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Effects of subsurface liquefaction on earthquake ground motion at surface
Influence de la liquéfaction de la subsurface des sols sur la propagation sismique a la surface

|.Towhata — Department of Civil Engineering, The University of Tokyo, Japan
J. K. Park — Department of Civil Engineering, Seoul National Polytechnic University, Korea
R.P.Orense - Kisojiban Consultants Co. Ltd, Japan

ABSTRACT: The earthquake-related risk management of lifeline operation requires that the onset and extent of subsurface liquefaction
are detected immediately after an earthquake. This goal is achieved by deploying many accelerometers in the area of possible liquefaction
and collecting records through a wireless network. This paper attempts to develop a measure to interpret the collected data of surface
motion and to assess the thickness of liquefied layer. For this purpose, both analysis of earthquake records and shaking table tests on
model ground were carmied out. It was shown that the thickness of liquefied layer can be assessed by using the maximum acceleration
and the spectrum intensity at the surface.

RESUME: La gestion des réseaux d’utilités soumis au nsque sismique exige que I'intensité et I'étendue de la liquéfaction sub-surface
des sols soient détecteés immédiatement aprés la liquéfaction sub-surface des sols soient détecteés immédiatement aprés le séisme. Le
but est atteint en déployant de nombreux accélérométres dans la zone de liquéfaction potentielle, et en collectant les données par un
réseau sans fil. Le présent article vise a développer une méthode pour interpréter les données collectées de mouvements de surface et
pour évaluer I’épaisseur du niveau liquéfié. Dans ce but ont été réalisées des analyses d’enregistrements de séismes ainsi que des
expériences sur plateau vibrant avec des sols reconstitués en laboratoire. Il est ainsi démontré que 1’épaisseur du niveau liquéfié peut étre
estimée en connaissant I’accélération maximum et le spectre d’intensité a la surface.

I INTRODUCTION Table 1 Earthquake motion records employed for present study

T L o (site name, earthquake name, and year).
The seismic liquefaction in loose sandy subsoil is one of the

most important earthquake hazards to embedded lifeline facilities. Records at sites of liquefaction

Although densification of sand is an effective measure against Kawagishi-cho, Niigata, 1964; Wildlife, Superstition Hill,

liquefaction in principle, the vast area of a lifeline operation 1987 (Holzer et al., 1989); Aomori Harbor, Tokachi-oki,

makes the overall densification difficult. It is consequently argued 1968 Port Island, Kobe, 1995 (observed by Development

to initiate immediately after an earthquake such necessary Bureau of Kobe City).

emergency actions as stopping gas supply and seeking for

alternative networks. Since the emergency action requires Records near liquefied areas

information about the extent of liquefaction to be known as Akita Harbor, Nihonkai-chubu, 1983; Kobe Harbor, Kobe,

precisely as possible, a new measure is proposed here by which 1995 (CEORKA).

the earthquake motion records are interpreted to detect both the

onset and the extent of subsurface liquefaction. This measure Records without effects of liquefaction

has become possible with the aid of a recent installation of a El Centro, 1940; Hachinohe, Tokachi-oki, 1968; Kaihoku

wireless earthquake observation network which can collect and Bridge, Miyagi-ken-oki, 1978; Owi, Chiba-Ibaragi. 1980;

report the data concerning the ground motion. Sunamachi, Chiba-toho, 1987; Amagasaki, Kobe, 1995
(CEORKA).

2 ANALYSIS OF PAST EARTHQUAKE RECORDS

Analyses were made of ground motion records observed at the
surface during past earthquakes. It was aimed to detect a feature
of the records which indicates the effects of subsurface
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Fig.2 Relationship between displacement, S/, and A, ..
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Fig.4 Assessed deformation in liquefied layer of Port Island.

Table 2 Surface displacement and deformation in liquefied layer.

Records Amplitude of Amplitude of
surface displacement shear deformation
(m) in liquefied layer (m)
Wildlife NS 0.114 0.107
EW 0.091 0.069
Port Island NS 0.345 0.312
EW 0.233 0.188

Note: the amplitude of displacement is defined by
(positive maximum - negative minimum) /2.

liquefaction occurred in the subsoil. It is interesting that S values
at sites of liquefaction is greater than 0.2m/s. This fact does
not achieve the goal of the present research, however, because
similarly large S/ values were obtained at unliquefied sites as
well.

The large displacement amplitude at the surface can be detected
by combining S/ or the maximum velocity with the maximum
acceleration. Firstly, a harmonic motion, which is a
sin function of time, has a following relationship between the
amplitudes of displacement, velocity, and acceleration;

Voul A )

The velocity amplitude on the right-hand side of this equation
was replaced by S7 as validated by Fig.1 and SI”/A,  was compared
in Fig.2 with the displacement amplitude of the original motion.
There seems to be a relationship of

D,

o =2 X SI/A @)

which is similar to Eq.1, whether or not liquefaction occurred in
the subsoil.

It seems reasonable that the softening and a large amplitude of
deformation in liquefied subsoil increase the amplitude of
displacement at the surface. The extent of subsurface liquefaction,
therefore, can be detected by assessing the large deformation in
the liquefied subsoil from the surface displacement amplitude.
With this idea in mind, the surface displacement amplitude and
the deformation of liquefied layers at Port Island and Wildlife
Site were compared (see Table 1). This type of study is possible
only at these two sites where both the surface motion as well as
the motion at the bottom of loose sandy deposits were recorded.
By integrating twice the surface and the bottom acceleration
records, the displacement histories were derived. Their difference
directly gives the extent of shear deformation in the liquefied
subsoil.

Fig.3 reveals the time histories of displacement in NS direction
at Port Island. Fig.2 demonstrates the time history of shear
deformation in liquefied sand which is the difference between
two histories in Fig.3. Although the maximum displacements in
Fig.3 are compatible with each other, the maximum value in
their difference in Fig.4 is still large, approximately equal to the
maximum surface displacement. Table 2 summarizes all the studies
for four records to demonstrate that the surface displacement
amplitude is a good approximation of the shear deformation in
the liquefied layer. Therefore, it is reasonable to say that the
assessment of surface displacement amplitude (Eq.2) helps detect
the large shear deformation in a liquefied subsoil.

3 SHAKING TABLE TESTS

A series of shaking table tests were carried out to study in more
detail the nature of S/ on liquefied subsoil. Fig.5 displays the
configuration of models which measured mostly 4 m in length
and 0.55 m in thickness of sand. The model ground was prepared
by raining Toyoura sand in water to achieve a relative density of
30 to 40%. For more details, refer to Towhata et al. (1996).

One of the test results is illustrated in Fig.6, where time
histories of S/, surface and base accelerations, and excess pore
water pressure are presented. The time history of S/ was obtained
by using the acceleration of the first ¢ seconds; 7 varing from 0 to
the whole duration of shaking. It is seen that 1) the pore pressure
started to rise at around 3 seconds, ii) the maximum surface
acceleration occurred at 4 seconds, at which ST attained the ultimate
maximum value as well, and iii) the pore pressure attained 100%
liquefaction at 5 seconds.

The amplification of motion, which is a ratio of the surface
motion and the bottom motion, achieved the maximum at around
4 seconds. It seems that the subsoil became softer as pore pressure
developed thereby the natural period of the model deposit
increasing. At about 4 seconds, this elongated period matched
with the period of the input motion and the maximum amplification
(resonance) occurred. The further pore pressure increment erased
the stiffness of sand completely and the surface motion disappeared
after 4 seconds.

Fig.7 compares the development of S/ and excess pore water
pressure. The testing frequency and the shape of models did not
affect the test results. It appears that the onset of liquefaction is
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always associated with §/=0.04 to 0.05m/s. This S is, however,
much smaller than the field experience of 0.2 m/sec at liquefied
sites. (Fig.1). Moreover, the SI versus pore pressure relationship
is affected by the density of sand, as illustrated in Fig.8. Therefore,
SI alone cannot be a good sign of subsurface liquefaction, as
asserted before.

4 ASSESSMENT OF THICKNESS OF LIQUEFIED LAYER

The present study employs and assesses the thickness of liquefied
subsoil as an indicator of the extent of liquefaction. The shaking
table tests exhibited that A, and S/ are attained at resonance
which is slightly before the complete liquefaction. The idealized
amplitude of lateral displacement at resonance, d, is given by a

sinusoidal function of depth, z;

d=D,, cos ==
2H

)
where H is the thickness of a liquefied layer. Hence, the maximum
shear strain, », in a liquefied layer is derived at the bottom;
z=H. By using Eq.2,

od

r= 2 e )= (m5r) (.

(4)

This strain occurs at resonance as stated above which is slightly
prior to complete liquefaction. Therefore, the value of » is large
but not significantly large. The present study considers that this
» is equivalent with a double amplitude of axial strain of ¢,
=0.025 (=2.5%) in cyclic undrained triaxial tests. The undrained
condition requires ¢ ,= —0.0125 and the value of shear strain is
derived as y=( e, — ¢ ,)=0.01875. This is substituted in Eq.4
and the thickness of liquefied layer is assessed;

H=(nS")/(0.018754,,,) 5
Towhata et al. (1996) extended this idea to a situation in which
there is an unliquefied crust at the surface.

Figure 9 illustrates the estimated thickness of liquefied layer at
Kawagishi-cho site in Niigata. The loose deposit of sand down
to the depth of 12m liquefied. This agrees with the range of high
excess pore water pressure(Fig.10) which was suggested by a
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numerical analysis based on the effective stress principle suggested
(Ishihara et al., 1982). Fig.11 reveals the case of Port Island in
Kobe. The assessed range of liquefaction includes an unliquefiable
clay layer (Mal3) probably because the real strain exceeded
0.01875. Thus, an unliquefiable layer, which is known in advance
in available boring logs, should be removed from the assessed
range of liquefaction.

5 MINIMUM S/ FOR LIQUEFACTION

The significant discrepancy in S/ values of field and model
Liquefaction is caused by the scale. The scale effects can be
studied brefly by using Eq.5 that was derived independent of
the scale. The thickness of liquefied layer, H, indicates the idea
of scale. Since A,,, is similar in both field and model, SF is
proportional to the scale. When the field deposit is, for example,
10 to 30 times larger than the model, $/=0.04m/sec in loose
model deposits is equivalent with 0.73 to 0.22m/sec. in the field.
This seems to agree with S/ at liquefied sites in Fig.1. When the
field S/ is less than this critical value, liquefaction is unlikely.

6 CONCLUSIONS

A series of shaking table tests as well as an analysis of earthquake
motion records were carried out in order to develop a measure
by which the extent of field liquefaction is immediately detected.
This goal was achieved by using the maximum acceleration and
the spectrum intensity, and the assessed thickness of liquefied
layer matches reasonably with the field experience.
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