, coarse sand of Fig. 1.

The experimental data on normal displacements indicates that
there is a virtual negative pore pressure term in Eq. (13), that is,
that o,y > o, for this uniform fine sand in a loose state.

Fig. 3 shows the direct shear test (UU test) on an inorganic
clay from Maine, on both undisturbed and remolded specimens,
sensitivity = 28. The shear displacement at peak, for the
undisturbed specimen was 0.051 in. For this test it was found
v = 2. The adapted equations for the pre and post-peak regions
are, therefore
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Figure 3. Dircct shear test (UUtest). Inorganic clay from Maine.

R (33)
fio =%
Ty
and
s(t—1.) = constant (34)

——, 5 = shear displacement in inches
sq ft
and p' = coefficient of proportionality.

It was found, for the undisturbed specimen p' = 0.000010,

where 1 = shear stress in

T3
1,= 970. As the actual 1/, = 808 we have that — =1.20.
Ty

It was also found that 1., = 290 and (t,, 5,) = (508, 0.5).



The corresponding equations are, therefore:

T

s =0.000010 (35)
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For t,, = 290 at s = oo we have that ¢, = 23.5°. However this
¢, is in terms of total stresses and the author believes that it is not
arelevant value. It was calculated just as a curiosity.

For the remolded specimen it was found p’ 0.0010,
1, = 1, = 85 without any peak. The corresponding equation is
therefore

$=0.0010 ——

(o
85
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The relationship between p’ for the remolded and undisturbed
specimens was p' remolded/p’ undisturbed = 100.

6 ADDITIONAL TRIAXIAL COMPRESSION TESTS

While at Harvard University, in 1952, the author performed the
triaxial tests presented in Figs. 4 and 5. They are included for
comparison. Fig. 4 shows vacuum triaxial compression tests
performed on a very uniform Franklin Falls silty sand in both, in
a loose state and in a dense state. The values of the parameters
appear in Fig. 4. The final equations are, for the case of loose
state (see Eq. (4)).
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Figure 4.
sand.

Vacuum triaxial compression tests. Very uniform Franklin Falls silty

1 2

e, =1 0013 32 1y (1—1] (38)
3 0.85 4.5

and for the case of dense state
1 g

g:—0%6£24n@—£J (39)
3 0.84 4.9

Eig. 5 shows a triaxial CU compression test performed on an
undisturbed sample of Boston blue clay. The final equation is (see
Eq. (5)):
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Figure 5. Triaxial CU compression test. Boston blue clay (Undisturbed).

7 FINAL COMMENTS

For sands under triaxial testing it was found v = 1, Figs. | and 4.
This value of v = 1 has also been found for clays under drained
triaxial testing (Juarez-Badillo 1994) and also for concrete made
with a dense aggregate (gravel) while for concrete made with 2
lightweight aggregates (Lytag and Leca) it was found v = 0.7 and
v= 0.3 (Juarez-Badillo 1996). For clays under undrained testing it
was found v = 2 for both, triaxial, Fig. 5 and (Juarez-Badillo
1995) and direct shear tests, Fig. 3. From the above it is highly
disturbant for the author the result of Fig. 2, namely, v = 2 for a
drained direct shear test for a uniform fine sand in a loose state.

8 CONCLUSIONS

The main conclusions are:

1. It appears that the value for the shear exponent v=1is a
very common value for the drained behaviour of geomaterials
while the value v = 2 is a very common value for the undrained
behaviour of geomaterials.

2. The value of the shear exponent v is the same for both, the
pre and post-peak regions of the stress-strain behaviour of
geomaterials.

3. To improve the general equations there is a need for a
“complete spectrum” of the mechanical behaviour of
geomaterials: complete stress-strain curves, including pre and
post-peak regions in, say, triaxial compression and extension
triaxial tests varying only the axial stress, varying only the radial
stress and under J; = constant conditions and under many
different values of the initial consolidation pressure .
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