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Limit analysis of bearing capacity for a circular footing subjected to eccentric loads 
L’analyse limite de capacité portante des fondations circulaires sous chargement excentrique

H.Sekiguchi & S. Kobayashi -  Department of Civil Engineering, Kyoto University, Japan

ABSTRACT: In this paper, limit analysis is applied to a bearing capacity problem of a circular rigid footing on a weightless 
'IVesca material subjected lo eccentric vertical loading. The upper-bound and lower-bound solutions obtained here reveal the 
range in which the exact solution exists. These theoretical results compare favorably with what has been obtained from bearing 
capacity tests on undrained cohesive soil. This kind of limit analysis has potential applications in the design of shallow founda­
tions subjected to  severe loading conditions.

RKSUMli: Dans cot article, l’analyse limite est appliquée au problème de capacité portante d ’une fondation rigide circulaire sur 
un matériau de 'lYesca de masse nulle soumis à un chargement vertical excenLrique. Les solutions des frontières supérieures et 
inférieures obtenues révèlent les limites pour lesquelles une solution exacte existe. O s  résultats théoriques sont comparables aux 
expériences de capacité portante réalisées sur des sols cohésifs non secs. C ette sorte d ’analyse limite possède des applications 
potentielles dans l’étude des fondations soumises à  des conditions de chargement sévères.

I INTRODUCTION

II is important to understand the bearing capacity of foundar 

lions under combined loads when designing ofishore structures 
that are subjected to severe loading conditions, such as wave 
forces. The bearing capacity characteristics of rigid shallow 
foundations subjected to combined loading may be schemata 
ically illustrated in Fig. 1. The bearing capacity surface in 
load space has been derived on the basis of recent experimen­
tal results (e.g. Nova k. Montrasio 1991, Dean et al. 1993, 
Houlsby & Martin 1993, Butterfield h  Gottardi 1994). Note 
that this load space has three base vectors; vertical load V , 
horizontal load H  and moment load M /B ,  where B  is the 
width of a given footing. The maximum capacity under ver­
tical centered loading is expressed as Vm. Parameters ¡i and

govern the shape of the bearing surface. Specifically, fi 
and ip are gradients of the sectional curves cut by the plane 
M/B  0 or H  =- 0, at the origin of the load space. The 
sectional curve of this bearing surface cut by the plane H  O 
or V ~ M /B  represents the bearing capacity under eccentric 
vertical loading.

Conventionally, the effective width concept for strip foot­
ings (Meyerhof 1953) along with the ‘effective-and-equivalent’ 
area concept for circular footings ( Hansen 1961 ) are well 
known as methods for evaluating the bearing capacity un­
der eccentric vertical loading. Although these methods have 
been extensively used in engineering practice, their theoreti­
cal nature has received little attention from the standpoint of 
plasticity theory.

This paper deals with a bearing capacity problem for a cir­
cular footing on Tresca ground subjected to eccentric vertical 
loads, for which an exact solution has not yet been obtained. 
Both the upper- and lower-bound solutions for this problem 
will he derived below in terms of limit analysis.

2 BEARING CAPACITY OF A CIRCULAR FOOTING 
SUBJECTED TO ECCENTRIC VERTICAL LOADING

Let us consider a bearing capacity problem in which a circular 
rigid footing with a radius a is subjected to eccentric vertical 
loading. The footing has a rough base and rests on a weight­
less 'IVesca material with a shear strength k. The vertical load 
acts on the point O' with an eccentricity e from the footing 
center O.

2.1 Lower bound solution incorporating effective area concept

This analysis offers a new look at the concept of an effec­
tively loaded area. The most important consideration is that 
the effectively loaded area for a given eccentricity e should be 
sought in such a way that the stress field below the effective 
area is statically admissible. The effective area introduced 
here is illustrated in Fig. 2. In fact, one can think of a circu­
lar effective area just below the actual footing such that the 
reduced circular area is centered directly beneath the actual 
loading point, and that its radius (a — e) is large enough to 
extend to the nearest edge of the actual footing. The vertical 
contact pressure crz over the remaining crescent-shaped area 
should be zero.

The stress field below the effective area may be constructed 
to be statically admissible, with reference to the Eason-Shield 
stress field (Eason & Shield 1960) which was originally pro­
posed for a rigid rough plate on a TVesca material subjected 
to vertical centered loading. Cross section through the center 
of the footing O  as well as the loading point is shown in Fig.
3. A statically admissible stress field beneath and around the 
footing (cf. area O 'A D E F )  was obtained by the method of 
stress characteristics. The plastic stress field can be extended 
to outer rigid regions without violating the yield criteria; that 
is to say, the yield function /  < 0 in rigid regions. Thus, the 
stress field shown in Fig. 3 can be recognized as a statically 
admissible stress field in the entire domain. Note in this re­
gard that line A O 'C  represents the diameter of the effectively 
loaded circle. Since the effective circle is centered at point O' 
precisely below the actual lading point, its radius is equal to 
(a — e). The stress field below the effective area is statically 
admissible and is axi-symmetric about the vertical line that 
passes through point O'.

The vertical load V  which acts on the upper surface of the 
footing should be in equilibrium with the admissible stress 
field described above. The vertical contact pressures over the 
effective circle are not uniform in this case and take a partic­
ular axi-symmetrical distribution. In fact, its spatial average 
over the effective circle is equal to 6.05A:. It thus follows that

Bearing capacity surface

Figure 1: Bearing capacity surface in load space (schematic)
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Figure 2: Effective area introduced for a circular rigid 
footing

2.2 Upper bound solution in terms o f rotational failure mech­
anism

Suppose that the ground below a rigid circular footing under­
goes rotational failure by the action of an eccentric vertical 
load (Fig. 4). We refer to a Cartesian coordinate system 
(x, y, z) whose origin is taken at point A. The z-axis is taken 
along a horizontal axis of rotation (chain-dotted). Note that 
the circular footing rests on a plane z — zq and is centered al 
point O  with x  = 0 and y = c. The periphery of the footing 
is thus expressed as x 2 I (y — c)2 = a2, where a denotes the 
radius of the footing.

Based on this mechanism, the upper bound solution is eval­
uated by setting that the rate of the total internal dissipation 

energy along a failure surface Wint is equal to the rate of the 

total external work due to an eccentric vertical load WeM 
The results obtained are summarized in the form of Fig.  ̂

though a detailed calculation procedure will be described sub­
sequently.

Let us first discuss the case where 0 <  e /a  < 0.5. In this 
case, a rotational failure such as shown in Fig. 4 is possible 
to occur in the solid below the circular footing. The failure 
arc in the meridional plane (x  =  0) has a length equal to the 
distance A E . The slip circle in the solid starts from point 
E , extends deepest in the solid below point B  and meets the 
surface of the solid again at a point that is opposite to point
E, with respect to the dotted line indicated.

The failure arc in a vertical plane with a > x  /  0 will meet 
the periphery of the footing with a shorter radius of slip. If 
we denote such a radius of slip by g(x), then

V  =  6.05A; A e, M  =  V  ■ e 0 )

where A e =  n(a — e)2. Elimination of eccentricity e from Eqs. 

(1) yields

Vm = 6.05k  ■ A (26)

where A  is the cross-sectional area of the circular footing 
which is equal to ira.2, and Vm represents the limiting bearing 
capacity for vertical centered loading.

The lower bound solution in the form of Eq. (2) is illus­
trated in Fig. 5 with a thick solid line. It will suffice here to 
mention that this limiting line approximates to a parabola in 

the plane V /(kA )  versus M /(a kA ).

9i (x) - \J{c + x/a2”-  x2)2 + (zô)2 

92(1) =  \ J ( c -  \T d F - x2)2 +  ( zô)'2. (3)

Here subscript 1 refers to the situation where a circular slip 
starts from somewhere on arc D E F , whereas subscript 2 refers 
to the situation where a shallower circular slip starts some­

where on arc D C  or FG.
Let Winj be the rate of internal dissipation over an element

dA  = gt (x)d0^J(dx)2 f  (dg,(x))2, where i — 1 or 2. Î ct ui be 

the angular velocity of rotation about the x-axis.

dW lnl — k ■ g,(x)u)dA  =  k  ■ p,(x)u • gi(x)dd 1 +  l ^ l i  
ax

(4)
Note here that the slip mode is symmetrical with respect to 
the meridional plane (x = 0).
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Figure 4: Circular rigid footing undergoing rotational failure mechanism

Then, integration of the rate of internal dissipation over a 

total slip area permits the total dissipation rate W to be 

expressed as

Win 4 kui

+4kui

Jo

\

m

[ {9iŸeï\ i + (ë) Ht (5)

where 77 - \/a 2 — c2.
The angles 8\(x )  and 02( i )  that appear in Eq. (5) are de­

fined by

(x) — tan
_! c +  \JaF

Zo
62(1 ) — tan'

.j c — V a 2 — x 2

(6)
The rate of external work done by the eccentric vertical 

load V  may be expressed as

\a  a )
(7 )

Equating lVinl with Weit  leads the average pressure V /A  to
be given by

+ f a(S2 )% , 
J n (=)1 + I - r -  dx (8)

The above equation indicates that for a given eccentricity e, 
the average vertical pressure, V /A , over a given circular foot- 
ing is a function of two geometrical parameters c and zg.

Accordingly, the best upper-bound solution for a given ec­
centricity should be obtained by minimizing the expression 
on the righHiand side of Eq. (8), with respect to c and zo. 
It was found in this regard that such minimization procedure 
may be simplified by setting

c /a  — 1 — 2 (e/a). (9)
Note that this assumption is kinematically compatible, and 
that point B  is now located opposite to point E  with respect 
to the loading point O' (Fig. 4).

A range of upper-bound calculations for 0 <  e /a  < 0.5 were 
numerically performed by following the procedure described 
above. These results are plotted in Fig. 5 with solid rectan­
gles.

Let us next discuss the case where the eccentricity e is in 
the range : 0.5 <  e /a  <  1.0. In this case, integration in 
Eq. (8) for the g1 term should be performed over a modified 
interval [0,77]. The contribution from the <72 term does not 
occur due to the deformation mode assumed, and therefore it 
can simply be neglected.

A range of upper-bound calculations were numerically per­
formed and are plotted in Fig. 5 with solid circles. It is 
seen that these plots coupled with the solid rectangles afore­
mentioned appear to form a continuous curve, which approx­
imates to a parabola.

■ Upper bound ( 0 < e/a < 0.5 ) 

•  Upper bound ( 0.5 < e/a < 1.0 ) 

—  Lower bound (Eq. 2) 

  Experiment by Houlsby e t a l . (Eq. 10)

0 1 2 3 4 5 6 7 8 

Non-dim. V e rtica l Load V/(kA)

Figure 5: Lower- and upper-bound solutions for circular 
footings subjected to eccentric vertical loading
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3 DISCUSSION

A comparison of the upper- and lower-bound solutions in Fig.
5 will indicate that these bearing capacity curves are similar 
in shape and are reasonably close to each other. The lower 
bound solution shows that the normalized maximum vertical 
capacity is equal to V/ ( kA)  — 6.05, which is the exact solution 
for centered vertical loading. The peak moment capacity is 
found to be equal to Mpt/ (akA)  =  0.90 when V/ ( kA)  =  2.69. 
The upper bound solution shows that the maximum vertical 
capacity is Vm/ ( k A )  =  7.61 and that the peak moment capac­
ity becomes equal to Mpk/(akA)  =  1.41 when V/ ( kA)  = 3.51.

To check the validity of these limit analyses, we discuss 
experimental results from circular spud-can footing tests 
(Houlsby &: Martin, 1993 ). It is of interest to mention that a 
spud-can footing has received considerable practical interest, 
since it may serve as an economic and movable platform foun­
dation for offshore hydro-carbon extraction structures. The 
‘average’ experimental results of bearing capacity of circular 
spud-can footings on clay foundations obtained by Houlsby & 
Martin (1993) are expressed as

Mpic 0.2114, • a (106)

where Vm and JW»* are the limit vertical capacity under cen­
tered vertical loading and the maximum moment capacity un­
der eccentric vertical loading, respectively.

It is important to note that the average experimental curve 
shown in Fig. 5 using Eq. (10) falls nicely in the band which 
is bracketed by the proposed plastic solutions.

Houlsby, G. T. i i  C. M. Martin 1993. Modelling of the be­
haviour of foundations of jack-up units on clay. Pre- 
dictive Soil Mechanics : 339-358. London: Thomas 
Telford.

Meyerhof, G. G. 1953. The bearing capacity of foundations 
under eccentric and inclined loads. Proc. 3rd 1CSMFE 
: 440-445.

Nova, R. i i  L. Montrasio 1991. Settlements of shallow foun­
dations on sand. Geotechnique 41(2): 243-256.

4 CONCLUSIONS

This paper has discussed the bearing capacity of a circular 
rigid footing subjected to eccentric vertical loading resting on 
a weightless Tresca material. The results obtained may be 
summarized as follows.

•  The effective circular area shown in Fig. 2 was used to 
find a statically admissible stress field. The consequent 
form of bearing capacity (Eq. (2)) was a lower-bound 
plastic solution compatible with lower-bound theorem. 
The shape of this solution on the plane V /(k A )  versus 
M /(a k A )  was shown in Fig. 5.

•  A three-dimensional collapse mechanism, shown in Fig.
4, was proposed to evaluate the upper bound solution 
(Fig. 5).

•  The exact solution is bounded by the upper- and the 
lower-bound solutions shown in Fig. 5. The shapes of 
the upper- and lower-bound were similar to each other 
and corresponded well to the average experimental re­
sults of Houlsby &l  Martin (1993) using spud-can foot­
ings on clay.

This suggests potential practical applications for the ap­
proach described in this paper.
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