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General equations to describe the mechanical behaviour of granular soils 

Equations generates pour la description du comportement mecanique des sols granulaires

E ula lio Jua re z -Ba dillo -  Graduate Sc hool o f Engineering, National University o f Mexico, Mexico

ABSTRACT: General equations already obtained from the principle of natural proportionality developed to describe the mechanical 
behaviour of clays are extended to describe the mechanical behaviour of granular soils: sands. They include: shear stress-strain equations 
for the pre and post-peak regions and volume change in the pre and post-peak regions as well. An analysis of the direct shear test is 
included.

RESUME: Des equations generales developpees precedemment a partir du principe de la proportionnalite naturelle pour decrire le 
comportement mecanique des argiles sont etendues a la description du comportement mecanique des sables. Elies s’appliquent aux 
relations contraintes-deformations ainsi qu’aux variations de volume dans les domaines anterieur et posterieur au pic de resistance. Une 
analyse du test de cisaillement direct est egalement presentee.

1 INTRODUCTION

The principle of natural proportionality postulated in 1985 
(Juarez-Badillo 1985) is a unifying principle from which many 
general equations, used to describe the mechanical behaviour of 
geomaterials, have emerged. A general deviatoric stress-strain 
theory for geomaterials has already been postulated (Juarez- 
Badillo 1994, 1995) and applied to clays in the pre-failure region. 
This time this theory is applied to a drained triaxial compression 
test on a coarse sand and the theory is extended to the post-failure 
region. A general volume change theory for clays in the triaxial 
tests (Juarez-Badillo 1969, 1975) is also extended to describe the 
volume change in the pre and post-failure regions of the same 
coarse sand. Finally, the principle of natural proportionality is 
used to describe the deviatoric behaviour of a loose sand and of a 
clay in the pre and post-peak regions in the direct shear test.

2 STRESS-STRAIN EQUATIONS IN THE PRE AND POST­
PEAK REGIONS

Consider a sample of sand subjected to a consolidated drained 
compression test increasing the axial stress. Let ac0 be the all 
around consolidation pressure and let - a3 be the maximum 
principal stresses difference. Let
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For the post-peak region the principle of natural 
proportionality, assuming that x and ea are proper variables, 
provides: For ea = 0, x  —» °o while when ea -> co, x  -» x e a has a 
complete domain, from 0 to <x>. The proper function of x, with a 
complete domain, is x - x„. Now, for ea = 0, x - x„.-* °o while 
when ea —* co, x - x^.-t 0. The principle of natural proportionality 
provides the equation

ea (x -  xr )' = constant (6)

where v has the same value than for the pre-peak region and xx 

may be evaluated from the experimental data.

3 VOLUME CHANGE EQUATIONS FOR THE PRE AN

( 1) POST-PEAK REGIONS

O jj-a,
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A general volume change equation in the pre-peak region for 
clays has already been postulated (Juarez-Badillo 1969, 1975), 

(Juarez-Badillo and Rico-Rodriguez 1975). It reads

where xf  = maximum x. The already postulated equation for 
normally consolidated clays is (Juarez-Badillo 1994, 1995)

de = —  u 
3

dx
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where ea% = axial deviatoric natural strain and |i and v are the 
shear coefficient and shear exponent respectively representing 

properties of the geomaterial.
Integration of Eq. (3) gives for v = 1

a a c -  - a  ( a ,  - c r < )

(7)

where V = volume, V0 = initial volume, af0 = initial equivalent 
consolidation pressure, a c and a t, = current consolidation and 
equivalent consolidation pressures, y  = sensitivity function given 

by an equation of the form
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where a  and P are pore pressure coefficients and y = 
compressibility coefficient.

Equation (7) simply states that all volume changes may be 
considered as due to a dissipation of actual or virtual pore 
pressures. The first term (ae) takes into account the pore pressures 
due to the isotropic component of the applied stresses while the 

second term consist of two parts: a positive pore pressure and a 
negative pore pressure, both due to the shear strainning of the 
sample. For normally consolidated clays a e = ac and there are 
only positive pore pressures due to the shear strainning while for 
highly preconsolidated clays the positive pore pressures are very 

small compared to the negative pore pressures.
For sands, an equation similar to (7) may be postulated, as a 

first step to find, in the future, a general equation. The postulated 
equation is:

that y  = — , we therefore have

and y  results to be given by

Equation (10) for the sensitivity function is to be used in Eq. 
(13) when dealing only with the pre-failure region, but Eq. (16) is 

to be used in Eq. (13) when dealing with the entire stress-strain 
diagram: pre and post-failure regions.

V  =  j crrQ + A a ,  -  a  ( a g0 - p c0) ^ ] 7 

K

y - i ±

(9)

( 10)

where Aa, = isotropic component of applied stresses, = initial 
consolidation pressure. Note that Eq. (10) gives the sensitivity 
function with a strains formulation instead of the stresses 
formulation of Eq. (8), eaj=  ea at failure.

Equation (9) considers the following assumptions: 1.- The 
applied stresses are very small compared to the equivalent 
consolidation pressure ae0. 2.- The term Act, represents the change 
in equivalent isotropic pressure plus the positive pore pressure 
due to the strainning of the sample.

For the case of a triaxial compression test increasing the axial 
stress we may write Eq. (9) as

V_

K
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(11)

This Eq. (11) may be written as a function of strains only, 
making use of Eq. (4). From Eq. (4) we get

i f a . ' '

1 -  eW/ ( 12)

where e = base of natural logarithms. We may write therefore 
Eq. (11) as:

1-e" (13)

Equation (13) may be extended to include the post-peak region 

if the sensitivity function varies from 0 to 1 when ea varies from 

0 to oo. The principle of natural proportionality gives for y  the

proper function — -  1. When ea = 0, — -  1 =  °o and when ea = oo,

y y

—  1 =0. Therefore the relation between them should be
y

(14)

e *  as the e„ such

---- 1 \e„ = constant

If we define the characteristic e„

4 PRACTICAL APPLICATION

The theoretical stress-strain equations as well as the volume- 
change equations for the pre and post-failure regions were applied 
to a compression triaxial test increasing the axial stress. Fig. 1 
shows “a typical plot for a dense, well-graded, coarse sand” 
(Lambe 1951). The volumetric and axial natural shear strain e v 

and ea are given by the general equations (ea and £r = axial and 
radial natural strains):

e,

:e° _ 7

(17)

(18)

In the pre-failure region the shear and volumetric common

10
strains at peak were z,„ = -0.040 and e_, = ----  = 0.0165

606

equivalent to shear and volumetric natural strains ea = -0.0408 

and ev = 0.0164. In the practical application of the theoretical 

equations the common and natural strains were assumed to be 

equal due to their small values.

In the post-failure region the strains at “ultimate” were 

36
e„ = -0.150 and e„ = ----  = 0.0594 equivalent to e. = -0.1625

606
and e v = 0.0577 with a corresponding axial deviatoric natural 

strain ea = -0.1817. For an intermediate point eca = -0.10, 

29.6
ecv = -----

606
ev = 0.0477 with ea = -0.1213. The differences between eca and ea 

are 0.02 for the intermediate point and 0.03 for the ultimate point. 

However, the author decided not to apply these modifications to 
the graphs since the main objective of the present paper is just to 
show the applicability of the theoretical equations to describe the 
mechanical behaviour of sands. Note that the modification in the 
experimental stress-strain curve, if the horizontal scale is changed 
to ea, would be a stress-strain curve a “very little” higher at the 
ultimate strain, with practically no modification of the strain at 
peak.

Fig. 1 shows the experimental and theoretical curves given by 
Eqs. (4) and (6) with the following values of the parameters: 
v = 1, xj=  4.2, n = 0.007 and x^  = 2.2, (x,, ea]) = (2.8,-0.15). The 
equations are, therefore, for the pre and post-failure regions:

= 0.0488 (data from Reference) and ea = -0.1054,

e = - 0 . 0 0 7 x 4 . 2  Inf 1 -  —  
“ 3 I 4.2

= -0.15
2.8 -2 .2  

x -  2.2

(19)

(20)
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x , 4.2
As the actual x'f = 3.96 then we have —  = ----- = 1.06

x'f  3.96

At peak = 41.9° (from Reference) while at ea = oo, x„ = 2.2 

and = 31.6°.
Fig. 1 also shows the experimental volume changes and the 

theoretical curves given by Eqs. (13) and (10) for the pre-failure 
region and Eqs. (13) and (16) for the entire pre and post-failure 

regions.

AV =

For the application of Eq. (13) to Fig. 1 we need to write it as 

1 CT,,
1 -I------—X,

3a„„ 7
l - e 1"' ■y ■\}V0 (24)

As CT̂j = 30 psi, x,=  4.2, |i = 0.007 and V0 = 606 cc, then

AV = ■ (25)

The component due to the first term only is

AV ■ f,+—(
l - e l0M ’-I[L

/
J

(26)

Any pair of values of and y satisfying Eq. (23) duplicates

the volume changes at the start, say x < ^ Xj ,of the test. It was

considered adecuate, at this time, to use ae0 = 2,000 psi = 13.8 

MPa and y = 0.24. Fig. 1 shows the graph given by Eq. (26).

Fig. 1 also shows the graph given by Eqs. (25) and (10) 
applicable to the pre-failure region. The values of the parameters 
are: a e0 = 2,000 psi, y = 0.24, ear= -0.04, a  = 0.087 and P = 2. 
The value of a  was found from the experimental value at ea = eaj  

and the value of P from the experimental data. The final equation 
is

o
>
<

Axial strain, , in %
Lo

Figure 1. Triaxial compression test. Dense, well-graded, coarse sand.

AV ■ 1 +
42

2,000
{ l - e l02c”) - 0.087

2,000- 30 (  e{

2,000 -0.04

-  U 606 (27)

Fig. 1 also shows the complete theoretical curve given by 
Eqs. (25) and (16) for the pre and post-failure regions. The values 
of the parameters are ae0 = 2,000 psi, y = 0.24, ea* = -0.06, 
a  = 0.27 and P = 2. The value of ea* was estimated from the 
complete experimental curve and the value of a was calculated 
from the final part of the experimental curve for the case y  = 1. 
Finally the value of P was determined form the experimental data. 

The final equation is

The already known parameters are = 30 psi = 207 kPa, 
Xj= 4.2, eaj=  -0.04 and |i = 0.007. The remaining parameters ctc0, 
y, a, e *  and P were obtained as follows:

From the experimental points p > 2 and then the influence of 

the second term in Eq. (13) is small at the start of the test, say

x < -  xj. From Eq. (11) we have that at the start of the test

dE - d V  -  1 d (g | - g »)

' V 3 a ,0
(21)

AV  : 1 + - ^ —( l - e l02'“ )-0 .27  
-> nnn V /2,000

1 +

2,000-30

2,000

-0.06.

-1 606 (28)

and

Y de„
= -3- —  .

d(C T,-a3)

It should be observed that many, many values of a  combined 
with the values of ctc0 and y duplicate the experimental curves 

(22) while p remains constant. This is true for Eq. (27) as well as for 
Eq. (28). Table 1 shows various combinations of parameters for 
the theoretical curves.

and from the experimental data it was obtained

—  = 3 x 0.000040 = 0.000120 —
lb

( 2 3 )
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T able I . V arious com binations o f  param eters

<*«» psi y . P a  (Eq. 27) a  (Eq. 28)

500 0.06 2 0.34 -

1,000 0,12 2 0.17 0.50

1,500 0.18 2 0.12 0.35

2,000 0.24 2 0.087 0.27

3,000 0.36 2 - 0.185

4,000 0.48 2 - 0.145

Note: 1,000 psi = 6.9 Mpa

Note also that all these values depend on the assumptions 
made with respect to Eq. (9). To improve Eq. (9) tests at many 
other values of the initial consolidation pressure a ĵ as well as 
compression and extension tests varying only the axial stress, 
varying only the radial stress and with J x = constant, are needed.

V
x

= 0.82. As the actual x"j  was 0.733 we have that 

> _ 0.82

/ 0.733
= 1.12. For the post-peak region it was found

x'„ = 0.63 and the known point used was (x'b j ,) = (0.71, 0.34). 

The corresponding equations for the pre and post-peak regions are

s = 0.022- (31)

1--

and

5 = 0.34

0.82

0.71-0.63

t ' - 0.63
( 32)

5 DIRECT SHEAR TEST

In this section is presented the application of the principle of 
natural proportionality, from which all the above equations have 
emerged, to the direct shear test performed on a uniform fine sand 
in a loose state and to an inorganic clay from Maine (Lambe 
1951).

Fig. 2 shows the direct shear test on a uniform, fine sand in a 
loose state. The shear displacement at peak was jy= 0.180 in. The 
stress-strain equations (4), (5) and (6) adapted to the experimental 
data of Fig. 2 showed that for this test v = 2. Consequently the 
adapted equations, if s is the shear displacement in inches are, for 
the pre-failure region

The value = 0.63 at s = °o indicates that i))„ = 32.2°. 
Observe that this value of <j>„ for the uniform fine sand in a loose 
state is very similar to the <])„ = 31.6° found for the dense, well- 
graded, coarse sand of Fig. 1.

The experimental data on normal displacements indicates that 

there is a virtual negative pore pressure term in Eq. (13), that is, 
that ae0 > ac0, for this uniform fine sand in a loose state.

Fig. 3 shows the direct shear test (UU test) on an inorganic 
clay from Maine, on both undisturbed and remolded specimens, 
sensitivity = 28. The shear displacement at peak, for the 
undisturbed specimen was 0.051 in. For this test it was found 
v = 2. The adapted equations for the pre and post-peak regions 
are, therefore
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Figure 2. Direct shear test. Uniform fine sand in a loose state.

S = [ l (29)

1 --

where x ' =  — and p.' is the coefficient of proportionality and, for
CT

the post-failure region

5 (x’- x '^ y  = constant (30)

From the experimental data it was found p.' = 0.022 and
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Figure 3. Direct shear test (UUtest). Inorganic clay from Maine. 

T/

and

s (x -  x , ) 2 = constant

0.6

(33)

(34)

lb
where x = shear stress in —:—  , s = shear displacement in inches 

sq ft

and (j.* = coefficient of proportionality.

It was found, for the undisturbed specimen n' = 0.000010,

x.

V : 970. As the actual x'f  = 808 we have that =  1.2 0 .

It was also found that x„ = 290 and (x,, j , )  = (508, 0.5).
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The corresponding equations are, therefore:

T

(35)

1-
970

and

s = 0.5
( 508 -  290 

I x -  290
(36)

For = 290 at s = °o we have that = 23.5°. However this 
i(>„ is in terms of total stresses and the author believes that it is not 
a relevant value. It was calculated just as a curiosity.

For the remolded specimen it was found jj.' = 0.0010, 
X, = = 85 without any peak. The corresponding equation is 

therefore

i=  0.0010
x

85

(37)

The relationship between jj.' for the remolded and undisturbed 
specimens was fi'remolded/(i'undisturbed = 100.

-  0.010 —  
3 4.94 CT

3.4

(4 0 )

-ea . ‘

6 ADDITIONAL TRIAXIAL COMPRESSION TESTS

While at Harvard University, in 1952, the author performed the 
triaxial tests presented in Figs. 4 and 5. They are included for 
comparison. Fig. 4 shows vacuum triaxial compression tests 
performed on a very uniform Franklin Falls silty sand in both, in 
a loose state and in a dense state. The values of the parameters 

appear in Fig. 4. The final equations are, for the case of loose 
state (see Eq. (4)).

e
Is

Figure 4. Vacuum triaxial compression tests. Very uniform Franklin Falls silly 

sand.

e„ = -  0.013 —  In f l -  —
3 0.85  ̂ 4.5.

(38)

Figure 5. Triaxial CU compression lesi. Boston blue clay (Undisturbed).

7 FINAL COMMENTS

For sands under triaxial testing it was found v = 1, Figs. 1 and 4. 
This value of v = 1 has also been found for clays under drained 
triaxial testing (Juarez-Badillo 1994) and also for concrete made 
with a dense aggregate (gravel) while for concrete made with 2 
lightweight aggregates (Lytag and Leca) it was found v = 0.7 and 
v = 0.3 (Juarez-Badillo 1996). For clays under undrained testing it 
was found v = 2 for both, triaxial, Fig. 5 and (Juarez-Badillo 
1995) and direct shear tests, Fig. 3. From the above it is highly 
disturbant for the author the result of Fig. 2, namely, v = 2 for a 
drained direct shear test for a uniform fine sand in a loose state.

8 CONCLUSIONS

The main conclusions are:
1. It appears that the value for the shear exponent v = 1 is a 

very common value for the drained behaviour of geomaterials 
while the value v = 2 is a very common value for the undrained 
behaviour of geomaterials.

2. The value of the shear exponent v is the same for both, the 
pre and post-peak regions of the stress-strain behaviour of 
geomaterials.

3. To improve the general equations there is a need for a 
“complete spectrum” of the mechanical behaviour of 
geomaterials: complete stress-strain curves, including pre and 
post-peak regions in, say, triaxial compression and extension 
triaxial tests varying only the axial stress, varying only the radial 
stress and under = constant conditions and under many 
different values of the initial consolidation pressure a c0.
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and for the case of dense state

I  0.006 —  In f l -  —
3 0.84 V 4.9

(39)

Fig. 5 shows a triaxial CU compression test performed on an 
undisturbed sample of Boston blue clay. The final equation is (see 
Eq. (5)):

The author was very happy of having discovered the very good 
experimental data of the complete stress-strain curves of Figs. 1,

2 and 3 in the book Soil Testing for Engineers by William T. 
Lambe (1951).

The author gratefully thanks "Raul Vicente Orozco y Cia." the 
preparation of this paper by means of a computer.
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